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Abstract: The paper addresses the problem of geomechanical effects in the vicinity of produc-
tion/injection wells and their impacts on the processes of enhanced oil recovery by CO2 injection
and CO2 sequestration in a partially depleted oil reservoir. In particular, it focuses on natural
fracture systems and their dynamics caused by variations in the rock geomechanical state due to
reservoir pressure changes during production/injection processes. The comprehensive approach to
the problem requires the combined modeling of both geomechanical and flow phenomena associated
with effective coupling simulations of their evolution. The paper applies such an approach to a
real, partially depleted oil reservoir in Poland. An effective method of coupled geomechanical and
dynamic simulations was used together with the natural boundary and initial conditions for both
simulation types. In addition, typical operating conditions were applied in analyzing the processes
of enhanced oil recovery by CO2 injection and CO2 sequestration. The detailed results of relevant
modeling and simulations are presented and discussed focusing on various scale consequences,
including the reservoir, well, and completion ones. Both general conclusions as well as the ones
specific to the analyzed geological structure are drawn; they confirm the significant dependence of
well performance on geomechanical effects and point out several key factors for this dependence. The
conclusions specific to the analyzed structure concern fracture reactivation in tensile/hybrid failure
mode caused by pressure build-up during CO2 injection and the importance of the fracture-induced
aperture changes resulting from the normal stress, while the shear stress is found to be negligible.

Keywords: geomechanical effects; transport properties; natural fractures; enhanced oil recovery;
CO2 sequestration

1. Introduction

The injection of CO2 into subsurface rock formations has been practiced for decades
as an enhanced oil (CO2-EOR) and gas (CO2-EGR) recovery method [1–9]. Another, more
recent process inherently involving CO2 injection into subsurface structures concerns geo-
logical CO2 sequestration [1,7,8,10–15]. Generally, most of those projects were preceded
and/or accompanied by process modeling studies. Concise descriptions of such studies
follow. W. Al-Masari and coworkers [16] evaluated the potential of a CO2-EOR project
under the conditions of a specific petroleum reservoir in the Danish sector of the North
Sea. A. Ettehadtavakkol, L. W. Lake, and S. L. Bryent [17] performed the field-scale design
optimization of coupled CO2-EOR and storage operation from the viewpoint of oilfield
operations under specific technical and economic assumptions based on the USA circum-
stances. Y. Gohmian et al. [18] investigated a variety of CO2 flood design variables related
to both EOR and sequestration objectives in sandstone and carbonate reservoirs to max-
imize profit from oil recovery and maximize the amount of CO2 stored in the reservoir.
R. Sagi, R.K. Agarwal, and S. Banerjee [19] optimized the EOR system to increase the recov-
ery factor with more efficient utilization of injected CO2. M. Arnaut and coworkers [20]
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performed simulations of 72 reservoir cases followed by economic analyses for different
reservoir conditions and injection strategies to examine the feasibility of different scenarios.
H. Karimaie and coworkers [21] performed a simulation study carried out on a realistic
model of a North Sea oil reservoir to assess the performance of CO2 flood in oil recovery.
They compared various CO2 injection schemes and found a relatively high utilization
ratio of CO2 floods compared to other EOR techniques. Y. Liu and Z. Rui [22] proposed
a so-called storage-driven CO2 EOR involving the application of dimethyl ether as an
additive to CO2 to improve oil recovery while assisting CO2 storage in oil reservoirs. Their
simulation results showed that the storage-driven CO2 EOR is superior to conventional
CO2 EOR in expanding a sweeping efficiency and providing a higher CO2 storage ratio.
An analogous solution for improving CO2 utilization and storage in oil reservoirs was
proposed by Y. Liu, Z., and coworkers [23] who demonstrated the advantages of using
propanol as another additive to injected CO2. X. Zhao, Z. Rui, and X. Liao [24] studied
the CO2 EOR potential and CO2 storage capacity of three reservoirs characterized by high
heterogeneity, high water saturation, and extra-low permeability, and they found promis-
ing results that support the effectiveness of CO2 injection as means of reducing the CO2
emission to the atmosphere while enhancing oil recovery.

While all the above-cited studies and many more not mentioned here neglected ge-
omechanical aspects of reservoir simulations applied to the EOR processes, T. W. Teklu
and coworkers [25] reviewed geomechanical issues related to those processes and showed
the geomechanics to play a significant role regarding all phases of CO2-EOR and CO2
sequestration development schemes. Their conclusions were taken into account in several
following studies concerning CO2-EOR and CO2 sequestration modeling and simulations.
G. Meurer et al. [26] used a geomechanical model of a fractured carbonate reservoir to
understand the failure to open a hydraulic fracture and to investigate the effect of pressure
depletion and associated stress changes on fault permeability. They concluded a combina-
tion of seismic reservoir characterization and geomechanical forward modeling is useful
to identify zones of good reservoir quality. Other advantages of geomechanical model-
ing included investigating the risk of wellbore collapse during underbalanced drilling,
explaining the cause of failure to stimulate a well, and understanding the causes and
mechanism of early water breakthrough by fault reactivation H. Jabbari, M. Ostadhassan,
and S. Salehi [27] used a coupled code to study the interactions between reservoir flow
and geomechanics to model the deformations and stresses in a CO2-EOR process for the
extremally tight rocks of the Bakken Formation, Williston Basin, USA. That study confirmed
positive results of hydraulic fracturing and well stimulation in an effective increase in the
oil recovery factor. A. Elyasi, K. Goshtasbi, and H. Hashemolhosseini [28] implemented a
partial coupling of a conventional reservoir and geomechanical simulators to study plastic
strain development under production and CO2 injection scenarios for an oil reservoir in
the Sarvak Formation, Iran. They found small changes in the permeability and porosity of
the reservoir rock due to a rather insensitive stress–permeability relationship for the rock.
The geomechanical analysis of the reservoir also showed no sign of plastic strain under
the production and gas injection phases. M. J. Rahman, M. Fawad, and N. H. Mondol [29]
investigated the hydromechanical effect on geomechanical failure due to injection-induced
stress and pore pressure changes in the prospective CO2 storage site Smeaheia, offshore
Norway. They found the pore volume and compressibility significantly influenced the
mechanical rock failure and deformation. They also concluded that there was no caprock
failure, guaranteeing that the caprock would act as an effective top seal. L. Chiaramonte
and coworkers [30] developed a geomechanical model of the Teapot Dome oil field in
Tensleep Formation, Wyoming, USA, to evaluate the potential for CO2 injection inducing
slip on a fault and threatening seal integrity. They found no risk of the fault reactivating
and providing a potential leakage pathway. They also concluded that a precise constraint of
the least principal stress is needed to establish a reliable estimate of the maximum reservoir
pressure required to fracture the caprock. J. White and coworkers [31] used geomechanical
modeling to find the reason for the CO2 injected into the In Salah storage site migrating
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upward into the lower portion of the caprock. They concluded that the simplest and most
likely explanation for the observations indicating the leakage is a portion of the lower
caprock being hydrofractured but the overall storage complex not being compromised.
P. Sharma, S. Ghosh, and A. Tandon [32] studied the behavior of a depleted oil reservoir
in the main producing zone of the West Pearl Queen field in the Queen Formation, New
Mexico, USA, within the CO2 EOR project. They presented a comparison of the one-way
geomechanically coupled and non-coupled models and concluded the simulation results
were significantly influenced by reservoir geomechanical properties. Those results were
attributed to the alteration in relative permeabilities caused by changes in geomechanical
properties in the coupled model.

An additional and significant concern during the operation of carbon dioxide injection
into geological formations is the risk of CO2 leakage through the overburden [33–38]. To
explain and predict this phenomenon as well as many others occurring during production
such as subsidence, compaction, casing damage, wellbore stability, and sand production,
it is required to incorporate stress changes and rock deformation when pressures and
temperatures in a reservoir are changing during the course of production. The physical
impact of these aspects of reservoir behavior may be significant and require geomechanical
considerations to be taken into account [39].

Currently, conventional reservoir simulators are not able to reproduce the geomechan-
ical impact on the behavior of the reservoir. Instead, separate geomechanical and flow
simulations are performed subsequently, and their results are effectively coupled. Various
types of coupling were proposed and tested. They include iterative coupling [40], explicit
coupling [41], pseudo-coupling [42], and full coupling [43]. Most recently, other methods
and techniques were developed employing various numerical approaches, namely the
finite element method vs. the finite difference method [44], or addressing specific cases
such as hydrofracturing of unconventional reservoirs [45,46] and CO2 sequestration in
aquifers [47]. In particular, the hydromechanical behavior of natural fractures greatly im-
pacts the productivity and injectivity of naturally fractured reservoirs. Therefore, coupled
simulations are especially relevant in this type of reservoir due to the strong dependence
of the fracture permeability on its aperture. For these cases, the following relationship
takes place: the fluid flow affects the geomechanics of the rocks in terms of pore pressure
variations occurring during the production and/or injection; the pressure variations affect
the effective stress and strain distributions acting on the natural fractures and modifying
their opening or closure; this, in turn, affects the fracture permeability and storability,
which impact pore pressure behavior, closing the hydromechanical coupled loop. The
subject of geomechanical effects in fractured reservoirs is addressed in several papers.
The most numerous group of the papers refers to unconventional reservoirs in the aspect
of their hydrofracturing or refracturing [48–52]. Another group of papers is focused on
CO2 sequestration cases in aquifers [53,54]. They studied the geomechanical change in
storage formation to evaluate the stability of injected CO2 and to determine induced stress
conditions that can result in irreversible mechanical displacement, reactivating natural
fractures, or creating additional fractures. Papers of special interest are those covering
the subject of geomechanical effects in the functioning of naturally fractured reservoirs.
A. Restrepo and coworkers [55] studied a problem of different completion schemes in a
stress-sensitive, naturally fractured gas condensate reservoir in the Mirador Formation,
Columbian Eastern Cordillera. They performed explicitly coupled geomechanical and flow
simulations on conventional, compositional flow models and extended geomechanical
models. Assuming a single producing well with various completion schemes (vertical,
hydraulically fractured, and multilateral) and a single gas injecting well, they concluded
that not accounting for the geomechanical effects would imply an overestimation in the gas
and condensate production. It should be noted that the model employed in the study was
not calibrated and the authors used an arbitrary relation between permeability changes
and effective stress. It is not clear what the dynamics of the natural fractures are concerning
the injecting well creating maximum local reservoir pressure. A. Onaisi and coworkers [56]
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studied stress-sensitive reservoirs using iterative, two-way coupling between geomechani-
cal and flow simulations. They included a large North Sea chalk reservoir to be evaluated
in predicting compaction drive and subsidence, a limestone reservoir from the Middle East
to be evaluated for thermal and pressure gradient effects, and a high-pressure field situated
in the UK sector of the North Sea for in-fill drilling problems to be solved. In all three cases,
the authors drew rather qualitative conclusions for reservoir operators to take into account
in the future reservoir functioning and did not present the significance of the geomechanical
effects. F. Bourgeois and N. Koutsabeloulis [57] performed a full-field study of a reservoir
in the North Sea using the geomechanical and flow simulators on the reservoir models
to assess the integrity of the reservoir development plan. They seemed to use a one-way
coupling approach and did not provide the reader with the way of permeability updating
caused by geomechanical state modifications. The authors did not present any simulation
results, and their conclusions are qualitative.

In this paper, we apply an explicit and complete procedure to construct geological,
geomechanical, and dynamical models of a real partially depleted, naturally fractured oil
and gas reservoir in the Zechstein dolomite formation. The final models are calibrated based
on the data from the complete history of production including bottom-hole pressures and
gas–oil ratios. The geomechanical effects are included by the effective, two-way coupling of
an implicit type obtained from local correlations between transport property modifications
and reservoir pressure changes via the geomechanical state. The results of the coupled
simulations covering both production and CO2 injection phases are analyzed at various
levels of complexity (reservoir, well, completion).

Simulation studies performed to cover reservoir fluids dynamics, geomechanical state
changes, as well as their effective coupling method, were carried out with the employment
of the industry-standard, commercial software package by Schlumberger. In particular, ge-
ological modeling was performed with Petrel, geomechanical simulations were performed
with Visage, and reservoir flow simulations were performed with Eclipse.

Geological Setting

The study area is located on Gorzow Block, Poland, within the main dolomite basin,
belonging to the Stassfurt cyclothem, which is the second out of four depositional cycles of
evaporitic rocks in Zechstein and constitutes a part of the more extensive south Permian
epicontinental basin [58]. The main dolomite sediments are both the source and reservoir
rocks, isolated with the thick sequence of sealing evaporitic rocks, including alternating
layers of anhydrite, salt rocks, and thin interbeds of shale. The main dolomite sediments
and sealing from the base and top evaporitic rocks make up a closed petroleum system [59].
The biggest accumulations of hydrocarbons in the main dolomite reservoir were discovered
on Gorzow Block [60], the tectonic unit neighboring the Foresudetic monocline in the south,
Szczecin Through in the north, and Midpolish Through in the NE. Gorzow Block in its NW
part is related to Midpolish Through—a regional elongated tectonic unit with an uplifted
Permian–Mesozoic complex [61]. It consists of isolated blocks accompanied by extensive
volcanic covers and a series of clastic deposits in depressions of the Lower Rotliegend
age [62]. These erosional relics had a significant impact on the structural development of
the overlying Zechstein–Mesozoic sediment complex. During the sedimentation in early
Zechstein, thick platforms of anhydrite with a thickness reaching up to 300 m formed
and constituted the base for the main dolomite deposits. The significant variability of the
structure of the basement was responsible for the occurrence of the different environments
during the sedimentation of the main dolomite. These were the platform, the slope of the
platform, and zones of deeper sedimentation [63,64]. Within distinguished facies in the
main dolomite, which originated from different sedimentation environments, variation in
reservoir quality was observed. The best reservoir properties within the study area were
found in the shallow barrier and platform-flat zone [65] and in deeper-situated sediments
related to the slope of the platform [64,66]. The reservoir properties were affected by
diagenetic processes responsible for the development of secondary porosity [65,66]. The
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location of the study area on the map of the distribution of paleoenvironments of main
dolomite sedimentation on the tectonic sketch of Poland according to [67] and lithological
profile in the zone of interest in the reference borehole, including the main dolomite
reservoir rock, are presented in Figure 1.
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Figure 1. Location of the study area marked with a red polygon on the map of the distribution
of the paleoenvironments of main dolomite sedimentation on the tectonic sketch of Poland [67]
(A). Lithological profile in the reference borehole in the zone of interest with geophysical bore-
hole logging input data; GR—gamma ray, RHOB—rock density, vp—compressional wave velocity,
vs—shear wave velocity (track 4); developed geomechanical logs of Young modulus (E), Poisson’s ra-
tio (PR) unconfined compressive strength (UCS), and tensile strength (TENSILE) in the main dolomite
reservoir (Ca2) (track 5) (B).

2. Geomechanical Effects on EOR Performance

Taking into account geomechanical effects on the performance of enhanced oil recovery
(EOR) processes as well as CO2 storage requires the application of geomechanical modeling
coupled with fluid flow modeling to comprehensively evaluate the effectiveness of the EOR
process as well as storage characteristics and safety of the geological sequestration in frac-
tured carbonate reservoirs. The change in reservoir formation pressure due to hydrocarbon
production and CO2 injection during CO2-EOR and its geological sequestration results in
stress field alteration, affecting existing fracture transport properties. A significant increase
in pressure can also lead to further fracture propagation, causing the risk of CO2 leakage
through the reservoir overburden. To assess the CO2-EOR as well as CO2 sequestration
performance in the fractured reservoir and determine the influence of the fracture on the
transport properties, storage capacity, and tightness of the carbonate reservoir, we used nu-
merical methods integrating geomechanical and reservoir fluid flow modeling. A detailed
description of the method used in this study to effectively perform coupled simulations of
geomechanical and reservoir fluid flow effects is presented in Section 6.

3. Geological Modeling
3.1. Structural Modeling

The developed 3D structural model of the reservoir zone, its overlying strata, and its
embedding (Figure 2B) was used as a basis for the geomechanical and reservoir fluid flow
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simulations. The structure of the main dolomite reservoir rock was determined based on
the seismic interpretation results, which were constrained with the borehole stratigraphical
markers (Figure 2A). The overlying strata included the series of the Zechstein evaporite
sequence as follows: basal anhydrite (A2), screening anhydrite (A2G of Stassfurt cyclothem),
grey pelite (I3), main anhydrite (A3), younger halite (Na3), top anhydrite (A3G) of Leine
cyclothem followed by the lower pegmatite anhydrite (A4D), the youngest halite (Na4),
top anhydrite (A4G), and transitional clays (I4) of the Aller cyclothem.
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Figure 2. The structure of the main dolomite reservoir top with well locations (A); model division
into considered zones (B); geometry of the basic model embedded with neighboring rocks for
geomechanical simulations (C); distribution of reservoir thickness presented on the histogram (D).

The static geological model of the main dolomite Ca2 with grid horizontal resolution
of 100× 100 m and average vertical resolution of 9.20 m; minimum, maximum, and average
reservoir thickness of approx. 0, 90, and 30 m, respectively; and a lateral extent of approx.
13.5 × 13.5 km was embedded with surrounding rocks to apply the boundary conditions
properly. The final geometry of the geomechanical embedded model is shown in Figure 2.

3.2. Petrophysical Properties

To model petrophysical properties in the main dolomite reservoir rock, we used bore-
hole geophysical logging data and their interpretations performed in the entire borehole
profiles, calibrated with the laboratory measurements, and 3D seismic data used as sec-
ondary data in the 3D parametric modeling process. To populate the 3D grid extended
model to the top surface with density and porosity, we used the well-log data and inter-
pretation results carried out in entire profiles of eight boreholes. The analysis of porosity
and density was executed individually for specific lithostratigraphic units and included
the determination of variation ranges and semi-variogram modeling of evaluated param-
eters. For the estimation of 3D porosity and density distributions, a stochastic algorithm
was used (Gaussian random function simulation). The calculation of modeled parameter
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distributions was repeated 20 times to receive 20 equally probable realizations. The final
distribution of density and porosity was an arithmetic average of these realizations, used
next in the geomechanical simulation (Figure 3A,B, respectively).
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The detailed model of petrophysical properties was developed in the Ca2 main dolomite
reservoir zone, which was a potential storage formation at the same time. We used well-log
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interpretation results calibrated with the dense dataset of laboratory measurements from eight
boreholes to model petrophysical properties in the reservoir zone. To enhance model definition,
seismic attributes transformed into the seismic properties revealing good correlation with
interpreted porosity in the borehole profiles were applied. For calculating porosity distribution,
we used the Gaussian random function simulation algorithm with an activated co-kriging
option. The obtained porosity distribution is shown in Figure 3. The permeability model
was based on the porosity vs. permeability relationship established from the interpretation
of permeability in the borehole profiles. Developed models of porosity and permeability
determining the pore space volume and the ability of fluids to flow through the reservoir
rocks, respectively, provided essential input for reservoir simulations.

4. Geomechanical Modeling

Injection of gas into the reservoir rock as part of the EOR, aiming at increasing the
ability of oil flow to enhance the production, followed by long-term injection of CO2 and
its storage involves pressure changes in the reservoir and results in a decrease in the
effective stresses [68]. The fractures present in the reservoir can be particularly sensitive to
those changes, which can translate to the modification of transport properties and affect
the overall performance of enhanced recovery and sequestration processes. In addition,
a significant increase in pore pressure may lead to the fracture propagation enhancing
permeability of the fracture zone but, on the other hand, posing a threat to the sealing
properties of the caprock and potential leakage of CO2 through the overlying strata.

The initial effective stress conditions in a reservoir and the overlying rocks can be
expressed with the following formula dedicated to isotropic rocks [69–71]:

σh − αp =
ν

1− ν
× (σv − αp) +

E
1− ν2×(
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Nomenclature 𝑏  equivalent normal closure aperture; 𝑏௠௔௫  maximum aperture; 𝑏௥  residual aperture; 𝑑  equivalent shear dilation aperture; 𝑑௠௔௫  maximum shear dilation; 
E Young modulus; 
Edyn dynamic Young modulus; 𝑓ௗ equivalent shear dilation frequency; 𝑓௡  equivalent fracture frequency; 𝑝  pore pressure; 𝑞  equivalent frictional coefficient; 𝑇  tensile strength; 
ν Poisson’s ratio; 
νdyn dynamic Poisson’s ratio; 
vp compressional wave velocity; 
vs shear wave velocity; 𝛼  Biot’s coefficient; 𝛼′  stress coefficient for the normal closure aperture; 𝜎௛  minimum horizontal stress; 𝜎ு  maximum horizontal stress; 𝜎௠௔௫  maximum principal stress in the plane perpendicular to the fracture surface; 𝜎௠௜௡  minimum principal stress in the plane perpendicular to the fracture surface; 𝜎௥  ratio of maximum principal stress; 
σv vertical stress; 𝛾  stress coefficient for shear dilation; 
ɛH tectonic strains parallel to the maximum horizontal stress direction; 
ɛ  h tectonic strains parallel to the minimum horizontal stress direction; 
ρ rock density. 
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H) (1)

To capture the changes in the stress and strain field that can further impact the trans-
port properties, a series of parametric models providing information about the spatial
variability of petrophysical and geomechanical properties of the main dolomite reservoir
zone and surrounding rocks were developed.

4.1. Modeling of Geomechanical Properties

Three-dimensional geomechanical models of elastic properties such as Young modulus
and Poisson’s ratio, as well as strength properties including uniaxial compressive (UCS)
and tensile strength (T), were constructed using borehole geophysical logging data together
with the results of laboratory measurements of static geomechanical properties and 3D
seismic data.

The variability in elastic properties along the borehole profile was defined by using
sonic well-log data, including the velocity of compressional (vp) and shear waves (vs) and
density log utilizing the following relationship [72,73]:

νdyn= vp
2 − vs

2/2
(

vp
2 − vs

2
)

(2)

Edyn= ρvs
2
[(

3vp
2 − 4vs

2
)

/(v p
2 − vs

2
)]

(3)

Dynamic elastic properties were then recalculated to the static equivalents using
the linear regressions developed in the previous studies dedicated to the main dolomite
reservoir rock [74].

For the estimation of the unconfined compressive strength curve, a relationship be-
tween compressional wave velocity and UCS of the dolomite rock developed by [74] in
the study area was used. Tensile strength along the borehole profile was estimated, taking
the reported dependence between UCS and tensile strength, which on average tends to be
10 times smaller than compressive strength [75–77].
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The developed models of the elastic and strength properties are visualized for the
reference borehole in the study area in Figure 1B. The 3D models of elastic and strength
properties were built based on the 1D models in the borehole profiles and 3D seismic
data. The modeling procedure involved upscaling the developed 1D models of elastic
and strength properties by averaging the high-resolution data in the borehole profile to
the vertical resolution of the 3D grid and proceeding with data analysis with the use of
geostatistical tools. To analyze the data variability in the main dolomite reservoir, variogram
models were used to capture the relationship between the data points in both vertical and
horizontal directions. Defining the variogram parameters helped interpolate modeled
parameters to reproduce realistic distributions of given parameters in the 3D grid. The
examples of the 3D models of Poisson’s ratio, Young modulus, and uniaxial compressive
strength are shown in Figure 4A,D, Figure 4B,E, and Figure 4C,F, respectively.
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Based on the literature cited below, we assumed the values of other geomechanical
properties of the overlying strata which are required for geomechanical simulations [78–82].
The assumed values of geomechanical properties used in geomechanical simulations are
listed in Table 1.

Table 1. Geomechanical properties of lithological units.

Parameter (Unit)
Cenozoic

(Clay, Sand,
Gravel)

Cretaceous
(Clayey
Shales)

Jurassic
(Sandy Shales)

Triassic
(Sandstones)

Zechstein

Rock Salt Anhydrite
Reservoir

Main Dolomite
Min–Max; Median

Limestone Rotliegend
(Underburden)

Porosity (%) 3D model 3D model 3D model 3D model 3D model 3D model 0–25.8; 0.6
3D model 2.99 4

Density (g/cm3) 3D model 3D model 3D model 3D model 3D model 3D model 2.21–2.96; 2.65 3D model 2.75 2.3
Poisson ratio (-) 0.3 0.32 0.19 0.17 0.3 0.25 0.12–0.4; 0.21 3D model 0.18 0.3
Young’s modulus (GPa) 0.5 4 5.56 28.5 6.89 52.69 3.2–52.7; 29.1 3D model 42.06 46.19

Rock strength UCS (bar) 28 480 569.8 507 273.3 903 181.4–1861.5; 1120.6
3D model 149.3 500

Friction angle (◦ ) 30 32 20 59 29.08 64 28.6 22.8 30
Biot constant (-) 1 1 1 1 0 0.10 0.7 0.8 1
Dilatation angle (◦ ) 0 0 0 0 0 0 0 0 0
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4.2. Fracture Properties

The presence of fractures reduces the strength properties of the rock, and the fractured
areas become especially sensitive to deformations [83]. Therefore, the fracture zone should
be considered and parametrized to fully capture the impact of stress field changes with
pressure rise during the application of the EOR method and later on CO2 sequestration. The
presence of the discontinuity zone and its location were deduced, taking into account the
drilling report of the A-11H horizontal borehole, indicating a sudden inclination increase in
the zone interpreted as a possible 10 m wide discontinuity zone (Figure 5A,C). At the same
time, interpreted well logs indicate a permeability rise in this zone (Figure 5C). The implied
discontinuity zone was not detected on the 3D seismic image, even though it was processed
with the seismic attributes dedicated to fracture and fault detection. In the evaluated case of
the main dolomite reservoir (Ca2), the fracture zone was introduced to the geomechanical
model as a set of 10 discrete fracture planes with a spacing of 0.5 m and a length of 500 m
(Figure 5B).

Estimated initial fracture zone dimensions and geological parameters are depicted in
Table 2.

Table 2. Fracture zone dimensions and geological initial parameters.

Dimension x, dx (m) 5
Dimension y, dy (m) 500
Dimension z, dz (m) 33–45
Permeability x, kfx (mD) 0.5–450
Permeability y, kfy (mD) 700
Permeability z, kfz (mD) 700
Porosity, φf (%) 0.1

The fracture zone was parametrized using the Petrel Geomechanics materials library.
The list of parameters describing the fracture zone can be found in Table 3.

Table 3. The discontinuity zone properties assumed in the model (Petrel Reservoir Geomechanics
software manual, 2013).

Fracture normal stiffness (bar/m) 22,620
Fracture shear stiffness (bar/m) 9048
Cohesion (bar) 0.01
Friction angle (◦) 20
Dilation angle (◦) 10
Tensile strength (bar) 0.01
Fracture spacing (m) 0.5
Initial opening (-) 0
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Figure 5. Visualization of the fracture zone location on the background of Young modulus distribution
in the main dolomite (Ca2) reservoir rock (A) with a focus on the fracture zone (B) with a detected
increase in permeability based on the well-log data (C).

4.3. Boundary Conditions

To determine the initial stress conditions, we used the load of the overlying rocks and
tectonic stresses as boundary conditions. The direction and magnitude of the maximum
horizontal stress were defined using literature data, where the azimuth of the σH was
defined to be 6◦ based on the analysis of the breakout failure orientation on the borehole
wall while the σh gradient was determined to be approx. 0.1707 bar/m based on minifrac
tests in the nearest available borehole location [84]. In the reference borehole where the
results were available, a normal stress regime was observed. The anisotropy between prin-
cipal horizontal stresses was also assumed based on the findings from the same reference
borehole to be 1.25 [84].

5. Dynamical Modeling

To construct a dynamic model of the analyzed structure, the geological model de-
scribed in Section 3 was utilized. The dynamical model was supplemented with the
following components:

- Initial distributions of reservoir fluids (oil, gas, and water) under the hydrostatically
balanced conditions were generated with the J-Leverett function [85] approach so that
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the fluid saturation depth profiles, as determined from geophysical measurements in
all the wells, were reproduced;

- Reservoir fluid transport properties (relative permeabilities)—a standard power-like
Brooks–Corey model [86], krx = krx,max (Srx)

nx (x = w,o,g), was adopted for the relative
permeability, krx, and dependence upon the reduced fluid saturation, Srx, where
Srx =

Sx−Sx,min
Sx,max−Sx,min

. The exponent nx and endpoint parameters krx,max, Sx,min, and Sx,max

were determined in the model calibration procedure, and their values are given in
Table 4. Detailed information on the calibration procedure is given in Section 7.

- A reservoir, hydrocarbon fluid thermodynamical model—a compositional, thermody-
namical model of the reservoir hydrocarbon fluid (oil and gas) was constructed and
calibrated independently of the reservoir model the history matching procedure, and
using the measurement data obtained from the laboratory PVT studies [87], including
the pressure of the saturation point, flash tests, differential liberation tests, and sep-
arator tests. The model employed the Soave–Redlich–Kwong equation of state and
Lorenz–Bray–Clark viscosity model and was characterized by a complete set of EOS
parameters for the effective eight-component fluid including both hydrocarbon and
non-hydrocarbon ones (Table 5).

Table 4. Calibration results of relative permeability curve parameters.

Phase Parameter Initial Value Value after
Calibration

water nw 2 2
water Sw,min (=Srw) 0.1 0.0528
water Sw,max 1 1
oil (oil–water system) no 2 2
oil (oil–water system) So,min 0.4 0.4917
oil (oil–water system) So,max 1.0 0.9964
oil (oil–gas system) no 2 2
oil (oil–gas system) So,min 1 − Sg,max 1 − Sg,max
oil (oil–gas system) So,max 1 − Sg,min 1 − Sg,min
gas ng 2 2
gas Sg,min (=Srg) 0.1 0.1
gas Sg,max 1 0.9964

Table 5. Composition of the reservoir fluid after component grouping.

Component % mol

N2 31.588
CO2 0.612
H2S 5.085
C1 19.353
C2 3.567

C3–C6 11.990
C7–C11 12.270

C12+ 15.500

6. Two-Way Simulation Coupling

To study the influence of geomechanical effects upon the reservoir fluid flow, effective
modeling of fluid flow through porous media and variations in the geomechanical state of
these media at different pore pressures and reservoir fluid distributions is required [39,88–91].
In general, precise solutions to this problem require the use of numerical techniques to
simultaneously solve coupled equations describing both fluid transport phenomena and ge-
omechanical effects. This approach, called a fully coupled simulation [92–94], is characterized
by complex numerical modeling that results in very high computational costs [95]).
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An alternative approach uses partially coupled modeling [39,88,96] where an external
coupling between separate numerical simulations of both key phenomena is employed. It
requires multiple iterative simulations including fluid flow calculations at each time step
and stress–displacement calculations at selected time steps only until a full consistency
of the solutions is obtained. Another approach was proposed in [97] where local direct
dependence between pore pressure variation and basic transport parameter variation via
the geomechanical parameter changes is used. The schematic of this procedure is shown in
Figure 6 for the time interval (t, t + ∆t).
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It is assumed that all basic variables (pore pressure, p; fluid saturation, S; stress tensor,
σ; strain tensor, ε) describing the process evolve continuously in the time interval (t, t + ∆t).
This situation usually takes place when the number of active wells is fixed, their produc-
tion/injection rates vary smoothly, and there are no failure events in the geomechanical status
evolutions. An opposite situation takes place when, e.g., the drilling of new wells causes
abrupt changes in the geomechanical status of the reservoir. Consequently, geomechanical
simulations are performed at selected time moments coinciding with special events of discon-
tinuous character. By identifying separate regions of a uniform variation in geomechanical
state parameters with reservoir pressure changes during continuity intervals, specific correla-
tions can be found for basic parameters (porosity, permeability) as direct functions of pressure
in each of the spatial regions and time intervals. At first, correlations between pressure varia-
tion and geomechanical state parameters (stress tensor, σ; strain tensor, ε) are determined from
the results of geomechanical simulations. Subsequently, the variation in transport properties
(permeability, k; porosity, φ) as functions of the geomechanical parameters (e.g., volumetric
strain) is applied according to adopted models (e.g., Kozeny–Carman model [98]) in matrix
zones. An analogous approach is used to couple geomechanical effects and flow phenomena
in fracture zones. Details of this approach are given in the sections below.

6.1. Correlation of Geomechanical State and Transport Parameters

For the reservoir matrix correlation between pore pressure changes and volumetric
strain, changes were found to be relatively homogeneous. An analogous correlation
between reservoir pressure variations and effective stress was established for the fracture
zone of the A-11H well (Figure 7A). These results were grouped into six sets corresponding
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to six different groups combining two consecutive layers each, and the linear correlations
of the groups were parametrized as shown in Figure 7B.
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6.2. Fracture Response to Changes in Geomechanical State

The process of fracture effective permeability variations with changing pressure was
applied to the fracture zone of the A-11H well during the history of reservoir operation and
the forecast of CO2 injection into the main dolomite reservoir rock. To this end, a specific
model correlating fracture effective apertures and geomechanical states of the fractured
rock was adopted following the exponential law studied in [99].

The exponential law effectively describes the nonlinear decline in fracture aperture
with increasing effective stress in the fractured rocks [100,101]. In that study, to calculate the
equivalent permeability, k, a normal closure component, kn, and a shear dilation component,
ks, are used in the form of empirical relationships [99] (4)–(6):

k = kn + ks, (4)

kn =
fn

12
b3, (5)

ks =
fd
12

d3, (6)

The effective aperture, b, as the function of normal effective stress, σn, is given by [99]
Equation (7):

b = br + bm = br + bmaxexp
(
−α′σn

)
, (7)
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To calculate effective shear dilation of fractures, the relationship of the exponential
dependency of stress ratio, σr, and equivalent frictional coefficient, q, on shear dilation is
utilized [99], as shown in Equations (8)–(10) below:

d = 0 f or σr < q, (8)

d = dmax[1− exp{−γ(σr − q)}] f or σr ≥ q, (9)

σr =
σmax

σmin
(10)

To simplify the analysis, we assumed cohesive strength to be negligible. According to
Coulomb frictional criterion, the shear strength depends only on the frictional strength and
is expressed as the frictional coefficient, µ, or equivalent frictional parameter, q, related to
the angle of internal friction, ϕ, as given by [99] Equation (11):

q =

(√
µ2 + 1 + µ

)2
=

1 + sinϕ

1− sinϕ
(11)

The quantity mostly responsible for the permeability decline in the mechanism of the
fracture closure is the horizontal stress, σn, normal to the fracture plane.

In addition, parameters that determine possible fracture kinematics, namely slip ten-
dency, Ts, and dilation tendency, Td, were calculated. A slip is likely to occur in a fracture
plane when the resolved shear stress, τs, equals or exceeds the frictional resistance to
sliding [61]. Therefore, the slip tendency is the ratio of maximum resolved shear stress to
normal stress acting in the surface [102]. In the analyzed case, values of the slip tendency
(0.15 < Ts < 0.25) are too low to meet the condition of the Beyerlee law [103] (Ts > 0.6).
According to that condition, the fracture is not ideally oriented for the slip in the present
stress field. The fracture normal dilation and the fluid transmission ability are directly
related to the fracture aperture, which is dependent upon the effective normal stress [102].
The values of dilation tendency (0.67 < Td < 1.00) suggest that fracture reveals a consider-
able tendency for reactivation relating to extensional movement, increasing through the
historical production phase. During the CO2-EOR phase, the fracture seems almost ideally
oriented for reactivation in tensile or hybrid failure mode. Finally, during the pressure
build-up of the CO2 sequestration period, the fracture tends to reverse back to the tensile
failure mode, as shown below in Figure 8.

Nevertheless, after many geomechanical simulations were performed, it was noticed
that shear stress-induced dilation is a negligible phenomenon and is not able to effectively
affect changes in the fracture aperture with pressure variations. Finally, the calculated
stress ratios are much lower than equivalent frictional coefficients (σr � q). As a result, the
effective normal stress will be the main factor producing changes in the fracture aperture,
which, in turn, is responsible for permeability variations. Fractures will tend to reactivate
in the hybrid failure mode. After that, they will continue to vary the aperture rather than
undergo tractional displacement, for pore pressures under initial reservoir pressure. When
CO2 injection into a formation over initial reservoir pressure but below fracturing pressure
is performed, fractures are more likely to experience tensile failure (Figure 9).
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The above model of fracture dynamics was applied in the reservoir model calibrations
and simulation forecasts as presented in the following sections. An example of explicate
evolution of the fracture equivalent permeability is shown in Figure 9.
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7. Model Calibration

The reservoir simulation model of the analyzed structure was calibrated based on
the data obtained from the reservoir operator and covering 16 years of its operation with
11 producing wells. The calibration data consist of daily oil, gas, and water production from
individual wells, bottom-hole pressures, and well test results. The calibration procedure
was performed in a standard way; i.e., the oil production data were taken as the control
data while the other measurements were matched with the modification of both global and
local model parameters as listed below.

7.1. Calibration Results

The calibration process produced a satisfactory match of the simulation results and
the historical operation data. An example of static bottom-hole pressure measurements
vs. simulation results in an exemplary A-2K well is shown in Figure 10, and gas–oil ratio
measurements vs. simulation results in the same well are shown in Figure 11.
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The calibration process resulted in modifications of several model parameters of both
global and local types. They included poorly determined quantities such as relative perme-
abilities, permeability anisotropies, well productivity indices, and skin-effect coefficients.
In particular, parameters of the fracture zone identified at the A-11H well were estimated
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to produce bottom-hole pressure (BHP) consistent with the measured data as presented in
Figure 12 for BHP. In addition, Figure 12 shows a small but distinct difference resulting
from the consideration of geomechanical effects on the well performance. Similarly, the
results of the gas–oil ratio for the cases taking into account and neglecting geomechanical
effects are compared in Figure 13.
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The fracture zone parameters determined by the calibration process included its
geometrical sizes: its horizontal span of 500 m and vertical extension covering the total
thickness of the Ca2 reservoir zone (see Figure 5B).

7.2. Model Characterization after Calibration

After the calibration process, the compositional simulation model of the analyzed
structure is characterized by the following fundamental parameters:

- Total area of the model: 234.0 km2 = 15.2 × 15.3 km;
- Model type: single porosity and permeability;
- Lateral dimensions of the model grid: 160 × 152 blocks;
- Lateral sizes of model blocks: 100 × 100 m;
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- Lateral dimensions of the refined model zone: 5–25 × 100 m;
- Layered structure: 15 layers;
- Number of active blocks: 29,464;
- Initial contact depth:
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Average thickness of a single simulation layer: 2.46 m.

8. Simulation Results of Production/Injection Forecasts

The calibrated dynamical flow model of the analyzed structure described in the
previous sections was utilized to perform simulation forecasts of reservoir behavior for
various scenarios including primary production methods and enhanced oil recovery with
CO2 injection, taking into account or neglecting the geomechanical effects and various
widths of the fracture zone. The EOR with CO2 injection scenarios were followed by a CO2
sequestration stage. The complete set of scenarios presented and discussed in the following
sections is listed in Table 6.

Table 6. Scenario list of simulation forecasts.

Scenario No. Scenario Name

Scenario Description

Production Method Geomechanical
Effects

Fracture Zone
Width (m/Blocks)

1 Basic_w/o_geomechanics_5m_fracture_zone Primary Disabled 5/1
2 Basic_w/_geomechanics_5m_fracture_zone Primary Enabled 5/1
3 EOR_w/o_geomechanics_5m_fracture_zone EOR with CO2 injection * Disabled 5/1
4 EOR_w/_geomechanics_5m_fracture_zone EOR with CO2 injection * Enabled 5/1
5 EOR_w/o_geomechanics_18m_fracture_zone EOR with CO2 injection * Disabled 18/3
6 EOR_w/_geomechanics_18m_fracture_zone EOR with CO2 injection * Enabled 18/3
7 EOR_w/o_geomechanics_65m_fracture_zone EOR with CO2 injection * Disabled 65/5
8 EOR_w/_geomechanics_65m_fracture_zone EOR with CO2 injection * Enabled 65/5

* followed by CO2 sequestration.

8.1. Technical and Operational Conditions of Production/Injection Forecasts

The oil production was initially performed by seven existing wells (A-1, A-2K, A-4,
A-7H, A-11H, A-13K, and C-2K). In Scenarios 3–8, the CO2 injection was initially performed
by two existing wells (C-1 and C-4). When the producing wells gradually ceased to produce
due to the limiting factors listed below, they were converted into injecting ones. As a
consequence, the number of producing wells was reduced to one (Scenarios 3 and 5) or
zero (Scenarios 4, 6, 7, and 8) at the end of the 15-year interval of the simulated reservoir
operation. Similarly, the number of injecting wells increased up to seven in all scenarios.
The detailed time variations in these numbers are shown in Figures 14–16 for Scenarios 3
and 4, 5 and 6, and 7 and 8, respectively. In the separate Scenarios 1 and 2 with no CO2
injection, the numbers of producing wells diminishing with time are shown in Figure 17.
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Figure 17. Variation in the number of producing and injecting wells with time. Scenarios 1 and 2.

The oil-producing wells were controlled by production rates estimated as annual average
values of the last year’s historical data. The CO2-injecting wells were controlled by an
injection rate of 500 rm3/day (where rm3 means cubic meters under reservoir conditions), the
value resulting from the operator’s experience. The other production/injection constraints
followed the historical restrictions accepted by the reservoir operator, including the following:
minimum dynamical bottom-hole pressures, maximum permitted gas–oil ratio and water
cut, minimum economic production oil rate, and maximum dynamical bottom-hole pressures
at injecting wells. In addition, the reservoir production was also limited by the maximum
allowable 3% of CO2 mole concentration in the total reservoir production stream. When this
limit was exceeded, the oil-producing well with the largest contributions of CO2 production
was reduced to obtain the CO2 concentration of the total production stream below the limit.

8.2. Results at Reservoir Level

The simulation forecast results for the reservoir performance including oil production
rates, oil production totals, average reservoir pressures, and (where appropriate) CO2 injection
rates together with CO2 injection totals are presented in Figures 18–21 for Scenarios 1 and
2, 3 and 4, 5 and 6, and 7 and 8, respectively. The scenarios were grouped in pairs differing
in the treatment of geomechanical effects: one neglecting these effects and the other taking
them into account. In general, the simulation results at the reservoir level show that the
geomechanical effects lead to a small reduction in oil production (below 7% of the total oil
production) and a very small increase in CO2 injection (below 3% of the total CO2 injection).
These variations result from a small contribution of the fracture zone to the total A-11H well
productivity/injectivity potential and, as a consequence, to the total reservoir results.
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Figure 18. Comparison of basic Scenarios 1 and 2 (see Table 6 for detailed descriptions of the
scenarios). Oil production total, oil production rate, and average reservoir pressure.
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production total, oil production rate, gas injection total, gas injection rate, and average reservoir pressure.

Energies 2023, 16, 4219 22 of 36 
 

 

 
Figure 19. Comparison of EOR Scenarios 3 and 4 (see Table 6 for detailed descriptions of the scenarios). 
Oil production total, oil production rate, gas injection total, gas injection rate, and average reservoir pres-
sure. 

 
Figure 20. Comparison of EOR Scenarios 5 and 6 (see Table 6 for detailed descriptions of the scenarios). 
Oil production total, oil production rate, gas injection total, gas injection rate, and average reservoir pres-
sure. 

 
Figure 21. Comparison of EOR Scenarios 7 and 8 (see Table 6 for detailed descriptions of the scenarios). 
Oil production total, oil production rate, gas injection total, gas injection rate, and average reservoir pres-
sure. 

Figure 20. Comparison of EOR Scenarios 5 and 6 (see Table 6 for detailed descriptions of the scenarios). Oil
production total, oil production rate, gas injection total, gas injection rate, and average reservoir pressure.

Energies 2023, 16, 4219 22 of 36 
 

 

 
Figure 19. Comparison of EOR Scenarios 3 and 4 (see Table 6 for detailed descriptions of the scenarios). 
Oil production total, oil production rate, gas injection total, gas injection rate, and average reservoir pres-
sure. 

 
Figure 20. Comparison of EOR Scenarios 5 and 6 (see Table 6 for detailed descriptions of the scenarios). 
Oil production total, oil production rate, gas injection total, gas injection rate, and average reservoir pres-
sure. 

 
Figure 21. Comparison of EOR Scenarios 7 and 8 (see Table 6 for detailed descriptions of the scenarios). 
Oil production total, oil production rate, gas injection total, gas injection rate, and average reservoir pres-
sure. 

Figure 21. Comparison of EOR Scenarios 7 and 8 (see Table 6 for detailed descriptions of the scenarios). Oil
production total, oil production rate, gas injection total, gas injection rate, and average reservoir pressure.



Energies 2023, 16, 4219 23 of 35

8.3. Results at A-11H Well Level

The simulation forecast results for A-11H well including oil production rates, oil
production totals, average reservoir pressures, and (where appropriate) CO2 injection rates
together with CO2 injection totals are presented in Figures 22–25 for Scenarios 1 and 2, 3
and 4, 5 and 6, and 7 and 8, respectively.
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Another variation in the relative differences between oil production totals for scenar-
ios with and without the geomechanical effects can be observed as a function of the frac-
ture zone width. When CO2 injection is performed, the geomechanical effects reduce the 
oil production total by 5%, 14%, and 16% for the fracture zone width of 5, 18, and 65 m, 
respectively, as shown in Figures 23–25. The larger the width, the bigger the difference, as 
can be explained by various contributions of the fracture zone to the well productivity. As 
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scenarios). Oil production total, oil production rate, gas injection total, gas injection rate, and
bottom-hole pressure of A-11H well.
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The simulation results for A-11H well provide the following evidence for the signifi-
cance of the geomechanical effects in both primary and enhanced recovery processes:

- The direct factor determining the geomechanical effects, as well as the oil production,
is the reservoir pressure evolution;

- In particular, the injection of the CO2 makes the reservoir pressure decrease slower and,
consequently, maintains the total oil production at a much higher level as can be seen
by comparing basic scenarios (Scenario 1 and Scenario 2 of the total oil production
after 81/3 years of operation equal to 0.53 and 0.62 × 106 Sm3, respectively) with
enhanced oil recovery scenarios (Scenario 3 and Scenario 4 of the total oil production
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after 81/3 years of operation equal to 0.71 and 0.77 × 106 Sm3, respectively)—the solid
and dashed curves in Figure 22 vs. the ones in Figure 23;

- The decrease in the oil production in all the scenarios with the geomechanical effects
included due to the fracture closure with pressure decline as can be seen by comparing
scenarios with geomechanical effects taken into account (Scenario 1 and Scenario 3 of
the total oil production after 81/3 years of operation equal to 0.53 and 0.71 × 106 Sm3,
respectively) with the scenarios with the geomechanical effects neglected (Scenario 2
and Scenario 4 of the total oil production after 81/3 years of operation equal to 0.62
and 0.77 × 106 Sm3, respectively)—the solid curve vs. the dashed one in Figure 22
for the basic scenarios and the solid curve vs. the dashed one in Figure 23 for the
enhanced recovery scenarios.

Another variation in the relative differences between oil production totals for scenarios
with and without the geomechanical effects can be observed as a function of the fracture
zone width. When CO2 injection is performed, the geomechanical effects reduce the oil
production total by 5%, 14%, and 16% for the fracture zone width of 5, 18, and 65 m,
respectively, as shown in Figures 23–25. The larger the width, the bigger the difference, as
can be explained by various contributions of the fracture zone to the well productivity. As
a result, the geomechanical effects seem to be relatively stronger for scenarios with primary
production than for those with CO2 injection. It is worth noting that the influence of the
geomechanical effects in the fracture zone on the well productivity is partially compensated
by the method applied to well control by a nominal production rate. Only when the bottom-
hole pressure reaches its minimum level due to the increasing recovery is the production
rate reduced to maintain the limiting pressure.

8.4. Results at the Fracture Zone Level

The analogous simulation results referring to the fracture zone of the A-11H well
are presented for the same pairs of scenarios in Figures 26–29. They show an impact of
the geomechanical effects upon production and injection to be firmly manifested at the
level of the zone. The geomechanical effects upon the production stage of the project are
already observed in Scenarios 1 and 2, corresponding to the primary production method
as presented in Figure 26. Scenario 2, where the geomechanical effects are included,
results in a reduction in the oil production total by the approximate factor of 90 (from
20,000 sm3 down to 2180 sm3) due to the apparent closure of the fractures caused by
pressure decline following reservoir fluid production—the enhanced effect already pointed
out in the discussion of the simulation results at the well level.
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tion reduction factor of 0.0003) and the EOR production method (the solid green curve vs. 
the dashed green one in Figure 27 for the total production reduction factor of 0.018). Un-
expectedly, the CO2 injection rate increases very slowly, despite a rise in the bottom-hole 
pressure, and the injection of Scenario 3 including the geomechanical effects never reaches 
that of Scenario 4, i.e., the one without the geomechanical effects. Similar conclusions refer 
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tion rate during the sequestration stage is a result of the combination of several factors. 
When the injection stage is started, the injection gas saturation at the fracture zone con-
nection with the well rises rapidly to its maximum level. That implies a rapid increase in 
the relative permeability of the injection phase and a constant increase in the injectivity 
index at the fracture zone scale. As a consequence, it can be inferred that the effective 

Figure 26. Comparison of basic Scenarios 1 and 2 (see Table 6 for detailed descriptions of the
scenarios). Oil production total and rate of the fracture zone at A-11H well, bottom-hole pressure at
the fracture zone connection with A-11H well.
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Figure 27. Comparison of EOR Scenarios 3 and 4 (see Table 6 for detailed descriptions of the scenarios).
Oil production total and oil production rate of the fracture zone at A-11H well. CO2 injection total
and CO2 injection rate of the fracture zone at A-11H well. Bottom-hole pressure at the fracture zone
connection with A-11H well.

Energies 2023, 16, 4219 26 of 36 
 

 

resistivity between the fracture zone and the well is relatively small when comparing it to 
the resistivity of the reservoir section around the wellbore itself. The effective resistivity 
of the near-wellbore reservoir initially dominates the injection process but decreases much 
slower than the effective resistivity of the fracture zone. Finally, the total resistivity of the 
reservoir system produces a delayed effect of the injection rate enhancement at the frac-
ture zone level. Such an effect is most evident in cases of the scenarios with the geome-
chanics enabled and the fracture zone width of 5 m presented in Figure 27. 

 
Figure 27. Comparison of EOR Scenarios 3 and 4 (see Table 6 for detailed descriptions of the scenar-
ios). Oil production total and oil production rate of the fracture zone at A-11H well. CO2 injection 
total and CO2 injection rate of the fracture zone at A-11H well. Bottom-hole pressure at the fracture 
zone connection with A-11H well. 

 
Figure 28. Comparison of EOR Scenarios 5 and 6 (see Table 6 for detailed descriptions of the scenar-
ios). Oil production total and oil production rate of the fracture zone at A-11H well. CO2 injection 
total and CO2 injection rate of the fracture zone at A-11H well. Bottom-hole pressure at the fracture 
zone connection with A-11H well. 

Figure 28. Comparison of EOR Scenarios 5 and 6 (see Table 6 for detailed descriptions of the scenarios).
Oil production total and oil production rate of the fracture zone at A-11H well. CO2 injection total
and CO2 injection rate of the fracture zone at A-11H well. Bottom-hole pressure at the fracture zone
connection with A-11H well.

The oil production rates and totals drastically fall during the production stage due
to the fracture closure caused by the decreasing pressure for both the basic production
scheme (the solid green curve vs. the dashed green one in Figure 26 for the total production
reduction factor of 0.0003) and the EOR production method (the solid green curve vs.
the dashed green one in Figure 27 for the total production reduction factor of 0.018).
Unexpectedly, the CO2 injection rate increases very slowly, despite a rise in the bottom-hole
pressure, and the injection of Scenario 3 including the geomechanical effects never reaches
that of Scenario 4, i.e., the one without the geomechanical effects. Similar conclusions
refer to Scenario 5 vs. Scenario 6 and Scenario 7 vs. Scenario 8. The slight rise in the
CO2 injection rate during the sequestration stage is a result of the combination of several
factors. When the injection stage is started, the injection gas saturation at the fracture zone
connection with the well rises rapidly to its maximum level. That implies a rapid increase
in the relative permeability of the injection phase and a constant increase in the injectivity
index at the fracture zone scale. As a consequence, it can be inferred that the effective
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resistivity between the fracture zone and the well is relatively small when comparing it to
the resistivity of the reservoir section around the wellbore itself. The effective resistivity of
the near-wellbore reservoir initially dominates the injection process but decreases much
slower than the effective resistivity of the fracture zone. Finally, the total resistivity of the
reservoir system produces a delayed effect of the injection rate enhancement at the fracture
zone level. Such an effect is most evident in cases of the scenarios with the geomechanics
enabled and the fracture zone width of 5 m presented in Figure 27.
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Figure 29. Comparison of EOR Scenarios 7 and 8 (see Table 6 for detailed descriptions of the scenarios).
Oil production total and oil production rate of the fracture zone at A-11H well. CO2 injection total
and CO2 injection rate of the fracture zone at A-11H well. Bottom-hole pressure at the fracture zone
connection with A-11H well.

When variations in the fracture zone width are taken into account, another phe-
nomenon can be noticed. When the fracture zone width increases, so does the total oil
production separately for both the cases neglecting the geomechanical effects (176, 332, and
520× 103 Sm3 for 5, 18, and 65 m width fracture zone, respectively; the dashed green curves
in Figures 27–29) and the cases including those effects (3.25, 68, and 160 × 103 Sm3 for 5, 18,
65 m width fracture zone, respectively; the solid green curves in Figures 27–29). Hence,
the total oil production dependence upon the fracture zone width for cases neglecting
the geomechanical effects is larger than the analogous dependence for cases including the
geomechanical effects. As a consequence, a rather unexpected conclusion follows: the
geomechanical effects reduce the oil production total by a relatively higher degree for a
narrower fracture zone than for a wider one, i.e., by a factor of 67, 7.0, and 6.4 (from 20%,
35%, and 58% down to 0.3%, 5%, and 9%) for the fracture zone width of 5, 18, and 65 m,
respectively (the solid vs. dashed green curves in Figures 27–29). The corresponding results
are shown collectively in Figure 30.

Similar behavior can be observed in the contribution of the fracture zone to the injec-
tivity of A11-H well—reduction in this fracture zone contribution due to the geomechanical
effects is reported as follows: by a factor of 10, 4.9, and 4.6 (from 15%, 44%, and 73%
down to 1.5%, 9%, and 16%) for 5, 18, and 65 m width of the fracture zone, respectively
(the corresponding results are shown in Figure 30). Despite the increasing bottom-hole
pressure during the injection period of the CO2-EOR and CO2 sequestration, the fracture
zone reveals reduced injectivity due to the effects of partial fracture closure.

The fracture zone is analyzed for cases with its widths increasing geometrically: from
5 m through 18 m up to 65 m. This variation entails a nonlinear change in the production
and injection results between the corresponding scenarios. The rise in the fracture zone
width by the factor of 3.6 (from 5 m to 18 m) causes an almost double (by a factor of 1.75)
increase in the zone contribution to the well oil production and an almost triple (by a factor
of 2.9) increase in the zone contribution to the well gas injection for the scenarios neglecting
geomechanical effects. In scenarios with the geomechanical effects, the zone contribution
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to the well oil production rises about 16 times and the zone contribution to the well gas
injection rises 6 times. When the fracture zone width increases by the subsequent factor
of 3.6 (from 18 m to 65 m), the zone contribution to the well oil production/CO2 injection
rises by 1.7 times for the former scenarios. When taking into account the latter scenarios,
the zone contribution to the well oil production/CO2 injection rises by a factor of 1.8, as
can be deduced from the results presented in Figure 30.
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The geomechanical effects resulted in much larger differences in the oil production for
the scenarios with primary production than for those with CO2 injection. It is worth adding
that the influence of the geomechanical effects in the fracture zone on the well productivity
is partially compensated by the method of well control applying a nominal production
rate. Only when the bottom-hole pressure reaches its minimum level due to decreased
productivity is the production rate reduced to maintain the limiting pressure.

9. Fracture Propagation Analysis

To maintain the secure storage of CO2 in the analyzed reservoir formation after
reaching the maximum CO2 allowance of the production wells, the integrity of the basal
anhydrite A2—a sealing formation—has to be preserved [105]. Under the condition of
the pre-existing fracture zone within the reservoir rock, the analysis of possible fracture
propagation is critical.

For tracking the changes in the fracture zone vicinity, indicative parameters suggesting
whether the fracture is propagating were used: failure mode, normal effective stress, and
normal strain as resulted from geomechanical simulations calculated for particular time
steps of the field production, application of CO2-EOR method, and CO2 sequestration.

To determine fracture propagation, a commonly used Mohr–Coulomb criterion was
used with a tension cut-off [106–108]. The vicinity of the modeled fracture within the
reservoir rock and directly overlying caprock (Figure 29) did not meet the failure criteria
(Figure 29) and remained intact through the analyzed stages of CO2 injection [105]. In
Figure 29, a Mohr–Coulomb diagram is shown, which is plotted for the grid cells located
right above the top reservoir showing no signs of rock failure.

What is more, the results of geomechanical simulations revealed positive values of the
normal stress and strain (Figure 31C,D, respectively), indicating no sign of tensile strain at
the fracture zone and in its close vicinity, especially in the overlying basal anhydrite A2,
suggesting, therefore, no fracture propagation [109] and the lack of rock failure.
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The indicators mentioned above suggest a lack of failure and no further fracture
propagation at the analyzed stages of CO2 injection.

All the above parameters confirmed no lateral or vertical propagation of the fracture
zone during the history of hydrocarbon production and CO2 injection to the reservoir.

10. Summary and Conclusions

The studies described in this paper address the problem of geomechanical effects and
their influence on the modeling of oil production and CO2 injection (CO2-EOR followed
by CO2 sequestration). The studies are focused on natural fracture geomechanics and its
results for the reservoir, well, and completion performance. The paper includes methods,
assumptions, and results of these studies as applied to the geological structure of a domestic
oil reservoir that is a potential object for CO2-EOR method application as well as a facility
for a CO2 sequestration project.

In particular, an analysis was performed for the transport properties of an induced
fracture zone as a function of its geomechanical state as well as the state of its neighborhood.

For this purpose, 3D geological structural and parametric models were constructed
and implemented in a dynamical flow model and a static geomechanical one for both
flow and geomechanical simulations. An effective method of direct dependence between
pore pressure variation and basic geological parameter variation via the geomechanical
parameter changes was employed in this study. By identifying separate regions of a
uniform variation in geomechanical state parameters with reservoir pressure changes
during continuity intervals, specific correlations are found for basic parameters (porosity,
permeability) as direct functions of pressure in various reservoir regions and time intervals.

The constructed reservoir model of the analyzed structure, including the oil reservoir,
screening caprocks, and other surrounding formations, was satisfactorily calibrated based
on the data obtained from the reservoir operator and covering 16 years of its operation
with 11 producing wells.
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The calibrated reservoir model effectively coupled with geomechanical effects was uti-
lized to perform simulation forecasts of reservoir behavior for various scenarios including
primary production methods, enhanced oil recovery with CO2 injection followed by CO2
sequestration, and various extensions (widths) of the fracture zone.

The studies performed within the reported research allow us to draw the following
conclusions:

General conclusions are as follows:

1. The method proposed in the studies and comprising effectively coupled geomechanical
and dynamical simulations of reservoir region and its extension allows us to take into
account the influence of geomechanical effects upon transport properties of reservoir
rock and, consequently, upon the operation of the reservoir in various stages including
primary production, enhanced oil production by CO2 injection, and CO2 sequestration;

2. The geomechanical effects induced primarily by the redistribution of reservoir pres-
sure may drastically modify transport properties of fracture zones contributing to well
performance and thus determining the operational results of the involved reservoir;

3. The quantitative results of those geomechanical effects depend upon detailed properties
of both geomechanical state evolution and geological characteristics of the reservoir;

4. The following two correlations are key factors when the effective transport properties
of the reservoir rock are a concern:

- The correlation between the geomechanical state (stress and strain field) and the
rock pore matrix and fracture characteristics;

- The correlation between pore matrix/fracture characteristics and their effective
transport properties.

Conclusions specific to the analyzed geological structure are as follows:

1. Assumed geometries of discontinuities and the reservoir stress field indicate that
fractures are reactivated in tensile/hybrid failure mode caused by pressure build-up
during CO2 injection; induced aperture changes result from the normal stress while
the shear stress can be neglected;

2. Under the geomechanical stress state resulting from the simulations of both production
and injection stages of the reservoir operation, the fracture zone will not propagate
within the underlying main dolomite formation or the anhydrite caprock; hence, no CO2
leakage upward into the anhydrite formation via induced fractures is observed;

3. The geomechanical effects significantly determine simulation forecasts of oil pro-
duction by an oil-producing well with completion including a fracture zone, and
the pressure reduction results in fracture closure and a reduction in the fracture
contribution to the well productivity depending on the size of the fractured zone;

4. The productivity reduction of the fracture zone alone may be as large as 60-fold
(Figure 24) for primary production with a narrow fracture zone and 3-fold for the
CO2-EOR production method with a wider fracture zone (Figure 27);

5. Similar results for geomechanical effects are found in well injectivity due to fracture
apertures not regaining their primary size despite the increasing reservoir pressure
during the injection phase of the CO2-EOR and CO2 sequestration;

6. In the cases of carbonate reservoir rocks with more frequent fracture occurrences, the
evaluated geomechanical effects in the field performance are expected to be enhanced
at the reservoir scale.
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Nomenclature

b equivalent normal closure aperture;
bmax maximum aperture;
br residual aperture;
d equivalent shear dilation aperture;
dmax maximum shear dilation;
E Young modulus;
Edyn dynamic Young modulus;
fd equivalent shear dilation frequency;
fn equivalent fracture frequency;
p pore pressure;
q equivalent frictional coefficient;
T tensile strength;
ν Poisson’s ratio;
νdyn dynamic Poisson’s ratio;
vp compressional wave velocity;
vs shear wave velocity;
α Biot’s coefficient;
α′ stress coefficient for the normal closure aperture;
σh minimum horizontal stress;
σH maximum horizontal stress;
σmax maximum principal stress in the plane perpendicular to the fracture surface;
σmin minimum principal stress in the plane perpendicular to the fracture surface;
σr ratio of maximum principal stress;
σv vertical stress;
γ stress coefficient for shear dilation;
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Państwowy Inst. Geologiczny: Warszawa, Poland, 1994; OL924861M, LCCN: 95223745.

59. Kotarba, M.; Wagner, R. Generation potential of the Zechstein Main Dolomite (Ca2) carbonates in the Gorzów Wielkopolski-
Miedzychód-Lubiatów area: A geological and geochemical approach to microbial-algal source rock. Przegląd Geol. 2007, 55,
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