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Abstract: Agriculture is the second-highest, after energy use, source of greenhouse gas emissions,
which are released from soils and animal digestion processes and as a result of energy consumption
at various stages of agricultural production. However, changes in the management of agricultural
systems may mitigate the negative impact of this sector on the atmosphere and climate. This paper
presents a literature review on energy consumption in agriculture and the potential of agricultural
crop production to assist in mitigation of global warming by increasing absorption of CO2 from the
atmosphere. The issue was considered in the context of managing the cultivation of main, catch
and cover crops. The potential of carbon sequestration in the above- and below-ground biomass
of selected crops was analyzed. It was stated that, depending on the species, main crops can
sequester up to 113 CO2 ha−1 yr−1 in whole biomass, while catch or cover crops can sequester up to
14.80 CO2 ha−1 yr−1 and 0.17 CO2 ha−1 yr−1 in the above- and below-ground biomass, respectively.
The benefits of the spread of catch or cover crops, such as improvement of soil quality (leading to
an increase in primary crop yield by even as much as 65%) and a phytosanitary effect, as well as
the barriers that limit the use of catch crops, including the problems with matching crop species to
climate and soil conditions and the risk of reducing farmers’ income, were considered. The results of
the review show that catch crops can assimilate an additional amount of 4 to 6 tonnes CO2 ha−1 yr−1,
and thus, spreading of catch crops is an effective way to reduce the climate impact of agriculture.

Keywords: energy consumption; plant production; main crops; catch crops; carbon farming; climate
change; carbon sequestration; soil organic carbon

1. Introduction

Conversion of solar energy into chemical energy of biomass through photosynthesis
is the basis of agricultural production. However, modern agriculture is aimed at achiev-
ing large and fast biomass yields, which requires additional energy inputs, both at the
stage of crop production itself (i.e., during land preparation, irrigation, fertilization, sow-
ing/planting, crop care and harvesting), as well as during animal production (e.g., space
heating and providing feed and water). Energy is also needed during transportation,
storage and processing of agricultural products into food products. In addition, energy is
consumed in the production of mineral fertilizers, crop protection products and medicines
for livestock.

Energy consumption in agriculture varies significantly depending on the nature of
the crop and location. The review of energy consumption in production of selected crops
in 49 countries worldwide made by Kargwal et al. [1] showed that the values of direct
and indirect energy consumption for various crops’ production were as follows: wheat—
10,900 MJ ha−1 (Australia) to 35,737 MJ ha−1 (Turkey); rice—12,800 MJ ha−1 (Philippines)
to 64,158 MJ ha−1 (Iran); and millet 3283 MJ ha−1 (Nigeria) to 7000 MJ ha−1 (India).
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Most of the energy required to meet the needs of agriculture still comes from non-
renewable sources [2–4], although the share of renewable energy in total energy consump-
tion in agriculture is gradually increasing, as indicated by studies conducted between 2005
and 2018 in EU countries [4].

One disadvantageous effect of energy consumption for agricultural production is
the emission of greenhouse gases (GHGs). However, the results of global estimates show
that the contribution of this aspect in the widely-understood agriculture, a category that
includes also the forestry and other land use (AFOLU) sector, is relatively small compared
to that of the emissions from soils and animal husbandry, mainly cattle. It is estimated that
AFOLU corresponds to 18.4% of total GHG emissions (9.2 billion tonnes CO2 eq.), which, in
2020, approximated 49.9 billion tons of CO2 eq. Emissions in the agriculture-related sector
consist of: livestock and manure (5.8%), agricultural soil (4.8%), crop burning (3.5%), rice
cultivation (1.3%), deforestation (2.2%), cropland (1.4%) and grassland (0.1%). In terms
of contribution to total emissions, AFOLU is comparable to transportation (16.2% of total
emissions) and energy use in buildings (17.5%), and slightly behind the energy use in
industry (24.2%). In addition to the emissions from the agricultural sector, the emissions
from energy use in agriculture and fishing can be added, which are estimated at 1.7%,
corresponding to 0.85 billion tonnes CO2 eq. (data source: Climate Watch and the World
Resources Institute on the basis of 5th Assessment Report of IPCC, given by Our World in
Data 1.). [5]. Flammini et al. [6] have found increased rates of annual emissions from energy
use in agriculture amounting to 1.029 billion tonnes CO2 eq yr−1, including electricity.
Without the electricity, it was ca. 0.523 billion tonnes CO2 eq yr−1.

Unlike the energy sector, which releases mainly CO2, agriculture is primarily a source
of methane and nitrous oxide. Emissions of these gases account for about 60% of GHG
emissions from AFOLU, while livestock production is responsible for 2/3 of this value [7].
Livestock production has been steadily increasing for many years. Between 2000 and
2018, it increased from 232 mln tonnes to 342 mln tonnes. In 2020, there was a slight
decrease in production to 337 mln tonnes, but in 2021, production had already increased
to 340 mln tonnes. Due to increasing demand for animal products, it is predicted that
the GHG emissions from the meat industry will rise 9% by 2031 [8], which could increase
GHG emissions, especially methane. The global warming potential (GWP) of this gas,
calculated on a 100-year scale, is 27–30 [9]. Reducing GHG emissions in the meat industry
is difficult, although Ocko et al. [10] estimate that deploying all economically feasible
livestock abatement strategies, such as inhibitors of methanogenesis and improving manure
management would allow the avoidance of nearly 0.1 ◦C of global-mean warming in 2100.

According to FAO data [7], in 2018, agriculture and land use emissions were equal
to 9.3 billion tonnes CO2 eq. and accounted for 17% of global GHG emissions. However,
the sector’s share has significantly decreased compared to 2000, when it was estimated
at 24%. Nevertheless, this decrease is mainly due to an increase in emissions from other
sectors of the economy, as the emissions from agriculture have remained relatively constant
over the years. In 2000 they amounted to 9.6 billion tonnes CO2 eq. In comparison, the
emissions from fuel combustion between 2000 and 2018 rose from 23.7 billion tonnes CO2
to 34.32 billion tonnes CO2 eq. [11].

The cumulative energy consumption in the EU in 2020 was 37,086 PJ [12] of which
agriculture consumed about 3% [13], or 1112.58 PJ. According to Eurostat [3], 56% of the
energy consumed in agriculture in 2020 in the EU countries, i.e., approximately 623.05 PJ,
originated from the combustion of fossil fuels.

The unfavorable climate changes recently affecting various parts of the world oblige
governments to set ambitious climate policy goals. In 2015, representatives of countries
attending the UN Climate Change Conference (COP21) signed the Paris Agreement, pledg-
ing to take action to ensure a peak of global greenhouse gas emissions before 2025. Next,
the emissions should be reduced by 43% by 2030. The estimations made by Costa et al. [14]
showed that changes in food systems can reduce GHG emissions from this sector by 90%,
but in their opinion, the goals of Paris Agreement can only be achieved by including
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modifications in agriculture production and the human diet, reducing the amount of food
waste and strengthening food security and safety. One of the ways to bring the Paris
commitments closer to realization is to make changes in the economy by transitioning to
its low-carbon variant. The development of such an economy requires the integration of
the activities of low-carbon technologies and practices, efficient energy solutions, clean
and renewable energy and environmentally friendly technological innovations [15,16].
Rural areas, including farmlands, and especially the crop production sector, can play a
large role in the low-carbon economy. The priority of farming, which includes the goals
of such an economy, is to obtain the most favorable carbon balance, as a result of CO2
sequestration by above- and below-ground parts of plants, and to “store” carbon in the
soil for as long as possible, as a result of its incorporation into humic compounds. Soil
under crops becomes a kind of “carbon sink”, thereby reducing the concentration of carbon
dioxide in the atmosphere [17–20].

Carbon farming is closely linked to soil quality. Carbon converted to organic form in
the soil stimulates the activity of soil enzymes, promotes the growth of beneficial microor-
ganisms and improves chemical and physicochemical properties, including pH, sorption
capacity and water retention. Studies indicate that the carbon sequestration capacity of
soil depends on many factors, including soil grain size. Heavy, finely-grained soils have
a higher sequestration capacity than do coarsely-grained soils, so when evaluating the
potential of soils as a “sink” for carbon, this aspect should be taken into account. In addition,
the efficiency of the soil in terms of carbon storage is determined by the yield of biomass
obtained on it and the related amount of organic matter that is an external source of carbon.
Thus, it is important to properly select plant species and balance fertilization [21–23].

The move toward a low-carbon economy in agriculture is linked to changes in the
animal food production system and human food habits. Demand for beef is very high in
many countries, especially in highly-developed ones [24]. This raises concerns about the
impact of cattle farming on climate change [25,26]. Beef and dairy production account for
more than 70% of GHG emissions from livestock farming, which collectively emit ca. 6.3 Gt
CO2 eq yr−1 [27]. The findings of Cusak et al. [28] indicate that net GHG emissions from
livestock farming can be significantly reduced through changes in farm management. The
research revealed that application of site-utilizing carbon (C) sequestration management
on grazed lands achieved a 46% reduction in net GHG emissions per unit of beef, while
sites using growth efficiency strategies achieved an 8% reduction. However, only 2% of
studies achieved net-zero emissions. At the same time, these data show how difficult it can
be for carbon agriculture to offset the GHG emissions from livestock production.

A much more real potential for increasing CO2 sequestration from the atmosphere and
decreasing the emissions originating from agriculture is seen in crop production. Plants
are natural absorbers of CO2, in which the atmospheric CO2 is integrated into the plant
biomass due to photosynthesis. Chlorophyll is the “factory” where CO2 is converted
into organic compounds by using the radiant energy of sunlight. The solar radiation is
used to produce energy molecules, such as NADPH and ATP, from NADP+ and ADP.
The dark reactions involve the Calvin–Benson cycle, which takes place late in the process,
using the energy molecules produced in the light reactions. On the basis of the adaptation
to photosynthesis and various mechanisms involved in the processes of carbon fixation,
the plants are classified into C3, C4 and CAM [29]. Depending on the mechanism of
carbon fixation, the efficiency of this process varies. In C4 plants, photorespiration is
reduced by increased CO2 concentration at the RuBisCo (the enzyme ribulose bisphosphate
carboxylase/oxygenase) activation site. Oxygenase is inhibited, and CO2 is incorporated in
the bundle sheath and mesophyll present in the leaf. Due to this mechanism, the conversion
efficiency of C3 plants is lower than C4 [30]. The Crassulacean acid metabolism (CAM)
pathway is a very efficient way of C sequestration which helps plants to survive in the dry
ecosystem and drought season [31].

Given the natural carbon-fixing capacity of plants, several options for improving
CO2-absorbing capacity and reducing emissions of GHGs in agricultural crop production
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are being considered. One way is to increase the production of plant biomass in agricultural
crops, both the main crop and catch/cover crops. The biomass of the latter is a source of
soil humus, which is a long-term carbon store due to its resistance to biodegradation. Such
a solution is closely related to carbon farming and enables the low-carbon development of
agricultural regions. Additionally, the use of intercrops, in addition to the environmental
benefits of improving air and soil quality, is associated with obtaining an increase in
the yield of the main crop, as a result of increasing soil fertility as well as reducing the
occurrence of weeds and fungal diseases in agrocenoses, which brings economic benefits.
In addition, it is possible to obtain subsidies for intercropping from European Union
funds [32–35].

The issue of the relationship between agriculture and climate change has been the
subject of scientific discussion for several decades. The problem was noticed in the sec-
ond half of the 20th century. Initially, considerations focused on the impact of climate
change on agriculture and the possibilities of adapting food of production systems to these
changes [36,37]. The dependence of climate on agriculture only began to be recognized in
the 1970s [38], although research was still focused on the consequences of climate change
in agriculture [39–41]. The deeper insights into the issue of mitigation of climate change by
agriculture were provided by Paustian et al. [42,43]. Reviewing the literature at the time,
they concluded that mitigation options in this sector could be divided into two categories:
increasing stocks of organic C, and reducing of fossil C consumption.

Within the last 20 years, the knowledge of the relationships between climate and
agriculture has been extended so much that particular review papers have focused on the
selected problems. The key issues include the impacts of farming practices and systems on
soil carbon sequestration [44–48], changes in farming practices, including animal diet mod-
ification and manure management [45] and land use change and agroforestry [46,49,50].

In addition to the impact of agriculture on CO2 emissions, attention has also been paid
to the emissions of N2O [51–54]) and CH4 [54–57] as important GHGs, and opportunities
of reducing their emissions. Other ways of mitigating climate change in agriculture, which
have been discussed in the review papers published in recent years, is biochar addition to
the soil [58–60]. Additionally, attention was drawn to the role of crops in increasing carbon
sequestration and reducing the impact on GHG emissions. In this regard, the significance
of catch or cover crops has been emphasized. These crops can improve the soil quality
and contribute to increasing the yield of main crops [61], especially when considering their
underground biomass [62]. Additionally, the crop biomass may be utilized as a feedstock
to produce biofuels [63].

The aim of this paper is to analyze the state of knowledge on the possibility of reducing
GHG emissions from the agricultural sector via modifications in plant production systems,
and to estimate the potential effects of these activities. The data on the main catch and
cover crop yields, those typical for farming in European countries, were analyzed in terms
of net carbon sequestration and the potential offset of CO2 emissions released as results of
burning the fossil fuels used for energy production in the agricultural sector.

2. Materials and Methods

The source materials used in the study came from these databases: Scopus, Web of
Science, Google Scholar, Science Direct, SpringerLink and Wiley, as well as databases of Eu-
ropean legislation, studies and reports of international NGOs (e.g., Eurostat, International
Energy Agency (IEA), the Food and Agriculture Organization (FAO) and the European
Environmental Agency (EEA)) and national institutions (e.g., US Environmental Protection
Agency and The National Centre for Emissions Management, Poland). The analyses took
into account information derived mainly from the last few years. Earlier data sources were
used only when substantively justified.

When selecting the papers included in the review, the choice was guided primarily by
their substantive relation to a particular chapter (by entering combinations of several main
keywords, i.e., agriculture, energy consumption, greenhouse gas emission, food system,
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carbon farming, soil carbon, sequestration, and yield + names of main/catch crops selected
as typical for different regions of the world) pertaining to the main content of the chapter.
Additional keywords were used to find information supplementing the data or explaining
the given phenomenon or process. The selection of sources was guided by the relevance of
the knowledge, especially in the case of issues related to carbon farming and soil carbon
sequestration. These issues have started to be analyzed more thoroughly only in the last
5 years. In the case of comparisons of the yields of individual crops, efforts were also made
to seek information from recent years. However, up-to-date information for some crops was
not always available, and hence, older data was cited in several cases. Older papers were
also cited when time-dependent changes in the data were analyzed or when describing the
processes of the mechanisms that had been explained earlier. The largest number of source
items (ca. 50% of all references) was used when discussing yields of major crops’ catch and
cover crops, followed by works on energy consumption and greenhouse gas emissions in
agriculture (ca. 27%), carbon sequestration in soil (ca. 15%) and carbon farming (ca. 8%).

3. Carbon Farming—The Fundament of Reducing GHG Emissions from
Agricultural Production

Carbon farming, as an agriculture practice enabling the production of food and related
items in a sustainable manner, has received widespread attention in recent years [64]. Gen-
erally, carbon farming is aimed at enhancing the removal rate of the CO2 in the atmosphere
as well as its conversion into plant biomass and soil organic matter (SOM). This improves
soil fertility and promotes crop productivity, increasing the potential of long-term carbon
storage, which leads to reducing GHG concentrations in the atmosphere.

Implementation of the objectives laid down in the Sustainable Carbon Cycle Commu-
nication of December 2021 and the Regulatory Framework for the Certification of Carbon
Removals of November 2022 will be made possible by, inter alia, developing carbon farm-
ing in the EU. The Fit for 55 package, a part of European Commission’s law actions for the
climate adopted in July and December 2021, indicates an increasing role for agriculture
and land use in delivering on climate mitigation objectives, increasing removal targets for
2026–2030, aiming for a climate neutral agriculture, land use and forestry sector by 2035
and increasing environmental monitoring requirements. Carbon farming focuses on the
management of carbon pools, flows and GHG fluxes at the level of particular farms. This in-
volves actions concerning both plant cultivation and livestock, which are directed towards
carbon retention in soils and biomass, as well as reducing fluxes of carbon dioxide (CO2),
methane (CH4) and nitrous oxide (N2O) in agriculture [65,66]. For land managers, this
definition means that carbon farming includes agricultural practices and land use changes
that achieve one or more of the following outcomes: (1) sequestering carbon and storing it
in agricultural soils or biomass above and below ground; (2) preventing future CO2 and
other greenhouse gas emissions; and (3) reducing existing CO2 and other greenhouse gas
emissions [67].

There is no one universal approach to effective carbon farming. Effective farming
includes both agronomic practices connected with land use changes as well as technological
solutions. Five main carbon farming interventions are indicated: (1) peatland rewetting
and restoration; (2) agroforestry system establishment and maintenance; (3) maintenance
and enhancement of soil organic carbon (SOC) on mineral soils; (4) livestock and manure
management; and (5) nutrient management on croplands and grasslands [65]. Different
mitigation measures are suitable for different types of farming activities and regions [67].
The tactics mostly used are traditional tillage, more efficient fertilizer use, biofertilizers
use, no-till farming, mulching, cover crops, improved crops rotations, land-use change,
peatland restoration, expanding agroforestry systems, and shifts in type and location
of production [47,64,68,69]. Selection of the appropriate crops is essential to obtain the
effect of carbon sequestration. These crops should have the following features: high
photosynthetic power of plants, increased below-ground carbon allocation, interactions
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with a soil microbiome, and enhanced plant-growth-promoting (PGP) properties that
facilitate nutrient acquisition and water-use efficiency [70,71].

Tang et al. [72] estimated that in the case of farms from China’s Loess Plateau, where
crop rotation had been applied as the only practice that could reduce on-farm greenhouse
gas emission, the emissions were reduced of 16.6 and 33%, with marginal abatement
costs. Studies of the environmental impact of eggplant (Solanum melongena) cultivation
conducted in Greece indicate that organic cultivation without using pesticides and mineral
fertilizers exhibited 24.15% lower total environmental footprint compared to conventional
cultivation [73]. A higher potential of carbon footprint reduction was estimated in the case
of fruit trees in Mediterranean countries. According to the LCA analysis conducted by
Aguilera et al. [74], organic cropping based on using biofertilizers and energy recovery
from residual wood can lead to 56% decrease of GHG emissions compared to conventional
cropping, when calculated on a per-area basis, and 39% decrease when calculated on a
product basis.

Besides the mitigation of climate change, carbon farming often delivers additional
environmental or economic benefits, such as protection of biodiversity or cost savings to
farmers [72,75]. It can deliver many co-benefits for the environment and the sustainability
of agriculture, e.g., an increase in crop resilience against climate impacts and improved sta-
bility of yields, as well as more efficient use of crop nutrients and livestock feeding regimes.
Additionally, development of technological options, such biogas production from agricul-
tural waste, changes in livestock housing and using nitrification inhibitors can also reduce
GHG emission intensity per unit of output and improve resource efficiency [48,76,77].
However, some measures that are effective for mitigating climate change can negatively
affect other environmental or societal objectives, for example, soil health or animal welfare.
Decreased agricultural output due to implementation of some practices connected with
the changes of land use or agricultural systems can be observed [21,76,78]. A trend in
reducing the amount of roughage in animal forage can lead to digestive problems for the
cattle. Additionally, forage additives, such as fumarate, nitrates and sulfates, which inhibit
CH4 production due to biomass digestion in cattle rumen, can interfere with the normal
functioning of animal bodies [79].

However, an important premise for the development of carbon farming is economics.
Farmers will be interested in the implementation of the practices that reduce GHG emissions
or sequester carbon, if these will be associated with increasing income, or at least will not
generate losses. Thus, the term “carbon farming” can also refer to a new business agriculture
model, one which is based on incentives for farmers to take up the farming practices that
deliver climate benefits at the farm level. Public funds, private payments or a combination
of these two sources can be used for these incentives. Carbon farming is funded within The
Common Agricultural Policy (CAP) mainly through co-financing the Second Pillar “Rural
Development Policy” which is focused on supporting the rural areas’ efforts to meet the
economic, environmental and societal challenges of the 21st century. The first CAP has been
criticized for insufficiently addressing the environmental goals tending towards reduction
of carbon emission. Thus, the new CAP obliges the UE countries to identify and prioritize
climate needs in their national CAP Strategic Plans. It gives them different opportunities
to support the spreading of effective carbon farming practices with involvement of EU or
national funds, both within the first Pillar, which covers direct supports for farmers, and
the second Pillar, which covers rural development [80]. Financial support for the farmers
who want to contribute to improving the quality of the environment can also be provided
by private entities. Transfers of private funds can be realized by the supply chain for
agricultural products, such as mark-ups to product prices or via carbon markets [65,79,81].

Changing the cropping system as a result of implementing the principles of carbon
farming can become one of the sources of farm income. As part of the implementation of the
Common Agricultural Policy (CAP) of EU countries from 2023, farmers who have switched
to low-carbon farming will be able to seek compensation for the costs of the changes made.
The amount of compensation will depend on the type of practices implemented on the
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farm which lead to the advantage of carbon sequestration rather than its release into the
atmosphere via plant respiration and soil emissions. The usage of nitrogen fixing and catch
crops, the adoption of a fertilization plan appropriate to the soil type and crop needs, and a
diversified crop structure are among the practices that can be implemented. Certification of
farms converting to low-carbon farming is anticipated [82,83].

Taking into account the increasing demand for food products and its subsequent
environmental impact, sustainable practices in agriculture should be prompted and encour-
aged. It is possible to mitigate the dependence of the agricultural output on climate change
via less intensive and properly selected farming methods, ones which allow controlling
the sensitive balance between the climate and agricultural systems. Low-carbon farming
constitutes a sustainable and comprehensive method for managing land use, which is
advantageous both for society and the environment [64].

4. Crop Biomass versus Carbon Sequestration

Multifunctional systems, such as mixtures of multiple species, tree cropping on crop-
land, and the use of perennial plant species, have been shown to create complex ecosystem
structures that sequester carbon, support biodiversity and deliver ecosystem services to the
surrounding agricultural land [84–86]. Perennial crops have the potential to capture and
hold large quantities of SOC. Paustian et al. [42] and Boody et al. [84] report that, for exam-
ple, in Minnesota, up to 0.9 Mg of carbon per ha per year can be accumulated. The modeled
scenario of increased vegetation cover in a single Minnesota catchment showed that soil
organic content increased by 86% as more grasslands and riparian buffers were established.
Toensmeier et al. [87] point to the potential of perennial vegetables in increasing the share
of the agricultural sector in carbon sequestration. They found that there are 613 cultivated
perennial vegetables in the world, which represent 107 botanical families, and estimated
that a wider use of these vegetables would enable the assimilation of 22.7–280.6 million
tonnes of CO2 eq yr−1.

The potential for increasing soil-carbon accumulation is also associated with changes
in the selection of main crops in agroecosystems. Previous research by different authors
(Table 1) indicated that the scale of CO2 sequestration in the biomass of main crop plants
such as selected cereals, root crops and oilseeds varies over a wide range. Crop diversifi-
cation that takes into account a rational crop rotation can increase the photosynthetic C
uptake and gross primary productivity (GPP) of biomass in a given area.

Table 1. Primary and secondary yield of biomass (dry weight) and CO2 sequestration of selected
main crops.

Crops

Primary Yield:
Grain/Seeds,

Roots, Tubers,
Biomass *
(t ha−1)

Secondary Yield:
Straw, Stems,

Leaves
(t ha−1)

Below-Ground
Crop

Residues/Roots
(t ha−1)

Total Carbon
Sequestration in

Biomass of Primary,
Secondary Yield

and Roots
(t CO2 ha−1 yr−1)

Additional Data

1 2 3 4 5 6

Winter wheat

6.36 [88] 4.22 [88] 0.12 [88] 16.6 [88] Poland

6.5 [89] 4.31 0.15 16.09 Average value

4.8 [90] 3.18 0.11 11.88 Average value

Spring wheat

5.57 [88] 3.94 [88] 0.11 [88] 14.9 [88] Poland

4.50 [91] 2.98 0.12 12.0 Russia

6.30 [92] 4.18 0.15 16.8 China



Energies 2023, 16, 4225 8 of 27

Table 1. Cont.

Crops

Primary Yield:
Grain/Seeds,

Roots, Tubers,
Biomass *
(t ha−1)

Secondary Yield:
Straw, Stems,

Leaves
(t ha−1)

Below-Ground
Crop

Residues/Roots
(t ha−1)

Total Carbon
Sequestration in

Biomass of Primary,
Secondary Yield

and Roots
(t CO2 ha−1 yr−1)

Additional Data

1 2 3 4 5 6

Spring barley

4.10 [93] 2.84 0.08 10.8 Denmark

5.34 [88] 3.70 [88] 0.10 [88] 14.1 [88] Poland

6.40 [94] 4.43 0.12 16.9 Germany

6.67 [95] 4.62 0.12 17.6 Czech Republic

Winter rye

4.51 [88] 3.65 [88] 0.13 [88] 12.9 [88] Poland

2.44 [96] 1.61 0.12 6.9 Russia

5.50 [97] 4.45 0.17 15.6 Uzbekistan

Oats

4.03 [88] 3.26 [88] 0.09 [88] 11.5 [88] Poland

5.38 [98] 4.35 0.14 15.3 Romania

3.98 [99] 3.21 0.11 11.3 Turkey

Maize

8.39 [88] 4.12 [88] 0.45 [88] 20.2 [88] Poland

5.70 [100] 2.8 0.45 13.7 Ethiopia

5.79 [101] 2.8 0.31 21.6 Indonesia

18.75 [102] 9.2 1.00 45.0 China

Proso millet

3.33 [88] 2.17 [88] 0.06 [88] 8.66 [88] Poland

1.98 [103] 1.29 0.05 5.14 Italy

2.60 [104] 1.70 0.07 6.76 USA

2.63 [105] 1.75 0.07 6.90 India

Rice
8.73 [106] - - 22.7 Indonesia

9.00 [107] - - 23.4 Taiwan

Winter oilseed
rape

4.56 [88] 3.67 [88] 0.14 [88] 13.0 [88] Poland

5.35 [108] 3.72 0.19 15.2 Czech Republic

5.48 [109] 3.88 0.26 15.6 Latvia

3.90 [110] 2.70 0.18 11.2 The United Kingdom

2.99 [111] 2.00 0.17 8.50 Serbia

Soybean

3.47 [68] 3.12 [88] 0.25 [88] 10.6 [88] Poland

3.40 [112] 3.07 0.27 10.4 Brazil

3.30 [113] 2.98 0.23 10.0 Serbia

3.24 [114] 2.87 0.20 9.8 Kazakhstan

Lentil

1.14 [88] 0.85 [88] 0.17 [88] 3.3 [88] Poland

2.22 [115] 1.64 0.21 6.4 Greece

3.16 [116] 2.35 0.30 9.1 Ukraine

1.54 [117] 1.15 0.17 4.4 India
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Table 1. Cont.

Crops

Primary Yield:
Grain/Seeds,

Roots, Tubers,
Biomass *
(t ha−1)

Secondary Yield:
Straw, Stems,

Leaves
(t ha−1)

Below-Ground
Crop

Residues/Roots
(t ha−1)

Total Carbon
Sequestration in

Biomass of Primary,
Secondary Yield

and Roots
(t CO2 ha−1 yr−1)

Additional Data

1 2 3 4 5 6

Potato

32.30 [88] 18.90 [88] 0.19 [88] 43.2 [88] Poland

40.00 [118] 23.40 0.36 53.5 Ethiopia

33.00 [119] 19.30 0.20 44.2 Rwanda

33.93 [120] 19.90 0.21 45.4 Canada

Sugar beet

60.20 [68] 47.10 [88] - 80.4 [88] Poland

53.00 [121] 41.50 - 70.8 Hungary

84.90 [122] 66.40 - 113.0 Croatia

81.69 [123] 64.00 - 109.0 Iran

63.96 [124] 50.00 - 85.4 Iran

Carrot

55.40 [68] - - 71.8 [68] Poland

35.90 [125] - - 46.5 Bangladesh

22.60 [126] - - 29.3 Ethiopia

35.00 [127] - - 45.4 Brazil

42.29 [128] - - 54.8 Bangladesh

* Depending on crop type. The yield of CO2 sequestration was calculated by taking into account the annual
yield of the plant (tonnes dry weight ha−1 yr−1), carbon content in the biomass of individual crops: for cereals
42% dry weight (the value compared with data given by Ma et al. [129]) and for rapeseed 43%, and a carbon
to CO2 conversion factor of 3.67. If the reference number was not given alongside, the values in columns 3–5
were calculated assuming the same share between primary, secondary and below-ground biomass weight as in
Ref. [88].

From the data in Table 1, it can be seen that the highest primary and secondary
yields (much higher compared to other crops) are characterized by root crops (beet,
carrot) [88,122,123,127,128] and tuber crops (potato) [118–120]. Under China’s soil and
climate conditions in the Xinjiang Region, maize cultivated in the research station was
characterized by very high primary and secondary productivity [102]. This means that the
species producing the highest biomass in primary and secondary yields have the highest
CO2 sequestration. Nevertheless, not all of the listed species (i.e., beet and carrot) are
leading crops in the crop structure globally. Instead, crops are dominated by cereal crops
(e.g., maize, rice and wheat) and the potato, which form the food base for about 5 billion
people [90,130–132]. Therefore, it is the cereal crop group that potentially has the greatest
impact on carbon sequestration [133]. The management and sustainable use of resources,
e.g., water, land and nutrients, will be crucial to improving food security. Achieving a
balance between environment protection and food and nutritional security and address-
ing climate change constitute key issues for sustainable food systems, as well as for the
management and use of water and land [134,135].

Considering the data in Table 1, it can be noted that the listed leading cereal species ex-
hibit high yields [89,92,98]. Winter rapeseed [108] and soybean [112] are also characterized
by high yields. The aforementioned crop species show significantly higher primary and
secondary yields and significantly higher CO2 sequestration compared to the low-yielding
species: buckwheat, millet and lentil. Species such as maize and soybean have the highest
crop residues, while other cereals, especially millet, have significantly lower crop residues.
When relating the productivity of the plant species included in Table 1 to the scale of CO2
sequestration by them, it should be noted that the species showing the highest sequestration
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include beet (70–113 t CO2 ha−1 yr−1), potato (43–53 t CO2 ha−1 yr−1), carrot (29–71 t CO2
ha−1 yr−1), and maize (14–45 t CO2 ha−1 yr−1).

In order to satisfy the demand for food of the constantly growing population which
is expected to grow further, exceeding 9 billion people by the year 2050, it is necessary to
increase the production of cereal by roughly 70%. Potential strategies for coping with the
effects of climate change and increasing crop yields are becoming very important. These
involve integrating modern and conventional molecular techniques and use of genomic
approaches, as well as implementing best practices related to agricultural management
and the cultivation of climate-resilient cereals. Among cereal crops, millet deserves special
attention, because its cultivation is less resource-intensive and releases fewer greenhouse
gases in comparison with other cereal crops. Hence, millets may constitute prospective
crops for climate-resilient studies, the results of which allow for improving the properties
of the major cereals [136]. Millet constitutes a C4 crop capable of fixing carbon at decreased
transpiration rate, in comparison with other cereals (C3 crop), e.g., wheat and rice [137,138].
In the case of C4 crops, photorespiration under elevated CO2 as well as temperature
in the atmosphere is significantly reduced [139]. In addition, the prevailing model of
climate projection shows that the yield of C4 crops is likely to grow by as much as 38%, in
comparison to the relatively constant yields of C3 crops [140]. Other advantages related to
C4 photosynthesis involve enhanced ecological enactment and growth at high temperatures,
more flexible patterns of biomass allocation and decreased hydraulic conductivity per unit
leaf area [141].

The main carbon exchange occurs between the terrestrial ecosystem and the atmo-
sphere, which corresponds to the CO2 incorporation into plant biomass through photo-
synthesis, amounting to 123 GT yr−1. Approximately 60 GT of CO2 captured by plants is
returned to the atmosphere due to plant respiration [142]. The remaining amount, being
the net primary productivity (NPP), is built-up into the biomass, but partially released
due to the anthropogenic activities connected with biomass use and through microbial
respiration. Only ca. 10 GT yr−1 is defined as the net ecosystem productivity (NEP), but
when considering carbon retention on a long-term scale, further carbon loss is observed
due to changes in land use, fires, etc. Finally, the C (bio)sequestration in a terrestrial
ecosystem considered as the net biome productivity (NBP) is significantly lower. During
recent decades it was estimated to be in range from 0.3 to 5.0 GT yr−1 [142,143]. A current
estimation from 2018 showed that terrestrial ecosystems constitute a carbon sink with
a net value reaching 3 GT yr−1 [34]. However, a significant part of the CO2 captured in
photosynthesis is quickly returned to the atmosphere, whereas the stable soil-carbon pool
is increased only to a limited extent. Therefore, the selection of appropriate plant species
(high CO2 sequestration rate), and especially the changing the soil-carbon budget, even by
a few percent, represent a great potential for mitigating climate change [62]. An important
issue in plant selection is also their ability to resist climate change. The main morphological
characteristics of crop plants that determine their resistance to these changes are low leaf
area, low growth and thick cell walls, as well as an extensive root system [144]. Another im-
portant factor influencing carbon sequestration in terrestrial ecosystems is the depth of the
root system. The deep location of the roots related to deep organic matter deposition in soil
favor the extension of carbon residence time, because the rate of biomass decomposition in
weakly aerated deeper soil profiles is lower compared to that occurring in surface horizons.
In addition, deeper roots may—to a certain extent—mitigate the impact of droughts, hence
additionally enhancing the uptake of carbon. Widespread application of plant selection to
enhance the sequestration of carbon is simple method with significant economic potential,
which is yet untapped [145,146].

Under the conditions of increased CO2 levels in the atmosphere, the C3 crops might
be faced with nitrogen limitation; thus, the higher root biomass becomes an even greater
advantage [147]. According to estimates, adopting the phenotypes of annual crops which
are characterized by larger and deeper root systems might contribute to soil carbon-stock
increases amounting to 0.5 GT CO2 ha−1 yr−1 on current cropland in the USA [148].
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Some authors [149–151] argue that designing crops for low-carbon farming as well
as improvements with the soil-carbon budget in mind are not likely to constitute a cost-
effective method. Farmers would have to receive a financial return through tax credits
as well as cap-and-trade programs. The aforementioned authors believe that, although
improving the condition of soil by enhancing the soil-carbon pool will promote crop
productivity, it is unlikely to sustain high yields of crops designed to direct a significant
portion of photosynthesis to the soil. Consequently, measures will be needed to increase
the efficiency of photosynthetic energy conversion and thus biomass production.

Yields of crop plants are limited by photosynthesis, as well as the scheme of allocation
of photosynthesis products to its organs, which constitutes its sink strength. Accumulation
of carbohydrates in leaves as well as feedback inhibition of photosynthesis may occur if
source strength is not matched by sink strength [152,153]. Because high CO2 concentration
in the atmosphere increase source strength to a greater extent than sink strength, focusing on
improving sink strength alongside photosynthesis will be of even greater importance [154].
Carbon capture and the yield of plants can be increased via optimization of the regulatory
processes determining sink strength within heterotrophic organs, combined with the efforts
to overcome the feedback inhibition relating to photosynthesis [155].

5. Catch and Cover Crops as an Important Carbon Sequestration Factor in Agricultural
Sector

One of the barriers to the development of a low-carbon economy in many rural areas
is the inadequate selection of crops in rotation, as well as the insufficient use of catch
and cover crops (C&C crops), which leave a large amount of biomass in the form of crop
residues. An important opportunity for the development of carbon farming may be the
projected increase in the importance of these catch crops, cover crops and nitrogen-fixing
crops as a result of the new system of direct payments from European Union funds and the
promotion of a sustainable farming system and the prevention of SOM loss.

The crops with high potential for SOM formation include, among others, legumes:
faba bean (Vicia faba), narrowleaf lupin (Lupinus angustifolius), yellow lupin (Lupinus luteus
L.), pea (Pisum sativum L.); small-seeded legumes: red clover (Trifolium pratense L.), alfalfa
(Medicago sativa L.), vetches (Vicia sativa ssp.), serradella (Ornithopus L.); grasses: perennial
ryegrass (Lolium perenne L.), orchard grass (Dactylis glomerata L.) and mixtures of the
mentioned plants, as well as Brassicaceae: white mustard (Sinapis alba); Boraginaceae: blue
phacelia (Phacelia tanacetifolia).

Ecological Focus Areas (EFAs) are one of the three new greening measures of the CAP.
These areas should be beneficial for the climate and the environment. According to the
CAP, farmers having more than 15 ha of arable land must ensure that at least 5% of this
land belongs to an EFA. Areas subjected to catch or cover crop cultivation are included in
an EFA [156,157]. Therefore, in plant production, efforts should be focused on using the
crops with a high capacity for the production of SOM, which can be obtained by plowing
in biomass, as well as by using post-harvest residues remaining on the field [158–160].

Studies on nutrient cycling in the agroecosystem and nutrient losses, some initiated
as early as the 1990s [161,162] and continuing today [163–165], have shown the need
to increase the area of catch and cover crop cultivation, which is becoming an essential
component in the system of integrated and ecological agriculture. Catch crops are plants
cultivated in pure sowing or in mixtures, in rotation between two main crops [166,167].
Its general role is the prevention of nitrogen leaching, while the main role of cover crops
is to protect soils from erosion, the decrease of organic matter and weed suppression.
Leguminous crops are mainly used as green manure, in order to improve the N supply for
succeeding crops [168]. Catch crops are mainly plants with a short growing seasons, used
during the vegetative or in the initial period of generative plant growth. Their biomass can
be also used as fodder or as a source of SOM and nutrients [169,170].

In the past, catch crops were viewed mainly as a source of additional fodder for
animals, and their species were selected for their forage values. Nowadays, catch crops
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are considered in multiple terms, with their main importance being their phytosanitary,
fertilizer, structure-building and conservation values [33,164], as well as, more recently,
their contribution to mitigating the negative effects of climate warming [88,171,172]. Cerda
et al. [173] showed that the farming community in Spain considers catch crops more in
terms of their benefit to the environment and society than their yield-forming benefit.

Depending on the sowing date, three types of C&C crops are distinguished in Europe:

1. Stubble crops—seeds are sown in summer, and the plants are harvested in autumn for
green fodder and mowed and plowed, or plowed without mowing. Plants can also
be left as mulch after mowing for the winter. The most commonly grown species in
stubble crops include white mustard, black mustard, rapeseed, oil radish, faba bean,
yellow lupine, narrow-leaved lupine, field pea, spring vetch, serradella, blue phacelia,
sunflower and oats [166,174]. When selecting mixtures, no more than 2–4 plant species
should be included in their composition. The mix should include species with a similar
length of growing season and similar uses [175,176].

2. Undersown crops—sown in spring into spring cereals or sown together with them,
and (less often) sown into winter cereals. They are used similarly to stubble crops in
autumn (i.e., forage, biomass for plowing and mulch). The most commonly grown
undersown crops include red clover, white clover, alfalfa and serradella, with grasses
such as Westerwold ryegrass, cocksfoot grass, perennial ryegrass, Italian ryegrass and
bromegrass, and mixtures of the mentioned plants.

3. Winter cover crops—sown in late summer or autumn and harvested the following
spring. Winter cover crops include, inter alia, Brassica rapa, winter rape, winter rye
in pure and mixed stands with hairy vetch, a mixed stand of winter rye with hairy
vetch and Italian clover (crimson clover), and a pure stand of Westerwold ryegrass or
Italian clover, as well as mixed stands or perennial ryegrass with winter vetch and
Italian clover [177,178].

Due to their beneficial environmental impact, catch and cover crops have now become
an instrumental for creating environmentally friendly agriculture [167,169].

Under the conditions of good soil and moist habitats, growing a white mustard catch
crop increases spring cereal yields by 8–10%. The productivity of catch crops depends
largely on weather factors, so it is expedient to determine which species are best-suited
to a particular region of the country [160,179,180]. The disadvantage of catch crops is the
unreliability of yields, resulting especially from their vulnerability in the first weeks after
sowing the seeds [164].

Kwiatkowski et al. [160] and Harasim et al. [164] note that the introduction of con-
servation tillage (without the use of a plow) did not translate into a difference related to
the productivity of stubble crops compared to plow tillage. The yield of air-dry matter of
stubble crops on the sites with conservation tillage was, on average, lower only by 0.1–0.2 t
(about 3.5%) than that obtained with the technology using a share plow. Considering the
final yield (after mowing) of catch crop biomass, the authors found that white mustard had
the highest productivity, regardless of tillage method. An equally high yield of air-dried
biomass (yield of air-dried biomass, lower by only 2.7% than white mustard) was obtained
from cultivation of the blue phacelia stubble crop. A legume mixture proved to be an
unreliable catch crop, yielding about 60% less than the other species. This was mainly due
to the very small share of the faba bean component in the total yield, which accounted for
only about 28% of the yield of the whole mixture.

The yield of intercrops varies significantly (Table 2) and is highly dependent on soil
quality and initial nutrient abundance [160,180]. The subsequent beneficial impact of
crop residues depends mainly on the rate of decomposition and the amount of nutrients
released from them, and this is directly related to biomass quality, i.e., C/N ratio and lignin
content [174].

The subsequent beneficial impact of crop residues depends mainly on the rate of
decomposition and the amount of nutrients released from them, and this is directly related
to biomass quality, i.e., C/N ratio and lignin content [181,182].
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Table 2. Average yield of catch crop (dry matter) and average carbon dioxide sequestration in
biomass.

Crops

Biomass Yield
(t·ha−1)

Carbon Dioxide Sequestration
(t CO2 ha−1·yr−1) *

References **
Above Ground

Biomass
Below-Ground

Biomass
Above Ground

Biomass
Below-Ground

Biomass

1 2 3 4 5 6

White mustard

3.49 0.33 5.38 0.51 Gentsch et al. [170]

4.26 0.13 6.57 0.20 Kwiatkowski et al. [88]

9.60 0.14 14.80 0.22 Selzer and Schubert [183]

4.16 0.76 6.41 1.17 Gentsch et al. [184]

3.70 0.26 5.70 0.40 Gazoulis et al. [185]

4.50 0.15 6.94 0.23 Heuermann et al. [186]

Tansy phacelia

3.98 0.08 6.13 0.12 Kwiatkowski et al. [88]

7.00 0.14 10.79 0.22 Selzer and Schubert [183]

4.15 0.12 6.40 0.18 Heuermann et al. [186]

5.34 0.65 8.23 1.00 Gentsch et al. [184]

Red clover

1.70 0.08 2.62 0.12 Liu et al. [187]

2.69 0.06 4.15 0.09 Kwiatkowski et al. [88]

1.94 0.45 2.99 0.69 Gentsch et al. [184]

Egyptian clover 3.50 0.21 5.39 0.32 Heuermann et al. [186]

Serradella 3.05 0.07 4.70 0.11 Kwiatkowski et al. [88]

Westerwolds
ryegrass 2.42 0.05 3.73 0.08 Kwiatkowski et al. [88]

Perennial ryegrass
2.00 0.05 3.08 0.08 Selzer and Schubert [183]

1.80 0.06 2.77 0.09 Liu et al. [187]

Perennial ryegrass
+ winter vetch 3.11 0.12 4.79 0.18 Kwiatkowski et al. [88]

Faba bean 1.75 0.25 2.70 0.39 Talgre et al. [188]

White lupine 2.10 0.11 3.24 0.17 Selzer and Schubert [183]

Spring vetch
+ field pea 3.46 0.21 5.33 0.32 Pawłowski et al. [172]

Yellow lupine 2.72 0.30 4.19 0.46 Kwiatkowski et al. [88]

Oats 4.95 0.26 7.63 0.40 Gentsch et al. [184]

Oats + spring
vetch + field pea 3.22 0.16 4.96 0.25 Pawłowski et al. [172]

Winter rye 4.07 0.13 6.27 0.20 Kwiatkowski et al. [88]

Winter vetch 2.97 0.12 4.58 0.18 Pawłowski et al. [172]

* The yield of CO2 sequestration was calculated taking into account the annual yield of the plant (tonnes dry
weight ha−1 yr−1), with the carbon content in biomass assumed as 42% dry weight, and carbon to CO2 conversion
factor equal to 3.67. ** sources of data given in columns 2 and 3.

According to a study by Kwiatkowski et al. [88], catch crops represent a significant
added value (+25–30%) of carbon sequestration in relation to the cultivation of the main
crops in the crop structure in Poland. In fact, catch crops are primarily grown in-between
cereals in the main crop. Thus, they are an important factor in CO2 sequestration in
agriculture.
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Pawlowski et al. [189] showed that, in Poland, the area of intercrops amounts to
1177 mln ha. According to calculations, the amount of carbon dioxide absorbed by these
catch crops amounts to 6.85 mln tonnes of CO2 yr−1. If it is assumed that the interest
of farmers in the cultivation of catch crops will continue, the authors conclude that the
area of sown catch crops will be increased by approximately one-third within the next
decade. This will expand the current area to roughly 1530 mln ha, whereas the yearly CO2
sequestration will be increased to 8.88 mln tonnes of CO2 yr−1. This forecast is feasible,
especially when such activities are promoted to a greater extent. To compare, in 2018, the
total yearly CO2 emissions in Poland amounted to 305.75 mln tonnes of CO2 [190], and
the total greenhouse gas emissions from agriculture, expressed as CO2 equivalent, reached
30.05 mln tonnes [131,191]. Therefore, catch crops are capable of mitigating about 6% of
Poland’s annual CO2 emissions and can offset over 50% of agricultural GHG emissions in
the country. Moreover, the carbon absorption in catch crops is equivalent to one-fifth of
the carbon in the cereal biomass (e.g., triticale, oats, barley, rye and wheat) that constitute
the dominant crops cultivated in Poland [172]. Previous studies [172,189] have shown
that the cereals grown in Poland absorb 23.8 million tons of carbon per year, equivalent to
87.3 million tonnes of CO2.

The potential increase in the area available for catch crops cultivation in Poland is
higher than in France, Spain or Romania, but lower than in Denmark. For example, the
value of this parameter, estimated on the basis of the total area under cereal, protein
and industrial crops in the Overijssel region of Denmark is 90%, but in some regions
of Spain, Romania and France it is below 20% [192]. Such variation results from highly
prevalent cultivation of catch crops in the considered regions. For instance, catch crops
cultivation enjoys great popularity in France [192]; therefore, the potential for expanding
the area of catch crops cultivation is lower than in the countries in which such practices are
employed less frequently. The projected scale of CO2 sequestration as a result of catch crops
cultivation can be even greater when focusing on growing the species characterized by
highest productivity, namely tansy phacelia, white mustard, oats, winter rye, and a mixture
of spring vetch and pea (which attain the highest CO2 sequestration parameters) [172,193].

It should be emphasized that, in addition to yield-forming functions and climate
protection, cultivation of catch crops can also have economic effects. Farmers choosing to
grow catch crops can benefit from direct subsidies from EU funds for growing these crops.
In addition, the use of catch or cover crops improves soil quality, which is associated with
increased yields of the main crops and leads to increased economic efficiency on the farm.

Pawlowski et al. [171] found that the use of catch crops significantly increased the
yield and economic value of spring wheat grain. In addition, the economic profitability of
monoculture spring wheat cultivation with catch crops increased due to direct subsidies
for catch crops from EU funds under the RDP. Consequently, the highest gross margin
(657.1 € ha−1) was obtained by cultivation with the white mustard catch crop, followed by
the blue phacelia catch crop (622.7 € ha−1).

According to a study by Pawlowska et al. [35], another possibility for additional use of
catch crop biomass, increasing the profitability of its use, is the production of green energy.
Underground biomass and some of the above-ground catch crop biomass is deposited in
the soil as a source of carbon sequestration, while some of the above-ground biomass may
be employed for biogas or syngas production. The use of biomass for energy production
is environmentally beneficial, as it provides fuel with low environmental impact, and the
residue from the process in the form of digestate or biochar can be returned to the soil to
act as a fertilizer or soil quality improver. The yield of biomethane production from catch
crops grown in Poland ranges from 965 m3 ha−1 (narrow-leafed lupine) to 1762 m3 ha−1

(winter rye and spring vetch with field pea). The potential for biomethane production
from individual catch crops grown in Poland, taking into account the area of their sowing,
ranges from 61 (narrow-leafed lupine) to 328 million m3 yr−1 (white mustard) [172].
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6. Carbon Sequestration in Soil as a Climate Change Mitigation Strategy

Soil’s organic carbon plays an important role in achieving sustainable agroecosystems
by increasing crop productivity and sequestering atmospheric carbon. SOC promotes
crop productivity by improving nutrient retention and water holding capacity, facilitating
efficient drainage and aeration, minimizing topsoil loss through erosion and providing
substrates for soil microbiomes [44,194]. SOC can be sequestered in permanent pools,
such as by conversion to biochar or through organo-mineral and organometallic interac-
tions [143,195]. The a ddition of biochar changes the physicochemical parameters of the soil.
Significantly, though, the direction and range of these changes depend on the properties
of the biochar, which are related to the chemical composition of substrate used in biochar
production and technological conditions of thermochemical conversion [196]. Biochar
differs in terms of pH. The value of this parameter depends on the rate of the carbonization
process, the pyrolysis temperature and the type of raw material [197]. Biochar contains
organic acids which are generated during biomass pyrolysis, and thus it can influence the
final pH of the soil [198]. Because of its sorption properties, biochar can influence soil pro-
cesses and gas emissions from the soil, e.g., NH3 [199]. At the same time, biochar improves
soil C-organic content and contributes to better use by plants of nutrients contained in the
soil [Hossain et al. [200]. Carbon derived from biochar may also be converted to inorganic
soil compounds, e.g., magnesium and calcium carbonates, which are stored in the soil
long-term [201].

In order to rationally design, develop and implement the crops adapted to carbon
agriculture, in the long term it will be necessary to improve modeling of the metabolic ni-
trogen and carbon fluxes and, subsequently, to understand the control mechanisms thereof.
The next step will be to implement this knowledge in order to model the interactions
between carbon sequestration pathways and source-sinks in integrated plant–microbe–soil
systems via genome editing and engineering. The theses above are supported by some
scientific reports from which guidelines can be drawn for the development of metabolic
flow models [202–204] and genome-scale metabolic networks [205].

Jansson et al. [140] noted that pastures and agricultural cropping systems constituted
one-third of global arable land, having the potential for drawing down significant amounts
of carbon dioxide in the atmosphere to be stored as SOC as well as enhancing the soil-
carbon budget. The purpose of an enhanced soil-carbon budget is twofold: it promotes soil
health, supporting crop productivity, as well as constituting a pool for conversion of carbon
to its recalcitrant forms, facilitating the long-term storage which is employed to mitigate
global warming.

The content of soil-carbon is regulated by a balance between the inputs resulting from
photosynthesis, plant root exudates, and additives such as compost and manure, as well
as the outputs via root and microbial respiration and soil emissions. In the process of
carbon allocation, the assimilated atmospheric carbon dioxide is subject to shifts between
respiration, biomass production and enduring and transient tissues, as well as below-
ground and above-ground components. According to functional or optimal equilibrium
theories, resources are allocated by plants among their organs in order to ensure optimal
fitness [206,207].

The distribution of the products of photosynthesis between above- and below-ground
biomass in a plant changes depending on environmental variables, e.g., availability of
nutrients and light, as well as soil moisture. Significant amounts (20–30%) of recent
photosynthates are allocated by plants to the below-ground biomass. Approximately half
of this carbon is utilized for the growth of roots, whereas its largest fraction (up to 30%) is
then released to the rhizosphere, either via mycorrhiza or sloughed root cap cells, or through
exudation; some part is lost in the course of respiration. Under limited light conditions,
plants accumulate more carbon in their shoots, while under water- and nutrient-limited
conditions, they divert more carbon to their roots [208,209].

Poeplau and Don [158] quantified the overall potential of catch crop cultivation in-
tended to increase SOC based on data from 139 plots at 37 different sites. In their view,



Energies 2023, 16, 4225 16 of 27

cover crops used as green manure are an important management option for increasing SOC
stocks in agricultural soils. The authors considered most of the available studies on cover
crops worldwide and found that the average annual sequestration of SOC ranged widely,
from 0.32 ± 0.08 Mg ha−1·yr−1 to 16.7 Mg ha−1·yr−1.

Chahal et al. [157] demonstrated the positive effect of catch crops (oilseed radish,
oat, cereal rye, and a mixture of oilseed radish + rye) on increasing C-organic storage in
surface soil after using them six times over 8 years. Of the catch crops tested, oilseed
radish contributed the highest cumulative carbon sequestration by above-ground plant
parts and the greatest SOC gains. Compared to the control without catch crops, all soils
under catch crops had higher SOC content, and main crop plants (cereals) grown after
catch crops’ cultivation had better yields, indicating the usefulness of the tested catch crops
for improving soil functionality, primary productivity and sequestration of atmospheric
CO2 in temperate and humid climates.

In the study by Kwiatkowski et al. [160], all the catch crops included in the experiment
(white mustard, tansy phacelia, and faba bean + spring vetch mixture), regardless of the
tillage method, caused a statistically proven increase in SOC content compared to the
control object, but had no significant effect on total nitrogen content.

An undeniably positive effect of catch crops is the prevention of nitrate leaching, the
amount of which after the end of vegetation in autumn is on average 30% less than in soil
without catch crops. Evaluation of the effectiveness of catch crops varies and is highly
dependent on soil quality and initial nutrient abundance [160]. The beneficial subsequent
effect of crop residues depends mainly on the rate of decomposition and the amount of
nutrients released from them, and this is directly related to the quality of the biomass, i.e.,
the C/N ratio and lignin content [175,182].

Plant root systems are vital in providing and storing SOC. However, it is unclear
which characteristics of roots are essential for maximization of SOC as well as for long-term
storage of carbon. In order to achieve a high soil-carbon pool, high root-carbon inputs
are an essential, but insufficient, precondition. For instance, higher root exudation and
increased root biomass, both stimulated by greater levels of CO2, do not always contribute
to high gains of soil-carbon. This phenomenon can be explained by increased microbial
activity and enhanced priming of old soil organic matter [210,211].

A field trial conducted over a period of 9 years that compared switchgrass monoculture,
highly biodiverse native succession vegetation, and two perennial herbaceous systems and
showed that, although the root biomass of switchgrass exceeded that of native vegetation by
more than 10-fold, the levels of soil organic carbon under switchgrass exhibited markedly
lower improvements [212]. This example shows that it cannot be unequivocally stated
that breeding plants to achieve greater root biomass constitutes the solution for enabling
quicker and more efficient storage of carbon in the soil. Instead, some authors have
detailed plant characteristics that can lead to increased SOC. First, they point to the physical
features characterizing the structure of a root system, rather than simply total root biomass.
They also take into account root morphology, the complexity of which promotes soil
structure [213–215]. The amount of carbon that enters the soil as root exudation in the course
of plant growth is also important [133,216]. Further factors influencing greater soil-carbon
storage include the chemical composition of root tissues and root exudation [217,218], as
well as the development of a rhizosphere microbiome capable of converting the carbon
contained in root biomass into SOC [219].

According to Zhang et al. [220], the no-tillage system resulted in a significant increase
in the SOC of the topsoil (0–30 cm), as compared to conventional tillage. Furthermore, SOC
could be increased and greenhouse gas emissions reduced by increasing the complexity of
crop rotation and straw return, as noted in study [221].

Jansson et al. [147] proposed a comprehensive approach to the integrated plant–
microbe–soil system and suggested the possibility of achieving marked improvements
related to SOC storage via the following approach:
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(1) Selecting plants characterized by high root strength in order to further sequester
carbon in the soil;

(2) Balancing the increased allocation of below-ground carbon with greater source strength
for improved biomass accumulation and photosynthesis;

(3) Designing consortia of soil microbes for improved strength of rhizosphere sink as
well as properties promoting plant growth.

Amelung et al. [77] believe that sustainable soil-carbon sequestration practices must be
rapidly expanded and implemented, and thereby contribute to climate change mitigation.
The authors emphasize that the main potential for carbon sequestration is in the soils
of croplands, especially those with large yield differences or large temporal losses of
soil organic carbon. Implementing soil-carbon sequestration measures requires a diverse
set of options, each tailored to local soil conditions and crop management. The authors
suggest creating a soil information system on low-carbon farms regarding the soil group,
its degradation status, yield differences, and associated carbon sequestration potential,
as well as providing policies (financial incentives) to translate management options into
region- and soil-specific practices.

The European Commission [222] provides guidance on low-carbon farming. Accord-
ing to these guidelines, low-carbon farming on mineral soils involves measures to improve
the level of soil organic carbon (SOC) on croplands and grasslands. Increasing SOC levels
can directly promote the restoration of biodiversity, as microorganisms responsible for
biochemical processes in soil require appropriate SOC levels. Additionally, high crop
biodiversity can further enhance SOC accumulation. The Biodiversity Strategy to 2030
(BDS) emphasized the close relationship between soil health and biodiversity, leading to the
proposal of a new strategy to address soil degradation in Europe. The EU Nature Restora-
tion Plan will play a significant role in this strategy by including soil restoration targets
to reduce soil erosion, protect soil fertility and increase the content of SOC. Low-carbon
farming can play a direct role in achieving these targets and can aid in the implementation
of the national restoration plans which Member States are expected to develop by 2023.
Carbon farming can also indirectly contribute to the restoration of farmland biodiversity
through measures such as improved crop rotations and cover cropping as well as the
restoration of permanent grassland, which can provide habitats for endangered species.
Additionally, carbon farming can help alleviate the pressure on biodiversity by enhancing
nutrient availability, improving soil structure, and increasing water retention. This, in turn,
leads to greater productivity and a reduced need for fertilizers. Furthermore, low-carbon
farming on mineral soil can fulfill the EU nature restoration law’s objectives by promoting
increased water retention, minimized run-off, and reduced erosion risk [223].

Low-carbon agriculture offers a long-term opportunity to tap the considerable po-
tential related to linking agriculture to the rhizosphere microbiome regarding promotion
of soil-carbon sequestration. In this regard, designing low-carbon agriculture crops is
consistent with the consensus of the Paris Climate Agreement mandating the economically
optimal pathways aimed at mitigating global warming, which should not only mandate
the reduction of greenhouse gas emissions, but also have to include negative emissions
technologies, e.g., stimulating the soil to achieve greater carbon storage [224].

According to present research, an annual growth of carbon stored in soils of 0.4%
could halt the current increase of CO2 in the atmosphere [225]. Many national strategies
for meeting climate goals incorporate programs for soil-carbon sequestration. An analysis
of the first round of Nationally Determined Contributions (NDCs) to the United Nations
Framework Convention on Climate Change found that 28 countries mentioned the increase
of soil organic carbon in their pledges, while 14 of them referred specifically to agricultural
lands. However, only 15% of countries included a strategy of SOC increase in their climate
pledges, suggesting that many hesitate to officially include soil-carbon sequestration into
environmental policy due to the difficulties in monitoring or quantifying SOC content [226].
There are several aspects covered in the studies on the implementation of soil-carbon
sequestration practices. One of them pertains to the beliefs of farmers regarding the
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reliability of the science indicating climate change, and their readiness to take the necessary
action to mitigate or adapt to it. The actions include the use of “climate-smart” practices,
which have significant overlaps with soil-carbon sequestering practices [227]. The term
“climate-smart agriculture” was coined around ten years ago, and it involves reducing
greenhouse gas emissions from agriculture while simultaneously enhancing adaptive
capacity [228].

7. Conclusions

Bio-sequestration in plants and sequestration in soil are the simplest methods of
reducing CO2 emissions into the atmosphere. As crops build yields, they remove CO2 from
the atmosphere, and the biomass produced becomes a temporary carbon sink. This means
that increasing the overall yield of plant biomass, both the main crop and intercrops, by
use of skillful agrotechnics will help to reduce the CO2 concentrations in the atmosphere.

Low-carbon agriculture, especially crop production, can be an effective and simple way
to mitigate global warming. However, proper crop management is necessary, including the
selection of plant species appropriate to the given soil and climate conditions. A key factor
influencing the uptake of carbon farming is the provision of adequate financial incentives
that would be sufficiently equivalent to farmers to compensate for the potential reductions
in crop productivity or production profitability due to the transition to low-carbon farming.
Successful catch crop cultivation can increase the CO2 sequestration from the atmosphere
by as much as 20–25%, compared to the sequestration of the main crop without catch crop
cultivation.

However, in an overall quantitative assessment of the contribution of carbon agri-
culture to carbon sequestration, long-term carbon retention is key, and it depends on
many factors related to both soil properties and climatic conditions. Unfortunately, the
information available in this regard is impoverished, which presents a barrier to estimates.
Catch crops, the biomass of which largely remains in the soil—unlike that of the main
crop—could play an important role in strategies to increase soil-carbon stocks and mitigate
climate change. However, further research is needed, the results of which will identify the
pathways to intensifying the formation of permanent forms of SOM and the predominance
of humification processes over mineralization, as tailored to specific local conditions. They
must take into account both environmental and socio-economic conditions, including the
proper selection of plants, existing technical capabilities, and farmers’ attitudes toward the
proposed solutions, as well as the cost-effectiveness of changes in the farming system and
their life-cycle analysis.
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