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1. Introduction

With global warming increasing at a faster rate in recent decades than at any other
moment in recorded history, nuclear power, among a wide range of energy-efficient tech-
nologies, has been identified as the primary energy source in decarbonization for the
improvement of security and efficiency. Notably, the design, functionality, and safety of
Generation III+, Generation IV, small modular reactor, and other cutting-edge nuclear
reactor technologies depend critically on thermal hydraulics (TH) [1]. Thereby, modern TH
instrumentation techniques undoubtedly play a big part in safely powering both the fleet
of nuclear reactors in use today and the cutting-edge designs of tomorrow.

The Impact of sensors has arguably been nowhere more revolutionary than in nu-
clear instrumentation [2]. The core of flow instrumentation for measurement, diagnostics,
and control, more particularly, is the accurate and effective real-time live imaging (i.e.,
unambiguous observation and characterization) of single or multi-phase flows and their
modalities’ mapping (e.g., temperature fields) through experimentation, control, and condi-
tion monitoring. To document the advancements in flow characterization using advanced
instrumentation to solve both fundamental and applied TH problems that are pressing,
Table 1 lays out a chronicle of the flow field imaging sensors’ evolution.

Table 1. Survey of existing flow field characterization (2D/3D) approaches (beyond conventional
local measurements techniques).

Technology Advantages Limitations References

Particle image
velocimetry

Non-intrusive for
cross section

Optical access required for test region;
fluid seeded with micro-particles

required; high-power laser needed for
reducing size of tracer particles; Suitable

for low void-fraction.

[3]

Optical probes array Simple and cheap
Accuracy sensitive to signal being

measured; particularly sensitive to low
void-fraction small-bubble cases.

[4]

X-ray tomography Non-intrusive for
cross section

Small field of view; radiation concern;
expensive. [5]

Optical tomography Non-intrusive for Limited by light source and detectors;
limited penetration depth. [5]cross section

Ultrasonic methods Non-intrusive for
cross section

Large-seeded particles required;
resolution limited by separating signals
from seeds and bubbles; suitable for low

void-fraction.

[6]

Wire-mesh sensor High temporal and
spatial resolutions Slightly intrusive for cross section. [7]

Note that existing imaging technologies primarily serve current fleets of nuclear
reactors, whereas new reactor designs and systems require updating and upgrading of
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the flow characterization techniques in terms of multi-modalities monitoring, high-speed
data capture, storage, retrieval, and interference mitigation, for which the technologies
mentioned in Table 1 above struggle to fulfill these more and more stringent requirements
at the same time.

Fortunately, since Kenneth O. Hill’s discovery of photosensitivity in optical fiber and
his monumental achievement in demonstrating the first fiber Bragg grating (FBG) [8],
FBG devices have gained traction in a broad mix of optical communication and sensing
applications. Notably, they have the potential to become an appealing option as one of
the original disruptors for flow instrumentation technology. FBGs are essentially periodic
perturbations in the refractive index of an optical fiber, which act as a wavelength-selective
reflector (filter). They are fabricated by exposing a photosensitive fiber to a pattern of
ultraviolet laser beam via a phase mask (with a shaped diffraction grating), which causes a
refractive index modulation in the fiber core. The reflected signal’s wavelength is sensitive
to temperature, strain, pressure, and concentration, etc., hence the formation of FBG sensors
for the real-time characterization of temperature, void fraction, flow rate, pressure, and
concentration, both locally and cross-sectionally (e.g., multi-phase imaging). Formidable
partners in FBG manufacturing have emerged in recent years, e.g., FBGS for single-fiber
multi-sensors multiplexing solutions. ITF and other researchers [9] are taking a step further
in formulating FBG sensor arrays.

2. Discussion

FBGs have a host of advantages over traditional sensing technologies, including high
sensitivity and accuracy (wavelength shifting dependence is not impacted by the signal’s
amplitude variations, and is immune to electromagnetic interference); high resolution,
both spatially (for detecting small changes of small bubbles) and temporally (fast response
time for transients); robustness in withstanding harsh environments (high temperatures
and pressures); and multiplexing capabilities for multi-modalities monitoring (fields of
temperatures, strain, and pressures) and multi-phase flow visualization at the same time.

Like the performance evolution from a single antenna to an antenna array, grouping
FBG sensors into an array can revolutionize the field of fluid characterization by providing
accurate and reliable measurements of various fluid properties (measuring multiple pa-
rameters simultaneously). This allows for a more comprehensive understanding of fluid
behavior and properties, which can be used to identify and diagnose problems, as well
as to improve the design and performance of various fluid systems. This also allows for
a redefinition of fundamental limits to imaging-based flow metrology by enabling the
sensing of new modalities with a multi-tasking capability, which can lead to improved
efficiency and reduced downtime, i.e., significant economic benefits for complex nuclear
systems.

The FBG sensors array is also highly versatile and can be used in a wide range of fluid
systems, including oil and gas pipelines, chemical processing plants, and biomedical appli-
cations. This versatility makes FBG sensors a valuable tool for researchers and engineers
working in a variety of fields. A summary of the advantages of the FBG sensors array is
portrayed in Figure 1.

Despite the many advantages of the FBG sensors array, some challenges need to be
addressed. First and foremost, the cost of FBG sensors (and the interrogation/readout elec-
tronic packages) can be prohibitive for some applications. Additionally, the interpretation
of FBG array data can be challenging, requiring specialized knowledge and expertise in
manipulating the multiplexing readout circuits.

Overall, the departure from convention has slowed over the past decade. Crucially,
continuous innovation is an essential underpinning of FBG’s deployment roadmap in
fluid characterization for TH applications. Nevertheless, every step towards improvement
comes with trade-offs. It is necessary to integrate existing industrial competencies even
more deeply into research and education to expand the current working knowledge of
the literature. Back to the FBG sensor design stage, existing works [10–13] mostly involve
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analytical modelling coupled with experimental exploration. Contrarily, there is a need
for developing semi-analytical modelling by incorporating multi-physics simulation and,
notably, computational fluid dynamics (CFD) models representing the FBG array interfacing
the multi-phase flow. Techniques of multi-scale modeling (space and time) need to be
accounted for. Research directions are envisaged in developing customized in-house or
open-source codes, a suite of models and software packages, and firmware dedicated to the
FBG array-based multi-phase flow characterization with an eye on SWaP-C (size, weight,
power, and cost). Accordingly, there will be a gap that must be filled in researchers’ training
pertaining to expert mastery in fiber optics, photonics, electronics (including array signal
processing), thermal hydraulics, and CFD. Each of these technical challenges and gaps
identified will occupy a PhD student for a couple of years, who will ultimately contribute
to build up of technical expertise and the advancement of knowledge, from sensing devices
to readout techniques.
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Unlocking the potential of FBG sensors for flow instrumentation requires a holistic and
multidisciplinary approach. It is advised by this editorial that the transferrable concept of
low redundancy sparse antenna array can be incorporated into the FBG sensors array design
for reduced components, costs, and complexity, whilst upholding decent characterization
functionality and performance. Furthermore, the FBG array topology can be formulated
by unequally distributing annular rings to capture the inhomogeneous flow behavior and
patterns in a pipe. It is also advisable to leverage the recent advances in active metasurface
optics [14], with computation overheads being reduced by deep neural networks [15].

3. Conclusions

Real-time instrumentation of high resolution (spatial and temporal) forms an integral
part of nuclear thermal hydraulics’ development roadmap. Situated at the interface of
optical, electrical, thermal sciences, and other research disciplines, the FBG sensors array
has the potential to take flow characterization to new heights by providing accurate and
reliable measurements of various properties (temperature, pressure, flow rate, void fraction,
concentration, and multi-phase mapping) at the same time with single-device hardware,
which reduces the cost, downtime, and uncertainties as compared with conventional
sensor fusion-based approaches (requiring integration of diverse types of sensors in a
system). Arguably, the use of the FBG sensors array can lead to the improved efficiency
and better performance of flow systems. While there are still some challenges that remain
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to be addressed, the benefits of the FBG array make it a valuable tool for researchers and
engineers working in a variety of fields.

Last but not least, although achieving the trade-offs between performance, manufac-
turability, and cost is always crucial, it is also well worth thinking outside the box and
beyond the possible, making FBG array flow imaging an art, driving a design revolution
and engaging interdisciplinary collaboration to support the delivery of a vision that aspires
to the development of reliable, robust, and agile flow monitoring for thermal hydraulics
applications that drive the nuclear sector to continuously decarbonize the world’s economic
activity towards the fulfillment of the net-zero carbon mandate by 2050.
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