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Abstract: The operating temperature of a battery energy storage system (BESS) has a significant im-
pact on battery performance, such as safety, state of charge (SOC), and cycle life. For weather-resistant
aluminum batteries (AlBs), the precision of the SOC is sensitive to temperature variation, and errors
in the SOC of AlBs may occur. In this study, a combination of the experimental charge/discharge
data and a 3D anisotropic homogeneous (Ani-hom) transient heat transfer simulation is performed
to understand the thermal effect of a novel battery system, say an aluminum-ion battery. The
study conducts a turbulence fluid dynamics method to solve the temperature distribution of the
battery rack, and the entropy generation method analyzes the heat generation of AlB during the
charging/discharging process. The AlB is modeled by a second-order Thevenin equivalent circuit
to estimate the status of the battery. An extended Kalman filter is applied to obtain the accurate
SOC for monitoring the battery cell. The current study conducts the Galvanostatic Intermittent
Titration Technique (GITT) on aluminum-ion batteries under different operation temperatures: 25 ◦C,
40 ◦C, 60 ◦C, and 80 ◦C. According to the sensitivity analysis of the SOC, the temperature sensitivity
tends to or greater than one, ST ≥ 1, while the operation temperature is above 40 ◦C, and the SOC
modification of EKFtmep estimator improves the battery state of charge in the error range below 1%.

Keywords: battery energy storage system; aluminum battery; DPPC test; SOC

1. Introduction

Taiwan has advocated the development of green energy and hopes that the power
generation of renewable energy will reach 20% of the total power generation by 2025.
The storage of energy generated from renewable energy is very significant. Giannelos, S.
et al. proposed that the option value of Dynamic Line Rating and Storage technologies can
allow for generating considerable system savings through the management of planning
uncertainties [1]. According to the different ways of energy storage, it can be classified into
mechanical energy storage, electrical energy storage, and electrochemical energy storage.
Electrochemical energy storage mainly realizes energy storage in the form of batteries. Com-
monly used batteries include lead-acid batteries, flow batteries, and lithium-ion batteries.
Compared with mechanical energy storage, electrochemical [1] energy storage has the ad-
vantages of application flexibility, high efficiency, and rapid response, gradually occupying
an increasingly important position in the energy storage market. The global energy storage
industry is developing continuously. The energy storage system has functions such as peak
load shaving to suppress peak power loads, smart mesh frequency regulation assistance,
island operation, and black start. Lithium-ion batteries are often used in numerous elec-
tronic products, electric vehicles, energy storage systems, military, aviation, and aerospace
applications due to their high energy density, high voltage capability, and excellent cycle
performance. However, Li-ion batteries still have obstacles that limit their application. One
of the main limitations is the thermal runaway in the operation of lithium-ion batteries.
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Generally, the operating temperature range of Li-ion batteries is about−20 to 60 ◦C [1]. The
optimum operation temperature is in the range 15~35 ◦C. Once the temperature exceeds the
allowable operating temperature region, the performance of lithium-ion batteries is greatly
reduced, which has safety problems, such as fire, self-heating ignition, and explosions [2,3].
Extremely low and high temperatures have different effects on lithium-ion batteries [4,5].
Low-temperature effects mainly occur in high-latitude countries and regions. In these high
latitudes, outdoor temperatures in winter are well below 0 ◦C. The low temperature directly
affects the performance and cycle life of lithium-ion batteries, especially for Electric Vehicle
(EV), Hybrid Electric Vehicle (HEV), and Plug-in Hybrid Electric Vehicle (PHEV) used
in the V2B mode under the peak load and during outage condition [6]. There is another
extremely low-temperature environment, which may apply to the battery system in space
technology. In the case of Mars, the temperature may be as low as −120 ◦C [7], which is
undoubtedly suitable for lithium-ion batteries that pose a severe test. The main effect of
high temperature is attributed to the heat generated inside the lithium-ion battery during
battery operation. The high temperature inside the battery is caused by the heat generated
inside the lithium-ion battery, which usually occurs in the state of high current and voltage
in high power output demand. The working state that generates high temperature includes
the operation of fast charging/discharging [8]. High-temperature effects lead to the degra-
dation of battery performance, including the loss of energy capacity and power [9–12]. In
electrode-layered materials, the relative dielectric constant, as well as the energy storage
density of the PLZT thin films with different levels of La doping, shows good temperature
stability. If the battery temperature continues to be at high temperature, it results in thermal
runaway, which may lead to spontaneous combustion or even explosion [13,14].

Recently, a safe and environmentally friendly option, a novel battery, has been consid-
ered. Aluminum-ion batteries have attracted the interest of researchers because they use
materials that are abundant in nature [15]. Previous studies have employed aluminum-ion
batteries for energy storage systems and vehicles [16,17] because of their excellent charg-
ing and discharging capabilities [18], low cost [19], high specific energy [20], and high
safety [21]. A rechargeable aluminum-ion battery uses an aluminum metal anode and a
three-dimensional (3D) graphitic-foam cathode with a non-flammable ionic liquid elec-
trolyte [22], which has been investigated for its high-rate capability. Many research groups
have developed novel thermal models by using measurable parameters of a battery pack
for electric vehicle applications [23,24]. Y Wang et al. proposed a flat heat pipe structure
for removing the heat generation of batteries [25]. For improving the measurement errors,
Y Xie et al. developed a Co-Estimation method for a distributed spatial-temporal online
correction [26]. Panchal, S et al. also gave a turbulence numerical model for cooling the
large-sized battery storage system under high C-rate operation [27]. Therefore, it is critical
to conduct the operation state of the batteries in a safe operation on the proper management
of the working temperature of batteries.

The temperature variation affects the estimation value of the SOC. Predicting the State
of Charge (SOC) of a battery is related to the type of battery and how to apply it. Many
scholars and researchers began to develop ways on improving the accuracy of the SOC
estimation. An accurate SOC estimation can improve the system performance, safety, and
reliability, and timely extend the battery life and duration. Therefore, accurate estimation of
the battery SOC can avoid unexpected system interruption and prevent excessive damage
to batteries. Sudden system interruption may lead to permanent damage or explosion
of batteries. However, battery charging and discharging involve complex chemical and
physical processes, so it is not easy to accurately estimate the SOC under different work-
ing conditions. When a large number of battery units, battery modules, battery cabinets,
and other energy storage equipment are stored, thermal runaway problems arise, which
have become major safety concerns in the energy storage industry. During operation in
a temperature-varied environment, battery resistance, charge, voltage, SOC, and state of
health (SOH) may be affected unpredictably, which makes it more difficult to monitor the
parameters of the battery unit. This paper studies a novel battery modulus, a weather-
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resistant, highly C-rate, aluminum battery (AlB). Due to the fast charging/discharging
characteristic, the dynamical properties of the SOC value of AlB are highly sensitive to
temperature variation. This study combines the battery Galvanostatic Intermittent Titration
Technique (GITT) experiment data and 3D anisotropic homogeneous (Ani-Hom) transient
heat transfer method of energy storage cabinets under different working conditions [23].
Through Computer-Aided Design (CAD) and Computational Fluid Dynamics (CFD) soft-
ware (Ansys Fluent), the temperature, flow field, and thermal state of various positions
inside the cabinets are discussed. The AlB is modeled by a second-order equivalent cir-
cuit for simulation. Various internal parameters of the battery, such as battery resistance,
capacity, discharge efficiency, etc., are affected due to the variation in battery working
temperature, so the SOC is prone to error because of the temperature difference. As a
result, an equivalent circuit model is established for the aluminum-ion battery with the
experimental data, and then the parameters are estimated by an extended Kalman filter,
and the temperature sensitivity of the SOC is analyzed.

2. Materials and Methods

The temperature distribution on the SOC of the 10 kW power battery energy storage
system was mainly discussed. The finite element analysis method was used to analyze
the thermal state of energy storage cabinets under different working conditions. The
3D model of the energy storage rack was established by CAD, and then the parameters
such as material, fluid, and boundary conditions were introduced by CFD to solve the
temperature, flow field, and temperature in each position inside the cabinet. The Thevenin
second-order equivalent circuit was also used as the basis of the battery model, and the
data of aluminum-ion batteries were measured by Galvanostatic Intermittent Titration
Technique (GITT) battery test method. The parameters used in the equivalent circuit model;
such as internal resistance, diffusion polarization, and electrochemical polarization, are
obtained from curve fitting of the battery GITT data. From the circuit equivalent model,
the dynamic and static characteristics of the battery and the SOC curves of the internal
resistance, capacitance, and open circuit voltage (OCV) of the battery model can be obtained.
The above parameters were imported into MATLAB/Simulink, and the SOC estimation
model and virtual battery were established.

2.1. Principle and Introduction of Aluminum-Ion Batteries

Aluminum is abundant in the earth’s crust, second only to nonmetallic oxygen (O)
and silicon (Si). Because of its good electrical and heat conductivity, aluminum is suitable
to replace copper cables as conductors. Due to its low density and corrosion resistance,
aluminum is often synthesized with other alloys, which are widely used not only in the
aerospace industry, but also in transportation vehicles and mechanism materials. The
energy density of an aluminum-ion battery is almost the same as a Lead acid battery, and
the outermost orbital of the aluminum element has three-electron redox, which can release
three electrons. Although lithium metal has three-electron redox, only one electron in its
reaction equation is dissociated. Dr. Yang developed a breakthrough aluminum battery.
The research team cooperated with Stanford University in the United States to solve the
shortcomings of low discharge voltage and extremely short life of aluminum-ion batteries,
and produced the first commercialized aluminum battery in the world [24].

The anode of the aluminum-ion battery is made of 3D graphite, the cathode is made
of aluminum, and the electrolyte is made of non-combustible ionic liquid, which can make
the battery safe even if it is damaged by an external force during charging and discharging.
An aluminum battery has the characteristics of fast charging and fast discharging, which
can be charged at a current of 100 times the C-rate, with the C-rate being the unit battery
engineers use to measure the speed at which a battery is fully charged or discharged. For
example, charging at a C-rate of 1C means that the battery is charged from SOC 0~100%
in one hour; that is, the charging time is less than one minute [25], and its safety is more
stable than lithium metal, so it is suitable to be used as battery material. The following are
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the chemical reaction equations of the aluminum-ion battery, and its working schematic
diagram is shown in Figure 1.
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Anodic reaction
AI + 7AICI−4 → 4AI2CI−7 + 3e− (1)

Cathodic reaction
Cn[AICI4] + e− → Cn + AICI−4 (2)

2.2. Thevenin Second-Order Equivalent Circuit Model

The battery model describes the dynamic and static characteristics of the aluminum
battery. Because the electrochemical solution of the battery has the problems of electro-
chemical polarization and electrolyte concentration difference, which may affect various
parameters of the battery during charging and discharging, the electrochemical and con-
centration polarization are explored. Thevenin Model is used as the simulation battery
model [26,27]. The dynamic characteristics of the equivalent circuit model simulating the
battery are shown in Figure 2. In the model, a second-order RC equivalent circuit is used.
The Electrochemical Polarization is compared to equivalent capacitance (Cp1) and resistance
(Rp1), and the Concentration Polarization is compared to equivalent capacitance (Cp2) and
resistance (Rp2). The two groups of equivalent RC circuit models are combined, and the
battery open-circuit voltage source Voc and initial internal resistance Ro are added in series
to form the second-order equivalent circuit model.

From the schematic diagram of the second-order equivalent circuit in Figure 2, the bat-
tery output voltage (Vbattery) equation can be derived as shown in the following
Equations (3) and (4).

Vbattery = Voc −VRo −Vp1 −Vp2 (3)

VRo = Ro × Ioc (4)

Of which, Vbattery is the working voltage, Voc is the OCV, VRo is the terminal voltage
of the ohmic resistance, VRp1 is the terminal voltage of the concentration polarization RC
circuit, VRp2 is the terminal voltage of the electrochemical polarization RC circuit of the
battery, and Ioc is the discharge current. Equation (5) shows the change in battery discharge
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time function and battery rest time function of electrochemical corrosion polarization in
equivalent circuit, while Equation (6) displays the change in battery discharge time function
and battery rest time function of concentration polarization in equivalent circuit. We can
apply these equations to estimate the battery states.

Vp1(t) = Vp1(t0)× e
−t
τp1 + Ioc(t)× Rp1(1− e

−t
τp1 ) (5)

Vp2(t) = Vp2(t0)× e
−t
τp2 + Ioc(t)× Rp2(1− e

−t
τp2 ) (6)
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2.3. Battery Galvanostatic Intermittent Titration Technique Test

In order to evaluate the basic data of battery modules, and the performance and other
states of EV or PHEV on the market at present, experts from all over the world must
test the batteries, among which the Galvanostatic Intermittent Titration Technique (GITT)
developed by the Program Electrochemical Energy Storage Team of Freedom CAR in the
United States is the most widely used [28]. GITT is mainly used for pulse charge and pulse
discharge capability of test battery and single-cell battery at different depths of discharge
(DOD). The process is shown in Figure 3. Pulse discharge/charge internal resistance and
over internal impedances of battery at specific DOD can be obtained by calculation of
Ohm’s Law.

Figure 4 is the discharging interval of pulse motive force test. Remain stationary at t0-t1
for one hour, without any current passing positive and negative electrodes, until battery’s
internal polarization effect has stabilized, followed by 10% DOD (depth of discharge)
discharging by battery with current at 1C multiple ratios. During the discharging time, there
are three states, each with different significance. These three states represent their different
physical variations. V1~V2 indicates abrupt voltage decline, caused by Ohmic internal
resistance and charge transfer resistance R0 (Rohm + Rtrans). The 10-steps GITT testing data
and fitting curve are shown in Figure 5. The experiment environment-controlled box and
the temperature monitoring curve during the charge/discharge process are both shown in
Figures 6 and 7. The temperature data measurement collecting by the “thermistor” (see
Table 1 and Figure 8).
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Table 1. NTC thermistor datasheet.

Characteristic Type Unit

Resistance at 25 ◦C 10 K Ω
Temperature Range −40 to +120 ◦C

R Tolerance 1.0 %
B Value 3435

B Tolerance 1.0 %
Wire Type Separate
Package DIP

According to the 2nd order equivalent circuit model, in the voltage, all of the ohmic
internal resistance Ro, electric resistance resulting from electrochemical polarization and
concentration difference polarization, and capacitance is reaction. Due to the electric
resistance deriving from electrochemical reaction polarization and concentration difference
polarization, the capacitance’s terminal voltage exhibits exponential growth over time. The
mathematical relations between these parameters are described in Equations (7)–(9).

Ro,discharge =
V1 −V2
Idischarge

(7)

Vbattery(t) = Voc(t)− Ro × Ioc(t)

−Rp1(t)× Ioc(t)× (1− e
− t

τp1 )

−Rp2(t)× Ioc(t)× (1− e
− t

τp2 )

(8)

Vbattery(t) = Voc(t)−Vp1(t)× e
− t

τp1 −Vp2(t)× e
− t

τp2 (9)

2.4. EKF Method for Al-Battery SOC Estimation

In order to establish a SOC estimator for aluminum-ion batteries and predict the SOC
accurately, this paper uses Kalman filter to build the SOC [29], and then uses the prediction
and correction method of Kalman filter to estimate the State of Charge (SOC). Kalman Filter
is an efficient recursive filter (autoregressive filter) [30], which can estimate the state of a
dynamic system from complex and noisy measurement data. As long as the estimated value
of the state at the previous moment and the observed value of the current state are known
and time-varying measured values, and although the measured value is inaccurate and
contains statistical errors, the Kalman filter can still calculate the current state estimation
value, and can estimate the dynamic changes in the system in real time without reading
the historical data of the measured data or the estimated data in the process. Battery is
a nonlinear dynamic system, so an extended Kalman filter is used. In order to estimate
the SOC by an extended Kalman filter, the battery system should be expanded by Taylor
expansion, and the state equation and observation equation of the battery system should be
linearized by partial derivatives. The nonlinear system should be transformed into a linear
system by Taylor expansion, and the battery linear system model should be established [31],
and then the estimated value should be predicted and corrected by Kalman filter. The
extended Kalman filter can be divided into five equations; repeat the following steps for
recursive operation.

X̂−k = AX̂k−1 + Buk−1 (10)

P−k = APk−1 AT + Q (11)

Kk = P−k HT
(

HP−k HT + R
)−1

(12)
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X̂k = X̂−k−1 + Kk

(
Zk −

(
HX̂−k−1 − Dkuk

))
(13)

Pk = (I − Kk H)P−k−1 (14)

where X̂−k is the system state matrix of state k, X̂−k−1 is the system state matrix of state k − 1,
µk−1 is the system control matrix of state k − 1, An*n is the state transition matrix, Bn*1 is the
state control matrix, P−k is the covariance of prediction error in state k, Q is the covariance
of system process noise, Kk is the Kalman gain in state k, R is the covariance of system
measurement noise, and Zk is the measured value of state k.

2.5. Governing Equations

This study uses ANSYS-Fluent computational fluid dynamics software to solve the
relevant parameters for the internal heat flow field of the battery rack. The simulation
model is calculated using a 3D model. The governing equations used include continuity
equations, momentum equations, and energy equations [32]. The equation is expressed
as follows:

(1) Continuity Conservation Equation:

∂ρ

∂t
+∇ ·

(
ρ
⇀
υ
)
= 0 (15)

where ρ is the fluid density,
⇀
υ is the fluid vector, and t is the time, the above equation

is expanded as follows:

∂ρ

∂t
+

∂(ρu)
∂x

+
∂(ρv)

∂y
+

∂(ρw)

∂z
= 0 (16)

(2) Momentum Conservation Equations:

ρ
D
⇀
υ

Dt
= −∇p + p

⇀
g + µ∇2⇀υ (17)

Also known as Navier–Stokes Equations, among them ∇2 ≡ ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 , this

equation is called Laplacian Operator. Where ρ D
⇀
υ

Dt is the inertial force per unit volume,
−∇p is the pressure per unit volume, p

⇀
g is the body force per unit volume, µ∇2⇀υ is

the viscous force per unit volume. p is pressure,
⇀
g is the gravitational component in

the x, y, z directions in space. Since the direction of gravity in this study is only in the
z direction, only the gravity field in the z direction is considered.

(3) Energy Conservation Equation:

∂(ρT)
∂t

+∇(ρuT) = ∇
(

k
CP
∇ · T

)
(18)

Which can be written as:

∂(ρT)
∂t

+
∂(ρuT)

∂x
+

∂(ρvT)
∂y

+
∂(ρwT)

∂z
=

∂

∂x

(
k

CP

∂T
∂x

)
+

∂

∂y

(
k

CP

∂T
∂y

)
+

∂

∂z

(
k

CP

∂T
∂z

)
(19)

Among them, CP is the specific heat capacity, T is the temperature item to be obtained,
k is the thermal conductivity coefficient of the fluid.

2.6. Turbulence Model

The concept of the turbulence model of the Reynolds-averaged Navier–Stokes equation
(RANS) is that any fluid variable φ is regarded as the average value obtained after N
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calculations φ and the instantaneous jump value φ′. The average value can be expressed
as [33]:

φ = lim
N→∞

1
N

N

∑
n=1

φn

(→
x , t
)

(20)

This study assumes an unsteady incompressible Newtonian viscous fluid, in which
the body force and heat transfer are ignored, and with the runout value, the momentum
equation has an additional Reynolds stress. Under the Cartesian coordinates, the basic
system equations in the turbulence model are as follows:

∂(ui)

∂xi
= 0 (21)

ρ

(
∂(ui)

∂t
+

∂
(
uiuj

)
∂xj

)
= − ∂P

∂xi
+

∂

∂xj

(
2µSij + τij

)
(22)

Sij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
(23)

τij = −ρ
________
ui
′uj
′ = µt

(
∂ui
∂xj

+
∂uj

∂xi

)
(24)

x is the coordinate, and the subscripts i, j, and k in the equation represent the direction
of the Cartesian coordinates, ui is the average velocity of the in the xi direction, uj is the
average velocity of the fluid in the xj direction µ is the dynamic viscosity coefficient, Sij is
the strain rate. Equation (21) uses Boussinesq’s gradient transport hypothesis to connect
the runout value and the average velocity gradient, τij is the Reynolds stress, and µt is
the turbulence dynamic viscosity. In addition, the Reynolds stress term resulting from the
runout value is handled by the turbulence model.

SST k-ω Model

ρ

(
∂k
∂t

+
∂
(
ujk
)

∂xj

)
= Pk −Dk +

∂

∂xj

(
(µ + σkµt)

∂k
∂xj

)
(25)

ρ

(
∂ω

∂t
+

∂
(
ujω

)
∂xj

)
= Pω −Dω +

∂

∂xj

(
(µ + σωµt)

∂ω

∂xj

)
+ 2ρ(1− F1)σω2

1
ω

∂k
∂xj

∂ω

∂xj
(26)

µ =
ρa1k

max
( a1ω

a∗ , SF2
) (27)

a∗ =

0.024 + ρk
6µω

1 + ρk
6µω

 (28)

S =
√

2SijSij (29)

Equations (22) and (23) are the transmission equations of k and ω, and k is the
turbulence kinetic energy, ω is the specific turbulent dissipation rate, σk and σω are the
Prandtl numbers of the turbulence k and ω, respectively, a∗ is the parameter used to control
the viscosity coefficient of turbulent flow in Low-Reynolds Number Correction. When the
Reynolds number is high, its value is equal to one, and S is the average shear strain rate. In
addition, Pk and Dk are the generation and dissipation terms of turbulent kinetic energy,
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as shown in Equations (27) and (28), then Pω and Dω are the generation and dissipation
terms of turbulent dissipation rate, as shown in Equations (29) and (30).

Pk = min

[
µt

∂ui
∂xj

(
∂ui
∂xj

+
∂uj

∂xi

)
, 10β∗ρkω

]
(30)

Dk = β∗ρkω (31)

Pω = α
ρ

µt
Pk (32)

Dω = βρω2 (33)

Moreover, F1 and F2 are defined as follows:

F1 = tanh


{

min

[
max

( √
k

β∗ωy
,

500µ

ρy2ω

)
,

4ρσω2k
CDkωy2

]}4
 (34)

CDkω = max

(
2ρσω2

1
ω

∂k
∂xj

∂ω

∂xj
, 10−10

)
(35)

F2 = tanh


[

max

(
2
√

k
β∗ωy

,
500µ

ρy2ω

)]2
 (36)

φ = φ1F1 + φ2(1− F1) (37)

where y is the minimum distance between the first layer near-wall grid. It is known that
the SST k-ω model is a turbulence model that combines the advantages of the k-ε model
and the k-ω model, where F1 in Equation (31) and F2 in Equation (33) are the parameters of
the SST k-ω model used to switch k-ε model or k-ω model. When its value is equal to zero,
it represents the k-ε model, and when the value is equal to one, it represents the k-ω model
close to the boundary, and all the constants are calculated from Equation (34). Other SST
k-ω model constant values are as follows:

β∗ = 0.09, σk1 = 0.85, σk2 = 1.0, σω1 = 0.5, σω2 = 0.856, a1 = 0.31
φ1 = 5/9, φ2 = 0.44, β1 = 0.075, β2 = 0.0828

Equation (35) is for finding Reynolds number (Re) and is used to determine whether
the fluid flow is turbulent or laminar, where Dh represents the hydraulic diameter of the
coolant body, u is the mean velocity of the fluid (m/s), µ is the dynamic viscosity of the fluid
(Pa·s). In this study, the flow model is turbulence model. The corresponding parameters
are shown in Table 2.

Re =
ρuDh

µ
(38)

Table 2. Reynolds number specification.

Property Value Unit

ρ 1.225 kg/m3

u 1 m/s
µ 1.8 ×·10−5 Pa·S
Reynolds number (Re) 14,544 -
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2.7. Thermal Analysis of Energy Storage Cabinet

Figure 9 represents the thermal analysis conducted by the following simulation steps.
They are 3D model graphics processing, CFD solver setting, and result analysis. ANSYS is
used to establish a solid model of the energy storage cabinet, and the geometric structure
of its battery module is simplified. CFD is used to feed in the data of entrance and exit
conditions, boundary conditions, material physical parameters, fluid physical parameters,
environmental parameters, and battery heat generation, so that the energy storage cabinet
can be simulated completely. The purpose is to analyze the temperature distribution of
different kinds of operation conditions in energy storage cabinets. That we can apply
the computed temperature distribution for the battery SOC estimation from the Kalman
predictor. The heat dissipation in the battery module and the heat exchange in the ceiling
interlayer are beyond its scope, so the lump battery system hypothesis is adopted to
simplify the 3D model. It is assumed that the cold air system in the ceiling interlayer can
make complete heat exchange. The concept of lump battery heat source is to replace the
geometric model of single battery, battery pack, wire, tab, housing, and other components
with homogeneous lump geometry. It has the advantages of easy mesh generation, higher
meshing quality, and lower mesh numbers to complete numerical discretization.
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Figure 9. Stereo view of the interior of the energy storage rack (bank).

The battery pack is regarded as a hypothesis composed of core and housing. The
complex geometry of all battery modules in the energy storage cabinet is simplified in the
same way. All single batteries in the original battery module are assumed to be a single
entity with isotropic homogeneous materials, in which the battery core is made of battery
composite materials, the battery pack housing is made of heat-resistant plastic, the battery
box housing is made of metal steel plates, and the cooling fluid is air. Conjugate heat
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transfer analysis is carried out for the battery modules and battery cabinets in the energy
storage cabinet, and the boundary conditions are shown in Tables 3 and 4.

Table 3. Battery Module Material Parameters.

Material
Property

Material
Air

Cabinet Steel
Frame

Foam
Insulation

Battery
Cell

Density
(kg/m3) 1.184 8030 17.6 2697

Specific Heat (j/kg-k) 1006.43 502.48 1501 823

Heat Conductivity (W/m-k) 0.0242 16.27 0.0439 Axial-28.5
Radial-3.4

Viscosity (kg/m-s) 1.7894 × 10−5 - - -
Molecular Weight (kg/kmol) 28.966 - - -

Table 4. Boundary Conditions.

Boundary
Property Fluid Velocity

(m/s)
Temperature

(◦C)
Pressure

(atm) Amount

Air inlet 1.05 25 - 6
Exhaust vent - 25 1 2

Wall boundary condition No-slip wall boundary

2.8. Heat Generation of Al-Battery

The total heat, Qtot, generated by the battery in use is composed of Joule heat and
entropy change, which can be divided into irreversible heat Qirr and reversible heat Qrev.
Fundamentally, the main heat-generating positions of batteries are anode, cathode, sepa-
ration film, and electrode sheet, and the above positions include electrochemical reaction
ohm’s heat. For thermodynamic, assuming that the battery reaction is ideally reversible,
the Equation (39) of the battery equation at constant temperature is as follows:

∆H = ∆G + T∆S (39)

Among them, enthalpy change ∆H is obtained by Gibbs function ∆G energy trans-
formation and entropy change ∆S energy compensation. According to reference [34],
Equation (39) can be rewritten into Equation (40).

Qtot = Qirr + Qrev (40)

The generation of irreversible heat is caused by the electrochemical polarization
inside the battery and the overpotential of the battery electrode, which is expressed in
Equation (41).

Qover = I(E− Eeq) (41)

When electric current I flows through the battery to produce electrochemical polar-
ization, its voltage E drops from the OCV to the operating voltage Eeq, and the heat loss
caused by this electrochemical polarization dissipates with the air and is described by the
following Equation (42):

Rirr = Rint(T, SOC)× I2 (42)

In Equation (42), the internal resistance of Rint (Ω) depends on SOC and operating
temperature T (K); I is the magnitude of current (A), but the heat generated due to entropy
change is expressed as:

Qentropy = −T∆S
1

nF
(43)
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∆S can be expressed as Equation (44):

∆S = −∂∆G
∂∆T

= −nF
∂Eeq

∂T
(44)

After using Gibbs equation, T is the temperature of the battery. The current of the bat-
tery is positive when charging, and the current of the battery is negative when discharging.
F is Faraday constant, Eeq is the OCV of the battery, and n is the charge number related to
the reaction, in which ∂Eeq/∂T can be obtained by experiment.

The equation of reversible heat can be expressed as Equation (45). The amount of
irreversible heat depends on the battery current and internal resistance. Therefore, the
temperature and SOC significantly affect the calorific value of the battery. In fact, the
internal resistance of the battery varies with the temperature and SOC. Equation (45) is
obtained by integrating the above Equations (39)–(44).

Qtot = Rint(T, SOC)× I2 − IT
∂Eeq

∂T
(45)

However, the reversible heat depends partly on the battery temperature, current, and
entropy temperature coefficient. Generally speaking, under normal working environment,
the battery can only transfer heat and dissipate heat by convection through the battery
surface, and the governing equation of convection can be expressed by Equation (46):

qconvection = hA(Tb − Tamb) (46)

where qconvection is heat transfer (W), h is heat convection coefficient W/m2K, A is contact
surface area (m2) between fluid and battery, Tb is battery temperature (K), and Tamb is
environmental temperature (K).

According to the heat generation equation [35], the power generation of different kinds
of batteries can be calculated effectively according to battery type, impedance, temperature
coefficient, and other battery heat generation parameters. The volume heat generation
power density of battery modules can be converted, which is beneficial to CFD to calculate
battery heat generation and simulate heat dissipation. Because of the different volumes and
energy densities of each type of battery, different types of batteries have different power
levels under the same volume. Therefore, in order to make the simulation really close to
the actual state, the volume energy density is used to convert the battery power, so the
calculated single-core power and the specifications of the single core module and cabinet
are shown in Table 5.

Table 5. Aluminum-Ion Battery Specification Sheet.

Term
Battery Type Aluminum-Ion Battery

Cell nominal voltage (V) 2.35~1.1
Cell nominal capacity (Ah) 0.764

Anode type Aluminum
Cathode type 3D Graphite

electrolyte Ionic liquid (EMIC&AlCl3)

2.9. Mesh and Mesh Independence Test

In computational fluid dynamics, the number of mesh is one of the ways to accelerate
computation time, but there is a critical mesh number that is sufficient for reasonable
results. When solving from rough mesh, the results may be different with the continuous
refinement of the mesh. There is a critical value for mesh refinement. Even if it exceeds this
critical value, the same results will be observed. It can be proved that our mesh model has
achieved mesh independence. The mesh will be fine enough to capture the most complex
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details of the fluid, which is why the mesh will be finer without making any changes to
the results.

When using finite elements method to calculate engineering problems, we should
check any possible numerical problems, and the numerical calculation errors are mainly
truncation errors. These errors tend to accumulate gradually in the calculation process,
resulting in CFD simulation results that do not conform to the physical meaning. However,
if the calculation results seem to be relatively reasonable on the whole, it may be found
that there are relatively large errors at specific positions in the flow domain afterward.
The control of computational error is an important step to obtain reliable and meaningful
CFD simulation results. The grid-independent test results are shown in Figure 10. In this
study, using ANSYS Mesh for meshing, when the grid numbers reach 4,000,000, the current
simulation seems to obtain stable results, and therefore mesh number 4,000,000 is used in
this study.
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3. Results and Discussion

In this chapter, the results of SOC estimation of battery and thermal analysis of energy
storage cabinets are analyzed, respectively. In the part of battery SOC estimation, a series of
verification simulations and tests are carried out in order to verify the convergence, estima-
tion ability, and anti-noise ability of the extended Kalman filter estimation architecture. In
order to understand the influence of the operating temperature on the SOC estimation, this
paper simulates the dynamic stress test (DST) at different temperatures and analyzes the
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results. In the part of thermal analysis of energy storage cabinets, this paper uses CFD to
simulate the temperature distribution and heat transfer state of battery cabinets, analyzes
the heat dissipation state of different kinds, and discusses the influence of temperature.

3.1. Establishment of Battery Equivalent Model

A DPPC battery test is carried out on AlB at different temperatures, and the battery
voltage equation derived from the Thevenin second-order equivalent circuit battery model
is fitted by the least square method to obtain the battery model parameters. Figure 11
shows the relationship between the Open Circuit Voltage (OCV) and the SOC at different
temperatures. When the battery is less than 10% SOC for all four different temperature
states, the OCVs of the battery would present as 1.65 V, 1.56 V, 1.49 V, and 1.4 V for the
battery temperature at 25 ◦C, 40 ◦C, 60 ◦C, and 80 ◦C, respectively. Obviously, the battery
temperature difference of 55 ◦C (80–25) decreases the OVC for 0.25 V at temperature 80 ◦C.
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Figures 12–14 show the ohm’s internal resistance Ro, electrochemical polarization
capacitance Cp1 and resistance Rp1, and concentration polarization capacitance Cp2 and
resistance Rp2 of the battery at different temperatures, respectively. It is found that oper-
ating temperature has a great influence on battery model parameters. Ohmic resistance,
electrochemical polarization resistance, and concentration polarization resistance decrease
with increasing temperature, while electrochemical polarization capacitance and concen-
tration polarization capacitance increase with increasing temperature. When SOC is less
than 10%, the ohmic resistance, electrochemical corrosion polarization resistance, and
concentration polarization resistance increase significantly. The SOC of aluminum batteries
has a considerable correlation with battery model parameters. When the SOC is less than
10%, it has an obvious influence on model parameters. For the SOC range between 20 and
90%, the model parameters of the batteries are represented in a stable way.

From Figures 12 and 13, it can be seen that when the working temperature of the
battery is higher, the ohm’s internal resistance Ro, electrochemical polarization resistance
Rp1, and concentration polarization resistance Rp2 all start to produce violent chemical
reactions in the electrolyte, positive electrode material, and negative electrode material
inside the battery due to the increase in the working temperature of the battery, and then
the higher the working temperature of the battery, the lower the battery resistance.
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As can be seen from Figure 14, the increase in battery operating temperature also
causes the increase in electrochemical reaction polarization capacitance Cp1 and concentra-
tion polarization capacitance Cp2, which is because the polarization and chemical reactions
inside the battery produce a more intense chemical reaction with the increase in temper-
ature, which makes the discharge of the battery more stable and causes the increase in
capacitance value.

The ohmic resistance (Ro), electrochemical corrosion polarization capacitance (Cp1),
electrochemical corrosion polarization resistance (Rp1), concentration polarization capac-
itance (Cp2), and concentration polarization resistance (Rp2) were identified by using the
above-mentioned battery model state equation and DPPC battery test. By applying the
DPPC-curve-fitting parameters of 10 stages into the curve, the ohm’s internal resistance,
polarization resistance and capacitance, OCV, and other parameters are obtained, and the
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parameters are brought into the model, and the battery model is established on MATLAB
Simscape platform, as shown in Figure 15.
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3.2. Thermal Analysis Results of Energy Storage Rack

This section discusses the thermal state and heat transfer of the single energy storage
rack and battery module. According to the Ani-Hom approach, the battery discharge
simulation of the single battery rack based on the different environment temperature
modes is carried out and its thermal state is analyzed. The simulation results in Figure 16
show that the 30 kW (7 C-rate) discharge simulation of the aluminum-ion battery cabinet
is carried out under the conditions of an initial temperature of 25 ◦C, the environment
temperature is also 25 ◦C, with the air outlet of one atmosphere and air inlet wind speed
of 1.05 m/s. Because of the low energy density of AlB, it can be seen that the highest
temperature of the aluminum-ion battery cabinet is only 25.69 ◦C when carrying out a
30 kW discharge simulation. Although the discharge current of the single battery 7 C-rate of
the aluminum-ion battery is 5.35 Amps, and the DC impedance of the battery is 11.25 mΩ,
the energy output of the aluminum-ion battery can only be maintained for 514 s when the
aluminum-ion battery is discharged at 7 C-rate, but it will not produce a high temperature.
According to the simulation results in Figure 17, the highest temperature reaches 27.16 ◦C
when the aluminum-ion battery cabinet discharges at 28C, which is about 120 kW output
power. This is because the current that the aluminum-ion battery discharges at 28C is
21.4 amperes, and the DC impedance of the aluminum-ion battery is 11.25 mΩ, which
causes the battery cabinet to reach 27.16 ◦C after 128 s of the output power of 120 kW. For
other operating temperatures of 40 ◦C, 60 ◦C, and 80 ◦C under 7C and 28C discharging rates
(Figures 18–23), the battery rack temperature distribution is shown in Table 6. Although
AlB is a good weather-resistant battery, it presents as highly sensitive on the SOC due to the
environment temperature. The thermal state simulation enabled us to find the temperature
distribution of each AlB rack under its preferred operation place and exerted the associated
environment temperature. These temperature distributions will apply to an EKF SOC
estimator by obtaining the precision SOC of AlB.
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Table 6. The temperature distribution of AlB rack.

Power
Output/C-rate

Temperature
25 ◦C 40 ◦C 60 ◦C 80 ◦C

30 kW/7C 25.69 40.69 60.69 80.69
120 kW/28C 27.16 42.16 62.16 82.16

30 kW/7C
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3.3. State of Charge Estimation Results

Focusing on the establishment of extended Kalman filter estimation architecture by
numerical analysis simulation software MATLAB and Simulink, this section presents the
estimation of the SOC. In order to ensure the accuracy of the estimation architecture of the
extended Kalman filter (EKF), the state parameter of the extended Kalman filter estimation
procedure is set to a testing process: the wrong initial value when simulating battery
discharge. In estimating the SOC, random noise is added to the current value and voltage
value of the measuring of the simulated battery, and the test estimation architecture of
dynamic stress test (DST: shown and discussed in Figure 24 is used to judge whether the
extended Kalman filter estimation architecture can accurately estimate the SOC under
different environmental temperatures.
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Energies 2023, 16, 4270 24 of 30

In order to ensure the convergence of the EKF estimator to the initial value error
of the SOC, an EKF convergence verification is presented. The convergent test of the
Kalman estimator is performed when the battery is simulated to stand at 90% SOC and
the temperature is 25 ◦C. The initial value of the extended Kalman estimator SOC is
set to 50%, and the program is used to recursively calculate the SOC. The convergence
test result is shown in Figure 25a. The initial value of the extended Kalman estimator is
different from the actual SOC. After recursive calculation by the extended Kalman estimator,
the estimated value of the SOC can gradually converge to the actual SOC. As shown in
Figure 25b, the voltage value error estimated by the extended Kalman estimator is corrected
by the recursive estimation method of the extended Kalman estimator, so that the voltage
error gradually approaches zero.
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In Figure 26, to test the convergence of the EKF estimator, five different SOC values
are set to be the initial guess. After the recursive estimation method in a 200 s time interval,
the EKF estimation value approaches the actual SOC value. If the difference between the
initial value and the actual value is too large, it needs more iterations and will take more
time, such as when the initial value SOC is 10%. If the difference between the initial value
and the actual value is very small, the extended Kalman estimator recursive estimation
method can quickly correct the initial value to the actual value. In the application of the
EKF SOC estimator in the actual state, the battery voltage and current sensing elements are
susceptible to interference noise caused by environmental temperature, humidity, vibration,
electromagnetism, or man-made accidental contact. Traditionally, Coulomb’s integration
was used for battery SOC prediction, but the noise caused by the environments produced
distortion and integration errors. In order to detect the noise suppression ability of the
extended Kalman estimator, Gauss noise is used to simulate the addition of voltage and
current noise when the battery is discharged at 1C-rate. The state value of SOC is estimated
by the EKF estimator to verify that the estimator can still suppress noise in the dynamic
system containing noise. The recursive calculation is executed to estimate the value of SOC.
However, in order to better compare the accuracy of the extended Kalman estimator, the
Coulomb integral method for SOC estimation is added to the simulation results to compare
two different SOC estimation methods. An artificial noise of battery OCV and discharging
current is shown in Figure 26. Figure 27a shows the SOC estimation result after adding
the noise. From the simulation results, it can be seen that the 1C-rate constant current
discharge simulation test of the battery is carried out under the same initial value state.
In the SOC estimation using Coulomb integral method, because the noise is added to the
measuring end of the simulated current and the Coulomb integral method cannot correct
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the measurement error, it is easy to produce a cumulative error with time when using the
Coulomb integral method to estimate the SOC. For the extended Kalman Estimator in the
simulation of SOC state value results, it is verified that the extended Kalman estimator
can suppress the voltage and current noise during battery measurement, and would not
produce cumulative errors. As shown in Figure 27b, it is a very effective SOC estimation
method to use the extended Kalman estimator to estimate the SOC state value. It can be
seen in Figure 27 that the extended Kalman estimation method gradually converges to zero
with time iteration and calculation. In the calculation of the Coulomb integral method,
we can see that there are errors from the beginning of the integral calculation. With the
increase in time and iteration times, the errors accumulate with time because the Coulomb
integral method does not include a correction method, which means it produces cumulative
estimation errors.
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During the charging/discharging process of the battery, the heat is generated due
to the battery’s internal resistance and electrochemical reaction, which makes the battery
temperature rise. The influence of higher temperatures on the battery will cause numerical
changes, such as DC impedance, internal resistance, capacitance, and electrochemical
polarization. In order to understand the influence of higher temperature impact and
SOC sensitivity against temperature on the estimation architecture of EKF, the DST test
is carried out with AlB, and the test is conducted by a comparison of the temperature-
dependent/independent results. The test waveform of DST is shown in Figure 28, where a
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negative value simulates the battery in a discharged state and a positive value simulates
the battery in a charged state. In the following, the dynamic stress test (DST) simulation
of an aluminum-ion battery at 45 ◦C is carried out. The dynamic discharge and charge
simulations are explained with the maximum power of a 28 C-rate battery. The difference
between the EKF based on the battery data of DPPC at different temperatures and the
extended Kalman filter based on the battery data of 25 ◦C is compared, and the results are
discussed. Figure 29 is a comparison chart between DST results and errors of aluminum-ion
batteries. The extended Kalman SOC estimator considering the temperature difference
has high accuracy and convergence. The common extended Kalman SOC estimator used
in the state-of-temperature difference leads to the inaccuracy of SOC estimation, even
the estimation errors. In the process of high C-rate battery discharge, because of the
increase in the battery discharge current, the estimation error increases, and the common
extended Kalman SOC estimator has an error as high as 10%. Compared with the extended
Kalman SOC estimator considering temperature difference, the estimation error caused by
temperature difference is greatly reduced.
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3.4. Temperature Sensitivity of AlB’s SOC

Temperature sensitivity, ST, of AlB means the property that the SOC of AlB changes
with the temperature change. It is defined as ST =

EKF−EKFtemp
EKFtemp

. The greater ST means
the SOC behavior performs a highly sensitive way. From the experimental procedure, the
results show that the SOC of AlB is sensitive and depends on environment temperature.
According to the sensitivity analysis of SOC, the temperature sensitivity tends to or greater
than one, ST ≥ 1 (Table 7), while the operation temperature is above 40 ◦C, and the SOC
modification of EKFtmep estimator needs to be applied to obtain correct battery state of
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charge. Between 10% and 80% of SOC, the current results find that heat can cause the
traditional estimation (Coulomb’s integral and EKF) to worsen.

Table 7. The estimation errors of SOC (iteration No. ~3000; 28C-rate; SOC = 20%).

Environment
Temperature

SOC Errors
EKFtemp EKF Coulomb’s

Integral
Sensitivity

25 ◦C 0.0010 0.0010 0.07 0.000
40 ◦C 0.0034 0.0065 0.10 0.911
60 ◦C 0.0055 0.0120 0.24 1.181
80 ◦C 0.0060 0.0162 0.31 1.700

4. Conclusions

In this paper, a hybrid method of CFD and EKF is used to establish and simulate the
heating condition of batteries. A series of analyses and the simulation of aluminum-ion
batteries are carried out. To improve the accuracy of the SOC of the battery, the temperature
sensitivity of AlB’s SOC is discussed. According to the sensitivity analysis of the SOC,
the temperature sensitivity tends to or greater than one, ST ≥ 1, while the operation
temperature is above 40 ◦C, and the SOC modification of the EKFtmep estimator improves
the battery state of charge in the error range below 1%. The power density, material
parameters, and boundary conditions are combined into CFD to simulate the conjugate
heat transfer in order to prove that the battery generates Joule heat when discharging,
which rises the working temperature of the battery. The SOC estimation accuracy is
affected by temperature variation. In order to solve the problems, the convergence ability,
noise suppression ability, and the influence of temperature on the Extended Kalman Filter
SOC estimator are analyzed by MATLAB and Simulink simulation. By adding voltage
and current noise to the measuring end of the battery model, the corresponding real
state of AlB is observed. It is verified that the extended Kalman SOC estimator has the
ability to repair sensor noise, and the maximum SOC estimation error is below 2.90%
under the effect of temperature variation. The difference between the common extended
Kalman SOC estimator and the extended Kalman SOC estimator considering temperature is
obtained from the simulation results. The SOC modification of EKFtmep estimator improves
the battery state of charge successfully. Under the battery operating state of charge, say
between 10% and 80%, current results find that heat can cause the traditional estimation
(Coulomb’s integral and EKF) to worsen. The estimation result of the extended Kalman SOC
estimator considering temperature is more accurate, and the maximum SOC estimation
error is less than 1%. In this study, we conduct a second-order Thevenin equivalent
circuit for simulating the aluminum-ion battery. A second-order model only considers two
polarization effects: electrical polarization and concentration polarization. Actually, battery
charging/discharging dynamics might cause other polarization effects in AlB. For a fast
charging/discharging system, in future work, a higher-order equivalent circuit may be
suitable in a low SOC condition.
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Nomenclature
An×n State transition matrix
Bn×l State control matrix
Cp1 electrochemical polarization capacitance
Cp2 concentration polarization capacitance
Cp Specific heat
Eeq The open circuit voltage of the battery
F Faraday constant
Hm×n Observation state transition matrix
h Heat convection coefficient
Ioc Output current
Kk Kalman gain in state k
kr Thermal conductivity in the r direction
kθ Thermal conductivity in the θ direction
kz Thermal conductivity in the r direction
n Charge quantity
P−k Covariance of prediction error in state k
Pk−1 Error common variance matrix
Pk Generation of turbulent kinetic energy
Q Covariance of system process noise
Qtot Total heat
Qirr Irreversible heat
Qrev Reversible heat
qconvection Heat convection
R Covariance of system measurement noise
Rp1 electrochemical polarization resistance
Rp2 concentration polarization resistance
Ro the ohm’s internal resistance
R Covariance of system measurement noise
τ Time constant
T Temperature
Tb Battery temperature
Tamb Ambient temperature
t Time
uk−1 System control matrix of state k− 1
Vbattery Battery working voltage
Voc Open circuit voltage
VRo terminal voltage of the internal resistance
Vp1 terminal voltage of the concentration polarization
Vp2 terminal voltage of the electrochemical polarization

x̂−k System state matrix of statek
x̂k−1 System state matrix of state k− 1
Zk measured value of state k
u X axis velocity component
v Y axis velocity component
w Z axis velocity component
⇀
υ Fluid velocity vector
Dk Dissipation of turbulent kinetic energy
Pω Generation of turbulent dissipation rate
Dω Dissipation of turbulent dissipation rate
Re Reynolds number
Greek symbols
∇ Gradient operator
ρ fluid density (kg/m3)
k Thermal conductivity (W/m-K)
µ dynamic viscosity (kg/m·s)
σ Prandtl number
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AIB Aluminum-ion battery
C-rate current discharge/ charge rate
CFD Computational fluid dynamics
BESS Battery energy storage system
3D Three dimensions
LIB Lithium-ion battery
HEV Hybrid electric vehicle
OCV Open circuit voltage
DPPC Discharge pulse power characterization
SOC State of charge
EV Electric vehicle
BMS Battery management system
EMIC 1-ethyl-3-methylimidazolium chloride
AlCl3 Aluminum chloride
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