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Abstract: Recently, multilevel converters (MLCs) have gained significant attention for stationary
applications, including static compensators, industrial drives, and utility-grid interfaces for renewable
energy sources. Compared to two-level voltage-source inverters (VSI) MLCs feature high-quality AC
voltage with reduced harmonic content despite the lower switching frequency of the semiconductor
devices. On the DC side, MLCs can integrate multiple isolated/non-isolated battery modules instead
of a single battery pack. This helps to keep the system in service in case of a malfunction of one or
more battery modules, as well as active balancing among the modules, a feature not possible with
two-level VSI. In general, MLCs can be classified into two types: (i) two-port MLCs, which provide
a single interface to connect with the battery pack, and (ii) multiport MLCs, which provide multiple
interfaces to allow connection at the module or cell level. The classical topologies of both MLC types
(e.g., neutral point clamped, flying capacitor, cascaded bridge) face limitations due to the high switch
count. Consequently, many hybrid and reduced-switch topologies are reported in the literature. This
paper presents a critical overview of both classical and recently reported MLC topologies and offers
a better insight of MLC operation for grid-connected and standalone applications. In addition, the
analysis thoroughly assesses various high-level control and modulation strategies while considering
active balancing among the battery modules. Other salient features such as balancing speed during
offtake/grid-injection mode and fault-ride-through capability are also incorporated. In conclusion,
the key findings are summarized for a better understanding of the present and future integration of
battery systems in stationary applications.

Keywords: multi-level inverters; stationary battery systems; hot swapping; grid; battery-energy
storage; active balancing; modulation strategies

1. Introduction

In recent years, the deployment of battery-based energy-storage systems (BESSs) has
been growing exponentially for stationary applications [1–5]. Being one of the core elements
of an environmentally friendly and resource-efficient solution, BESSs have assumed the fun-
damental role of providing sustainable and high-standard energy sources. Grid-connected
BESSs enhance grid reliability by stabilizing the power fluctuations caused by intermittent
renewable-energy sources (RES), improving self-consumption and peak shaving for pro-
sumers via a coordinated supply-and-demand time-shift [6,7]. In addition, BESSs provide
ancillary services that include frequency-containment reserves (FCR), frequency-restoration
reserves (FRR), imbalance mitigation, and replacement reserves [8–10]. In the off-grid mode,
BESSs serve as the backbone of standalone power systems where there is no access to the
utility grid.

Lithium-ion batteries (LiB) account for more than 80% of the installed capacity among
different stationary BESS technologies due to their high energy and power density [11].
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In a typical LIB BESS, multiple individual cells are first connected in series to make
a module. The series connection adds up the individual cell voltages to the desired
module-level open-circuit voltage (OCV). A typical module can have OCV in the range of
50–70 V [12]. The modules are then further connected in series and parallel combinations
to form the complete battery pack. The parallel connections among the modules increase
the usable capacity/energy of the pack, measured in kilowatt hours (kWh), whereas the
number of parallel connections is a function of the use case [13–19]. For example, grid
ancillary services (FCR, FRR) and prosumer use cases (self-consumption, arbitrage, peak
shaving) require high-energy (HE) BESSs and therefore require a large number of parallel
modules. On the contrary, decentralized generators require high-power (HP) BESSs to
support the black-start capability. Unlike HE, the HP use case does not require many
parallel connected modules [20].

The number of series connections impacts the pack OCV, which in turn depends on
the number of stages in the PE interface. A single-stage PE interface consists of a single
DC-AC inverter and therefore requires high DC-link voltage (>330 V for single-phase AC
connection), as shown in Figure 1. This means that at least six modules (each 50–70 V) are
required to be connected in series on the DC side. On the contrary, the two-stage PE interface
does not apply any voltage restriction on the pack OCV, as there is an intermediate boost-
conversion stage before the DC-AC inverter. However, due to the higher cost associated
with two stages, a single-stage PE interface is preferred [21–24]. Therefore, this review
paper considers the single-stage PE interface as a reference.
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Figure 1. Schematic overview of stationary BESSs, power electronics converter, grid-connected
system, and off-grid load.

Another important component of a stationary BESS is a battery-management sys-
tem (BMS). The BMS continuously monitors the critical pack parameters, which include
minimum and maximum cell voltage/current, temperature, and state of charge (SOC). It
ensures that the BESS operates inside the safe operating area (SOA). A BMS also provides
balancing functionality among the individual cells. The balancing circuit can be passive
(switched resistor bank), which results in higher power dissipation, or active (switched
capacitors and inductors), which results in high implementation costs [25–28].

Conventionally, a two-level voltage-source inverter (VSI) is used for a single-stage
PE interface, as shown in Figure 1. The DC port of the two-level VSI is connected to the
battery-pack terminals, whereas the AC port is connected to the grid via the filter inductor
or directly to the standalone AC load. Due to fewer switches, the two-level VSI is simple in
structure but faces multiple downsides.

Firstly, it faces a potential capacity reduction on the BESS side. As it requires a large
number of series connections in the battery pack, the individual cells accumulate differences
in SOC and reach the cut-off voltage earlier than other cells. This happens mainly due
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to non-homogeneity and different internal impedances/self-discharge rates of individual
cells. To avoid damages due to overheating or a deep state of discharge, the BMS must
disconnect the whole battery pack.

Secondly, the two-level VSI operates at a higher switching frequency, which exposes
the semiconductor switches and interfacing filter to high dv/dt. In the standalone mode
where there is no filter inductor, the high dv/dt and small rise times create undesired
effects, which include excessive voltage stress on windings, leakage currents, and increased
EMI. Furthermore, if long cables are used to connect the drive, the rapid rise times can
potentially cause the transmission-line effect, which can double the voltage applied to the
drive terminals, as explained in [29].

Considering the downsides of two-level VSI, this review paper focuses on multi-
level converters (MLCs) as a reliable BESS interface for on-grid and off-grid applications.
MLCs were first introduced in 1975 by Baker and Lawrence as an improved alternative
to a two-level VSI in high-power applications [30]. The output AC voltage of MLCs is
a synthesized multi-step (greater than two) signal due to the switching of multiple semi-
conductor switches. The number of levels in the AC voltage is directly proportional to
the number of switches. Compared to two-level VSIs, MLCs offer a higher degree of
flexibility, as they can be connected at the pack, module, or individual cell level. They offer
high-quality AC voltage, lower switching losses, lower voltage stress on semiconductor
switches, and reduced filter size for grid connection [30–33]. Some drawbacks include the
large number of semiconductor switches and associated gate-driver circuitry, which can
lead to a high implementation cost [33].

An important feature of a BESS-fed MLC is the potential to perform active balancing
among the battery modules, a feature not possible with a two-level VSI. Active balancing is
an added value of the MLC system that eliminates the requirement of a separate BMS. It is
an important performance parameter to consider in selecting an efficient MLC topology for
stationary BESSs. However, in the MLC literature, no review articles are available that cover
this aspect for stationary BESSs [34,35]. Most review articles dedicated to RES-fed MLCs are
limited only to PV systems [34–38]. Other review articles have focused on grid-connected
BESSs but do not consider the battery-balancing requirements [30–33].

The main contribution of this paper is to present a critical overview of the classical, hy-
brid, and reduced-switch MLC topologies for stationary BESSs. The topologies are analyzed
based on different key performance indicators (KPIs), which include (i) switch/diode count,
(ii) passive-component count, (iii) AC-mode support, (iv) active balancing, (v) modularity,
(vi) dual-mode support (grid-connected to off-grid transition), (vii) switch utilization,
(viii) fault ride through capability, and (ix) DC-microgrid support. In addition, an overview
of the latest control and modulation techniques is also presented. The analysis takes
into account the dual role of modulation technique for BESS-fed MLCs, which ensures
that the operating principle of active balancing does not violate while also maintaining
a good-quality AC voltage.

The paper is organized as follows. Section 2 presents and classifies various potential
MLC topologies for stationary BESS. It also presents the active-balancing principle and the
role of multiport MLCs for stationary BESSs. Section 3 presents the topological comparison
based on the aforementioned nine KPIs. Section 4 explains different modulation strategies,
and Section 5 presents the higher-level control strategies. A simulation study is conducted
in Section 6 to compare various active-balancing modulation techniques. Finally, Section 7
concludes the paper by summarizing the key findings and directions for future research.

2. Topologies of MLC Systems for Stationary BESSs

For grid-connected systems, the main requirement for an independent stationary BESS
is to balance the offtake and generation for a specific group of demand (loading) points.

This is normally done by equalizing the fluctuations in the electricity generation
and demand by time-shifting the load requirement. For an off-grid system, maintaining
an uninterrupted power supply (UPS) is the main requirement [39,40].



Energies 2023, 16, 4133 4 of 38

Figure 2 reflects the classification of MLCs for a stationary BESS. Depending upon
the type, isolation, and arrangement of the battery pack/modules, MLC systems can be
broadly classified into two categories: (i) two-port and (ii) multiport MLCs.
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Figure 2. Categories of MLC configurations for stationary BESSs.

The two-port MLC provides a single interface and is connected to the whole battery
pack, whereas multiport MLC provides multiple interfaces to connect several modules
or individual cells. The two-port MLC does not provide balancing functionality but
significantly decreases the THD in the AC voltage compared to a two-level VSI. It also
allows a smaller interfacing filter for grid connections. The sub-section below briefly covers
the underlying topologies for the two-port MLC system.

2.1. MLC with Two-Port Interface

Figure 3b–g reflect the potential configurations for a two-port MLC. Figure 3a depicts
the grid-connected and off-grid AC interface to evaluate both modes of operation for each
configuration in stationary applications.

2.1.1. Neutral-Point Diode Clamped (NPC)

In the NPC topology, the input DC voltage is divided into an even number of AC-
voltage levels. For x levels in the AC voltage VAc, the NPC MLC consists of 2(x− 2)
clamping diodes, (x− 1) DC-link capacitors, and 2(x− 1) semiconductor switches [41,42].
Figure 3b reflects the NPC MLC topology for five-level VAc. It has the advantage of
bipolar DC bus operation but lacks modularity and balancing of the DC-link capacitors.
In addition, it faces limitations due to uneven power losses and unequal blocking voltage
across six diodes.

Another variant of the NPC topology is the active-NPC topology reported by ABB
in [43]. It adds up the phase capacitor in a three-level NPC configuration to produce
two additional voltage levels. Active-NPC topology finds widespread applications for
industrial drives.

2.1.2. Flying-Capacitor MLC

In this topology, the MLC consists of 2(x− 2) clamping diodes, (x− 1) DC-link capacitors,
and 2(x− 1) power electronics switches for single-phase x-level AC voltage [44–46]. Figure 2c
depicts the single-phase flying-capacitor MLC topology for five-level VAc. The single-phase
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flying-capacitor topology consists of four identical DC-link capacitors C1 − C4 of the same
voltage rating for splitting the DC bus into four equal voltages.
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Figure 3. (a) Grid-connected and standalone load for MLC. Multiple configurations of the two-port
MLC system fed by single/non-isolated BESSs. These include (b) NPC topology, (c) flying-capacitor
topology, (d) cascaded-T configuration, (e) hybrid HB-FC topology, (f) hybrid SC-HB topology,
(g) hybrid MLC (H8) topology, and (h) hybrid FC-ANPC topology.

This topology is similar to NPC topology, as is clear from the comparison of Figure 3b,c,
except that there are no clamping diodes.
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The flying-capacitor MLC features higher modularity compared to the NPC topology
and offers better voltage-forming capability, higher frequency operation, and active and
reactive power management. These features make the flying-capacitor MLC a better
candidate for a standalone power supply. However, it faces high switching losses while
transferring the active power from the DC to the AC side and requires a significant number
of capacitors, which reduces its economic viability compared to the NPC MLC [45].

2.1.3. Cascaded-T MLC

As reported in [45,47] a cascaded-T MLC is a reduced-switch MLC topology where
a single-phase grid-connected or standalone x-level output consists of (x + 1) semiconduc-
tor switches, (x + 3) clamping diodes, and (x + 3) DC-link capacitors. Figure 3d depicts
the cascaded-T MLC topology for nine-level output voltage.

2.1.4. Hybrid MLC

This combines two traditional MLC topologies to achieve higher voltage levels for the
same number of switches. Ref. [48] reported the HB-FC topology, where four cascaded half
bridges are combined with a seven-level flying capacitor MLC to achieve 15 voltage levels,
as shown in Figure 3e.

In [49], the authors reported another hybrid MLC topology, where a combination of
four cascaded half bridges and a three-level switched-capacitor (SC) converter generates
nine levels, as reflected in Figure 3f. Figure 3g depicts another hybrid MLC (H8) topology,
as reported in [48], where fewer switches achieve higher voltage levels than either of the
parent topologies.

In [50], a combination of an active-NPC (ANPC) and a flying-capacitor MLC is re-
ported, as shown in Figure 3h.

2.2. MLC with Multiport Interface

Multiport MLCs feature higher flexibility compared to two-port configurations, as
they also allow connection at the module or individual cell level. Importantly, multiport
MLCs can realize the terminal voltage or SOC balance between the battery cells or modules,
and therefore do not suffer from capacity reduction due to the series connection among
the cells [51–53].

If the MLC is connected at the cell level, the overall switch count becomes too high to
be economically viable. As explained in Section 1, a 3.6 V LiB cell implies that more than
100 series-connected cells are needed per phase, which means that at least 400 semicon-
ductor switches are required for single-phase grid connection. In the case of module-level
implementation, fewer switches (less than 30) are needed, as each module is composed of
multiple series-connected cells. The choice of cells per module is a non-technical constraint
and is more based on the commercial availability of battery modules [54,55].

In this paper, 16 series-connected cells are considered in each module. Compared
to a cell-level MLC, a module-level MLC faces a tradeoff, as the faulty cell cannot be
isolated individually. However, it can be addressed by controlling the charging/discharging
current of the module carrying the faulty cell. Moreover, each module still has a cell-level
monitoring system (secondary BMS) to monitor the voltage/temperature of individual
cells; however, it would not disconnect the faulty cell, as this feature is already supported
by the module-level MLC.

2.2.1. Active Balancing with a Multiport MLC

The underlying building block for multiport MLCs is either a full-bridge (FB) or half-
bridge (HB) structure that is interfaced with an isolated battery module [56,57]. Figure 4a,b
reflect a single battery module with an HB and FB interface, respectively.
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Tables 1 and 2 show the operational modes of FB and HB interface as a function of
various switching states, respectively [58].

Table 1. Operational modes of full-bridge interface as a function of switch states.

Mode State
Controller mn

Output
Voltage (Vo)

FB Switch State Battery-Module
State

Battery-Module
Current (ib)

Output
Current (io)S11 S12 S11 S22

1 1 +VB − 2Vd 1 0 0 1
Charging Negative Negative

2 1 +VB − 2Vd Discharging Positive Positive

3 0 0 1 1 0 0 Bypassed 0 Positive

4 0 0 0 0 1 1 Bypassed 0 Negative

5 −1 −VB + 2Vd
0 1 1 0

Charging Positive Positive

6 −1 −VB + 2Vd Discharging Negative Negative

Table 2. Operational modes of half-bridge interface as a function of switch states.

Mode State
Controller mn

Output
Voltage (Vo)

HB Switch State Battery Module
State

Battery Module
Current (ib)

Output
Current (io)S1 S2

1 1 +VB −Vd 1 0
Charging Negative Negative

2 1 +VB −Vd Discharging Positive Positive

3 0 0 0 1 Bypassed 0 Positive

4 0 0 0 1 Bypassed 0 Negative

5 −1
NA

6 −1

Comparing Tables 1 and 2, it can be seen that the FB interface provides three output
voltages, +VB, 0, and −VB, through different combinations of S11, S12, S21, and S22. On
the other hand, HB can provide two output voltages, +VB and 0 V, through different
combinations of S1 and S2.
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The state transition is governed by the control parameter mn, which can take values
between −1 and 1. When mn = 0, the output voltage V0 = 0 and the battery module is
bypassed from the MLC system, representing a no-charge/discharge state. The module
current ib = 0 but the output current (i o) continues, which can be positive or negative.

Figure 4b,c show negative and positive output-current paths, respectively, for the
FB and HB interface during the module-bypass state when mn = 0 and V0 = 0. When
mn = 1 or − 1, Vo and the real power (P o) of the FB and HB interface can be expressed
as follows:

Vo−FB = Vb − 2Vd (1)

Po−FB = Vb·iAC·mn ∀ − 1 ≤ mn ≤ 1 (2)

io−FB =


ib if mn = +1 or − 1 ∀ V0 6= 0
> 0 if mn = 0 ∀ V0 = 0, ib = 0
< 0 if mn = 0 ∀ V0 = 0, ib = 0

 (3)

Vo−HB = Vb −Vd (4)

Po−HB = Vb·io·mn ∀ 0 ≤ mn ≤ 1 (5)

io−HB =


ib if mn = +1 ∀ V0 6= 0

> 0 if mn = 0 ∀ V0 = 0, ib = 0
< 0 if mn = 0 ∀ V0 = 0, ib = 0

 (6)

where Vd is the voltage drop across one switch during the ON state. Vd can be positive or
negative based on the direction of io. Comparing Equations (1) and (4), it can be seen that
FB has a voltage drop two times higher than that of HB. In addition, except for the bypass
mode, the output current in both topologies is equal to ib.

For 0 ≤ mn ≤ 1, the charged or discharged energy of each battery module depends on
the period during which the module is connected to the circuit.

Comparing Tables 1 and 2, FB allows an extra mode (Mode 6), where V0 = −VB + 2VD.
This state allows the generation of negative voltage levels in the output. The HB interface
does not have Mode-6; however, it does not impact the balancing potential, as cascaded
HBs can operate at a higher frequency than FB.

The choice of mn can be used for the voltage or SOC equalization among the modules.
Since each module is controlled by a dedicated mn, the switch-in and switch-out time of
each module can be controlled independently. The module with higher voltage or SOC can
be discharged for longer duration (more −VB intervals) or charged for a shorter duration
(more 0 intervals). mn can also improve the energy-utilization ratio while avoiding the
overcharging or deep discharging of individual modules.

2.3. Subtypes of MLC with Multiport Interface

The subsections below highlight several potential multiport MLC topologies for con-
nections at the module level.

2.3.1. Cascaded H-Bridge (CHB) MLC

CHB topology consists of multiple cascaded FBs and generates AC voltage by switch-
ing between several small DC voltage levels using low-frequency switching devices [59–61].
Due to the modular structure, it holds an advantage in fault-tolerant operation over FC and
NPC topologies, as there are no clamping diodes, bulky inductors, or capacitors in a CHB
configuration. Typically, CHB consists of several FBs (h) connected in series.
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Each FB is fed by an isolated battery module. The output voltage VAC and number of
levels Nlevels can be expressed as follows [61]:

VAC−max = Vb−max × h (7)

Nlevel = 2h + 1 (8)

where VAC−max and Vb−max are the maximum values of output AC voltage and module
DC-link voltage, respectively.

Figure 5 reflects a 13-level CHB MLC topology where six FBs are cascaded together.
Each FB is connected to an individual battery module. The AC voltage has six levels
(Vb1 to Vb1 + Vb2 . . . + Vb6) in both positive and negative half cycles.
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Figure 5. Schematic diagram of a multiport 13-level CHB system comprising six isolated battery
modules.

CHB topology can operate at different modulation indexes for the FBs. This feature
allows the CHB to perform active balancing, as it can maintain one module DC-link
voltage at values independent of other modules. For a multiphase system, it can perform
compensation of unbalanced phase currents.

Based on the voltage of the individual battery modules, CHB topology can be sub-
classified into symmetrical (SCHB) [62,63] and asymmetrical (ACHB) configurations [64,65].

In S-CHB, all the DC voltages are equal. In terms of components, SCHB needs
2(Nlevels − 1) switches and (Nlevels − 1)/modules to generate Nlevels in the AC voltage.

In the A-CHB, the DC voltages are kept different based on a geometric progression
factor (GPF). The GPF commonly has a value of two or higher to generate more steps in the
AC voltage without increasing the number of FBs. Accordingly, Nlevels can be expressed
as follows:

Nlevel = 2h+1 − 1 if Vk = 2k−1Vb ∀ k ∈ [1, 2, 3, . . . , h] (9)
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Nlevel = 3h if Vk = 3j−1Vb ∀ k ∈ [1, 2, . . . , h] (10)

The maximum AC voltage of h FBs can be expressed as:

VAC−max =
(

2h − 1
)

Vb−max if Vk = 2k−1Vb ∀ k ∈ [1, 2, . . . , h]

VAC−max =
(

3h−1
2

)
Vb−max if Vk = 3k−1Vb ∀ k ∈ [1, 2, . . . , h]

 (11)

Comparing Equations (6)–(11), it becomes clear that ACHB can generate more voltage
levels and a higher amplitude of the AC voltage than SCHB with the same number of FBs.
In the reference case, SCHB needs six modules to generate 13 levels with a peak AC voltage
of 365 V, whereas AHCB can generate the same voltage with only three modules. However,
there is a tradeoff, as ACHB is less modular and fault tolerant compared to S-CHB.

In the case of binary DC-link module voltages, ACHB yields only the additive voltage
levels, whereas in trinary sequence selection of DC voltages, both additive and subtractive
voltage combinations can be obtained. Another disadvantage is the requirement of modules
with higher OCV, which means a large number of series-connected cells per module, thus
increasing the balancing problems of the cells within the module.

2.3.2. Reduced-Switch MLC

Recently, many reduced-switch MLC configurations have been reported [35,36,38,66–76]
to improve the number of levels and voltage harmonic profile without changing the
component rating. Most of the configurations focus on MLCs interfaced with solar PV,
where the reduction of switches allows only unidirectional power flow (PV panels to the
AC side) and therefore do not support battery-module integration [35,36,38]. Likewise,
many topologies do not allow the individual modules to be bypassed or re-ordered in the
voltage-building process and therefore do not support the module-balancing feature [35].
The subsections below cover only reduced-switch topologies that are bidirectional and can
perform the primary balancing among the isolated battery modules.

Reduced Cascaded Half-Bridge MLC

The reduced cascaded half-bridge (RCHB) MLC consists of one FB and multiple HBs
connected in series. It is reported in [77] as an improvement over CHB-MLC because
it requires a lower number of semiconductor switches to generate the same levels in
AC voltage.

Figure 6 reflects the single-phase configuration of a 13-level RCHB-MLC where each
HB is connected to an isolated battery module. The output of these cascaded HBs is
connected to an intermediate DC bus. The DC bus exhibits a staircase-shaped periodic-
voltage waveform at twice the frequency of the AC voltage. The DC bus is connected
to an FB that simply inverts the DC voltage to generate the AC waveform. The FB uses
low-frequency semiconductor switches that operate at the base frequency (50/60 Hz) of
the fundamental AC voltage.

In RHCB topology, different battery modules can be involved or bypassed in the
voltage-building process, as each HB can be controlled independently, thus achieving the
primary module-balancing feature. Based on the variation in OCV of different modules (all
the same, binary relation or other), the total number of levels (Nlevel−HCHB) and maximum
valued of the AC voltage (VAC−HCHB−max) can be expressed as follows:

Nlevel−HCHB =


n + 1 if Vbk = VDC ∀ k ∈ [1, 2, 3, . . . , n]

2n if Vbk = 2k−1VDC ∀ k ∈ [1, 2, 3, . . . , m]
2n if Vbk = 2VDC ∀ k ∈ [1, 2, 3, . . . , n]

 (12)
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VAC−HCHB−max =


n×VDC if Vbk = VDC ∀ k ∈ [1, 2, 3, . . . , n]

(2n − 1)VDC if Vbk = 2k−1VDC ∀ k ∈ [1, 2, 3, . . . , m]
(2n− 1)VDC if Vbk = 2VDC ∀ k ∈ [1, 2, 3, . . . , n]

 (13)

where n is the number of cascaded HBs per phase.
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Figure 6. Schematic diagram of multiport 13-level RCHB topology comprising six isolated
battery modules.

Comparing Figures 5 and 6, RHCB topology requires two switches per module,
whereas CHB topology needs four switches per module to produce the same number
of levels in the AC voltage. The total number of switches for both topologies can be
expressed as follows [77]:

Nsw−CHB = 4×Modules
Nsw−RHCB = 2×Modules + 4

}
(14)

This means that for a six-module MLC, Nsw−CHB = 24 and Nsw−HCHB = 16. The
difference becomes larger as the module count increases.

The output of cascaded HBs is the multistep half-sinusoidal-shape DC voltage (VDC−h)
with a frequency two times higher than that of the AC voltage, as shown in Figure 6.
The final FB converts VDC−h to sinusoidal AC voltage by simply reversing the polarity of
alternate cycles.

Despite the switch-count reduction, the RHCB topology faces a critical limitation in
grid-connected mode that is not reported in [72,77] or in the available literature on the
cascaded HB MLC [69,74]. The limitation is explained as follows.

RHCB uses the front-end FB for polarity generation, which means FB is essentially
uncontrolled from the current-control perspective. The switches in FB are synchronously
turned on and off at the zero crossings of the AC voltage and therefore lack the ability to
inject current in the grid-connected mode.

The synchronous switching allows FB to operate in voltage-control mode, which is
possible for standalone/off-grid applications, as explained in [72,77]. However, in the case
of grid connection, the RCHB cannot inject power, as active and reactive currents of the
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interfacing inductor (Lg) cannot be controlled with synchronous (50 Hz) switching of the
semiconductor switches in FB. However, in the offtake mode it draws uncontrolled current,
as the FB simply behaves like a diode rectifier due to synchronous switching.

Another option to perform indirect current control via cascaded HBs is also possible
but adds high THD in the DC bus voltage VDC−h since each HB operates as an independent
DC-DC (synchronous buck) converter. The resulting voltage level in the intermediate DC
bus needs a certain settling time before the next level can be added. For a grid-following
operation, all six levels must be completed in half-cycle time (≤10 ms). This means that the
settling time should be less than 1.6 ms per level for six HBs. Such a requirement creates an
underdamped response with high overshoot in each level of VDC−h. As a result, the THD
in the AC voltage exceeds the allowable limit by the grid codes.

Modified Cascaded MLC

A modified cascaded MLC (MCMLC) is reported in [66] that allows a wide operating
range, smaller THD, and higher efficiency for grid-connected mode. Figure 7a reflects
the schematic of MCMLC. In this configuration, there is an auxiliary bidirectional switch
Saux−1 between two cascaded FBs. The auxiliary switch allows the modules to be connected
in both series and parallel configuration. When Saux−1 is turned off/bypassed, MCMLC
functions as a normal CHB (as in Figure 5) connecting the modules via FBs (cascaded mode).
When Saux−1 is turned on, the two modules are connected in parallel (HB mode), sharing
the same negative DC bus. The parallel connection allows the higher current injection into
the grid using the same switches.
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Figure 7. Schematic diagram of reduced-switch MLC for (a) modified cascaded CHB and (b) packed
U-cell configuration.

Despite a wide operational range, the MCMLC configuration has a few downsides.
Firstly, the transformation between cascaded and HB mode requires the interruption of
the inductor current, which can lead to voltage spikes across the semiconductor switches.
To avoid these spikes, the mode transition must be done at zero-crossing points of the
reference-modulating signal (zero voltage, zero current), which is only possible if the
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voltage and current are in-phase. This means that the MCMLC cannot control the reactive
power and must operate at a unity power factor.

Secondly, the zero-voltage–zero-current transition cannot be achieved in a standalone
system for stationary applications, as the loads are mostly inductive/nonlinear. As
a consequence, the MCMLC can only function either in CHB or HB mode for off-grid
applications.

Packed U-Cell MLC

The packed U-cell (PUC) topology is proposed in [75,76] as a reduced-component
alternative to the CHB, NPC, and FC configurations. It consists of six semiconductor
switches and two isolated battery modules, as shown in Figure 7b. A PUC MLC generates
seven-level AC voltage using six switches. The upper switches, S11 and S12, operate at the
fundamental frequency of the AC voltage. The lower four switches operate at a relatively
higher frequency and lower harmonics, thus reducing the switching losses of the PUC
MLC. The left set of switches (S11, S12, S61) operates in a manner complementary to the
right set of switches (S12, S22, S62).

The PUC topology is capable of operating in both grid-connected and standalone
applications [51]. It can provide an uninterrupted power supply (UPS) for a wide range
of changes in the load and module voltage. However, a major limitation of PUC topology
is the voltage dependency of both modules. The OCV for module−2 (Vb2) needs to be
regulated at one-third of the magnitude of Vb1. Such restrictions reduce the modularity of
a PUC MLC.

2.3.3. Modular MLC

The generic implementation of a single-phase modular MLC (MMLC) comprises an
AC port, a DC port, and the converting structure, consisting of two identical arms that are
connected via two uncoupled inductors. Each arm consists of N submodules (SMs). Each
SM constitutes the fundamental building block of the MMLC. The number of SMs per arm
indicates the levels in the output AC voltage. Figure 8a reflects the single-phase MMLC
schematic for the reference case with six battery modules. As shown in Figure 8a, there are
six SMs. Each SM is interfaced with a single-battery module.

In the literature, numerous configurations are reported for SMs [4,78–82]. Two of the
most well-known topologies that are widely used in MMLCs are HB and FB configura-
tions [4]. As shown in Figure 8c, HB is relatively simple and cost effective but faces many
limitations. It cannot stop the DC fault current in the converting structure. Due to its four
switches, it can only produce two voltage levels: Vb with S1 ON, S2 OFF and 0 with S1
OFF, S2 ON. This means that the SMs can only be bypassed in the case of a short circuit but
cannot stop the DC fault current. The FB configuration shown in Figure 8b can counter this
issue, as it generates three levels: Vb, 0, and −Vb. Due to an extra level, −Vb, FB can offer
high impedance and effectively block the DC fault current.

Besides HB and FB topologies, SMs can also use many configurations from a family of
two-port or multiport MLC topologies, as reflected in Figure 2. Consequently, SMs will
feature the same pros and cons associated with these topologies, as reported in [78].

Recently, [4] reported a compact, low-volume SM topology that uses stacked switched
capacitors (SSC) acting as an energy-storage buffer. Figure 8d reflects the SSC configuration,
where C1 and C2 make the energy buffer in conjunction with the battery module Vb.
Compared to the HB SM configuration, it can decrease the total volume of SM by more
than 40%.

To increase the levels in the SM voltage, cross-connected (CS) SM topology is reported
in [83]. Figure 8e reflects the CSSM configuration, where two switches are used to connect
back-to-back half-bridge SMs. This configuration has the advantage, as it tolerates the DC
fault current by turning off the crossed switches.
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Figure 8. (a) Schematic diagram of a modular MLC in a single-phase system. Various configu-
ration of SM, including (b) FB, (c) HB, (d) stacked switched capacitors, and (e) cross-connected
SM configuration.

Similarly, switched-capacitor (SC) SMs and composite three-level SMs (CSMs) are
reported in [84,85], respectively. The SCSM can ride through a DC-link short circuit by
turning off all the active switches, whereas the CSM can address the DC fault current
together with unbalanced charging of the switched capacitors.

2.3.4. Hybrid MLC

Researchers have proposed the concept of hybrid MLC to combine two or more MLC
topologies to achieve higher voltage levels. However, not all the hybrid topologies in
the literature [86,87] are relevant for battery-module integration due to the constraint of
bidirectional power flow and module-balancing requirements, as explained in Section 2.2.1.
This includes the hybrid topology, where the NPC and FC are merged through a coupled in-
ductor [87] and the nine-level T-Type NPC and FCH-bridge configurations reported in [86].

An interesting asymmetric cascaded hybrid MLC configuration (ACHHB) is intro-
duced in [88], where several HBs are cascaded with one FB, as shown in Figure 9a. The
DC-link voltage of HBs can be kept equal or follow a binary sequence, keeping the DC
source of FB constant. ACHHB can generate up to 13 levels with five HBs and one FB unit,
compared to the six FB units required for CHB topology, and considerably improves THD
in the output voltage. If the DC voltage of HB units vary in binary or trinary fashion, the
number of levels in AC voltage can be much higher [88].
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Figure 9. Schematic diagram of a hybrid MLC for (a) asymmetric cascaded configuration and
(b) ANPC-CHB configuration.

Figure 9b depicts a hybrid ANPC structure with CHB topology. The purpose of
introducing CHB units is to increase the number of levels without any variation in overall
power. The CHB units act as active power filters to enhance the quality of the AC voltage.
Similar to [88], another modular half- and full-bridge hybrid (MHFH) topology is reported
in [89], which offers extra levels and can be extended in a cascaded manner. However, due
to the presence of two unidirectional switches, this topology cannot charge all the modules
simultaneously.

3. Topological Comparison

Table 3 presents a summary of the reviewed two-port and multiport MLC topolo-
gies for stationary BESSs. The type of topology and the reporting publication are in-
cluded for better understanding. For multiport MLCs, the base case of six modules is
considered as a reference for each topology. Based on the active-balancing principle
in Section 2.2.1, seven state-of-the-art multiport MLC topologies that can perform ac-
tive balancing among the battery modules were shortlisted. These topologies include
(i) symmetric CHB [62,63], (ii) asymmetric CHB [64,65,67,88], (iii) RCHB [35,36,38,66–76],
(iv) MCMLC [4,79,85], (v) HB/FB MLC [81], and (vi) ACHHB [90]. The passive-element
count in Table 3 also includes the filter inductor for a grid interface.

Table 3. Comparison of core technical features among various MLC topologies.

Topology Class Ref Structure
Switch
(Diode)
Count

Passive
Element
(Count)

AC
Mode

Active
Balancing AC Levels Merits/Demerits

NPC
MLC with
two port
interface

[41–43] Traditional 8(6) C(4) L(1) *G”, *O NA 5

Bipolar DC-bus
compatible/uneven
switch utilization,
lacks isolation

Flying
capacitor [46] Traditional 8(0) C(6) L(1) *G”, *O NA 5

Better standalone and
high frequency
operation/high
implementation cost
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Table 3. Cont.

Topology Class Ref Structure
Switch
(Diode)
Count

Passive
Element
(Count)

AC
Mode

Active
Balancing AC Levels Merits/Demerits

CT-MLC

MLC with
two port
interface

[45,47] Traditional 10/8 C(4) L(1) *G, *O NA 9
More levels, better
fault tolerance/high
switch count

HBFC [48] Hybrid 14/14 C(2) L(1) *G”, *O NA 13 Higher levels, modu-
lar/unidirectional

SC-HB [48] Hybrid 10/11 C(1) L(1) *G” NA 13
Higher levels,
modular,
unidirectional

G- MLC [48] Hybrid 8/8 C(3) L(1) *G”, *O NA 11 Scalable, high-power
density

FC-ANPC [49] Hybrid 12/12 C(4) L(1) “G” NA 11 Higher
levels/unidirectional

Symmetric
CHB

MLC with
multi-port
interface

[62,63] Cascaded H
bridge 24/24 L(1) *G”, *O Module

level 13

Higher efficiency, low
THD, faster module
balancing, supports
redundant operation

Asymmetric
CHB [65,67,88] Cascaded H

bridge 24/24 L(1) *G”, *O
module
voltage

restriction
>30

Higher levels in AC
voltage/large number
of cells in module.
Uneven steps in the
AC voltage.

RCHB [36,38,66–
76]

Reduced
Switch 16/16 C(1) L(1) *O Module

level 13

Higher efficiency, Low
THD, modulation
limitation,
grid-connected mode
not possible

MCMLC [4,79,85] Reduced
Switch 13/17 L(1) *G”, *O Module

level 13
Wide operational
range/voltage spikes
on mode transition

PUCMLC [74] Reduced
Switch 6/6 C(1) L(1) *G”, *O NA 7

Modular/voltage
dependency of
battery modules

HB/FB [4] Modular
MLC 12/12 C(2) L(3) *G”, *O Module

level 13
Modular/fault-
current blocking
limitation for HB

SSC [84] Modular
MLC 30/30 C(12) L(3) *G”, *O Module

level 13 Low volume /high
switch account

CCSM [83] Modular
MLC 12/12 C(1) L(1) *G”, *O NA 13

Modular/voltage
dependency of
battery modules

ACHHB [87] Hybrid 18/18 C(1) L(1) *G”, *O Module
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*G” (only grid injection possible), *G (gird bidirectional), *O (Off grid).

It can be seen that except for PUCMLC, all multiport MLC topologies can generate
13 levels in the AC voltage. Another exception is the asymmetric-CHB topology, which can
generate more than 30 levels due to the asymmetric-voltage profile of the battery modules.
However, this large number of levels in AC voltage remains uneven and the resulting THD
in the fundamental AC voltage is higher than the limit permitted by the grid codes.

Table 4 highlights the comparative summary of seven multiport MLC topologies
reported in [4,35,36,38,62–76,79,81,85,88,90] for different applications. The topologies are
divided into three performance categories.

(i) Appropriate with no operational limitation;
(ii) Possible but not efficient due to high switch count, lack of modularity, or high THD in

the AC voltage;
(iii) Not suitable at all due to functional limitations.
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3.1. Off-Grid/Standalone Operation 
Comparing all potential topologies from (i) to (vi), it is clear that the RCHB topology 

holds the advantage due to having the lowest number of semiconductor switches (16) and 
passive components (1). It can control the discharging of various battery modules inde-
pendently, reach any number of cascaded HBs/voltage levels, and allow redundant oper-
ation. In addition, RHCB has good fault tolerance, as it can bypass the faulty module with-
out affecting the performance of running modules, thus considerably improving the reli-
ability of the system. Another feature of RCHB and ACHHB topologies is the DC mi-
crogrid support. The intermediate multistep DC link can be used to feed an independent 
load or a DC microgrid. 

3.2. On-Grid Operation 
Unlike off-grid mode, RHCB lacks the current-control mode due to the synchronous 

operation of the front-end FB. As a result, it can only offtake power (uncontrolled and 
non-sinusoidal current) from the grid but cannot inject the power into the grid. The mod-
ular MLC topologies (MCMLC, HB, FB) can perform both offtake and injection but suffer 
from high passive-component counts, as they require two inductors in each arm. 

ACHHB works on the same operating principle as RHCB and therefore lacks the 
ability to inject power into the grid.  

SCHB [62,63] and ACHB [64,65,67,88] can perform both offtake and injection with no 
operational limitation. However, ACHB entails a large string of cells in each module (>30), 
which leads to large and uneven steps in the AC voltage, ultimately resulting in high THD 
exceeding the grid codes.  

Both SCHB and ACHB topologies hold the advantage of grid-connected applications, 
including AC-fault ride-through, power quality, and frequency balancing, but are not the 
best candidates for the standalone system due to their large footprint (i.e., high switch 
count). However, unlike RHCB, such limitations do not impede the functional ability of 
SCHB/ACHB to feed a standalone load. On the other hand, the reduced-switch topologies 
RHCB [35,36,38,66–76] and ACHHB [90] are optimally appropriate for standalone systems 
but face absolute limitations when it comes to the grid injection.  

In a nutshell, it can be deduced that there is no single universal topology that can be 
considered optimal for both grid-connected and standalone operation; however, SCHB 
[62,63] can perform reasonably well for dual mode of operation. 
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3.1. Off-Grid/Standalone Operation 
Comparing all potential topologies from (i) to (vi), it is clear that the RCHB topology 

holds the advantage due to having the lowest number of semiconductor switches (16) and 
passive components (1). It can control the discharging of various battery modules inde-
pendently, reach any number of cascaded HBs/voltage levels, and allow redundant oper-
ation. In addition, RHCB has good fault tolerance, as it can bypass the faulty module with-
out affecting the performance of running modules, thus considerably improving the reli-
ability of the system. Another feature of RCHB and ACHHB topologies is the DC mi-
crogrid support. The intermediate multistep DC link can be used to feed an independent 
load or a DC microgrid. 

3.2. On-Grid Operation 
Unlike off-grid mode, RHCB lacks the current-control mode due to the synchronous 

operation of the front-end FB. As a result, it can only offtake power (uncontrolled and 
non-sinusoidal current) from the grid but cannot inject the power into the grid. The mod-
ular MLC topologies (MCMLC, HB, FB) can perform both offtake and injection but suffer 
from high passive-component counts, as they require two inductors in each arm. 

ACHHB works on the same operating principle as RHCB and therefore lacks the 
ability to inject power into the grid.  

SCHB [62,63] and ACHB [64,65,67,88] can perform both offtake and injection with no 
operational limitation. However, ACHB entails a large string of cells in each module (>30), 
which leads to large and uneven steps in the AC voltage, ultimately resulting in high THD 
exceeding the grid codes.  

Both SCHB and ACHB topologies hold the advantage of grid-connected applications, 
including AC-fault ride-through, power quality, and frequency balancing, but are not the 
best candidates for the standalone system due to their large footprint (i.e., high switch 
count). However, unlike RHCB, such limitations do not impede the functional ability of 
SCHB/ACHB to feed a standalone load. On the other hand, the reduced-switch topologies 
RHCB [35,36,38,66–76] and ACHHB [90] are optimally appropriate for standalone systems 
but face absolute limitations when it comes to the grid injection.  

In a nutshell, it can be deduced that there is no single universal topology that can be 
considered optimal for both grid-connected and standalone operation; however, SCHB 
[62,63] can perform reasonably well for dual mode of operation. 
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3.1. Off-Grid/Standalone Operation 
Comparing all potential topologies from (i) to (vi), it is clear that the RCHB topology 

holds the advantage due to having the lowest number of semiconductor switches (16) and 
passive components (1). It can control the discharging of various battery modules inde-
pendently, reach any number of cascaded HBs/voltage levels, and allow redundant oper-
ation. In addition, RHCB has good fault tolerance, as it can bypass the faulty module with-
out affecting the performance of running modules, thus considerably improving the reli-
ability of the system. Another feature of RCHB and ACHHB topologies is the DC mi-
crogrid support. The intermediate multistep DC link can be used to feed an independent 
load or a DC microgrid. 

3.2. On-Grid Operation 
Unlike off-grid mode, RHCB lacks the current-control mode due to the synchronous 

operation of the front-end FB. As a result, it can only offtake power (uncontrolled and 
non-sinusoidal current) from the grid but cannot inject the power into the grid. The mod-
ular MLC topologies (MCMLC, HB, FB) can perform both offtake and injection but suffer 
from high passive-component counts, as they require two inductors in each arm. 

ACHHB works on the same operating principle as RHCB and therefore lacks the 
ability to inject power into the grid.  

SCHB [62,63] and ACHB [64,65,67,88] can perform both offtake and injection with no 
operational limitation. However, ACHB entails a large string of cells in each module (>30), 
which leads to large and uneven steps in the AC voltage, ultimately resulting in high THD 
exceeding the grid codes.  

Both SCHB and ACHB topologies hold the advantage of grid-connected applications, 
including AC-fault ride-through, power quality, and frequency balancing, but are not the 
best candidates for the standalone system due to their large footprint (i.e., high switch 
count). However, unlike RHCB, such limitations do not impede the functional ability of 
SCHB/ACHB to feed a standalone load. On the other hand, the reduced-switch topologies 
RHCB [35,36,38,66–76] and ACHHB [90] are optimally appropriate for standalone systems 
but face absolute limitations when it comes to the grid injection.  

In a nutshell, it can be deduced that there is no single universal topology that can be 
considered optimal for both grid-connected and standalone operation; however, SCHB 
[62,63] can perform reasonably well for dual mode of operation. 
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3.1. Off-Grid/Standalone Operation 
Comparing all potential topologies from (i) to (vi), it is clear that the RCHB topology 

holds the advantage due to having the lowest number of semiconductor switches (16) and 
passive components (1). It can control the discharging of various battery modules inde-
pendently, reach any number of cascaded HBs/voltage levels, and allow redundant oper-
ation. In addition, RHCB has good fault tolerance, as it can bypass the faulty module with-
out affecting the performance of running modules, thus considerably improving the reli-
ability of the system. Another feature of RCHB and ACHHB topologies is the DC mi-
crogrid support. The intermediate multistep DC link can be used to feed an independent 
load or a DC microgrid. 

3.2. On-Grid Operation 
Unlike off-grid mode, RHCB lacks the current-control mode due to the synchronous 

operation of the front-end FB. As a result, it can only offtake power (uncontrolled and 
non-sinusoidal current) from the grid but cannot inject the power into the grid. The mod-
ular MLC topologies (MCMLC, HB, FB) can perform both offtake and injection but suffer 
from high passive-component counts, as they require two inductors in each arm. 

ACHHB works on the same operating principle as RHCB and therefore lacks the 
ability to inject power into the grid.  

SCHB [62,63] and ACHB [64,65,67,88] can perform both offtake and injection with no 
operational limitation. However, ACHB entails a large string of cells in each module (>30), 
which leads to large and uneven steps in the AC voltage, ultimately resulting in high THD 
exceeding the grid codes.  

Both SCHB and ACHB topologies hold the advantage of grid-connected applications, 
including AC-fault ride-through, power quality, and frequency balancing, but are not the 
best candidates for the standalone system due to their large footprint (i.e., high switch 
count). However, unlike RHCB, such limitations do not impede the functional ability of 
SCHB/ACHB to feed a standalone load. On the other hand, the reduced-switch topologies 
RHCB [35,36,38,66–76] and ACHHB [90] are optimally appropriate for standalone systems 
but face absolute limitations when it comes to the grid injection.  

In a nutshell, it can be deduced that there is no single universal topology that can be 
considered optimal for both grid-connected and standalone operation; however, SCHB 
[62,63] can perform reasonably well for dual mode of operation. 
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holds the advantage due to having the lowest number of semiconductor switches (16) and 
passive components (1). It can control the discharging of various battery modules inde-
pendently, reach any number of cascaded HBs/voltage levels, and allow redundant oper-
ation. In addition, RHCB has good fault tolerance, as it can bypass the faulty module with-
out affecting the performance of running modules, thus considerably improving the reli-
ability of the system. Another feature of RCHB and ACHHB topologies is the DC mi-
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non-sinusoidal current) from the grid but cannot inject the power into the grid. The mod-
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from high passive-component counts, as they require two inductors in each arm. 

ACHHB works on the same operating principle as RHCB and therefore lacks the 
ability to inject power into the grid.  

SCHB [62,63] and ACHB [64,65,67,88] can perform both offtake and injection with no 
operational limitation. However, ACHB entails a large string of cells in each module (>30), 
which leads to large and uneven steps in the AC voltage, ultimately resulting in high THD 
exceeding the grid codes.  

Both SCHB and ACHB topologies hold the advantage of grid-connected applications, 
including AC-fault ride-through, power quality, and frequency balancing, but are not the 
best candidates for the standalone system due to their large footprint (i.e., high switch 
count). However, unlike RHCB, such limitations do not impede the functional ability of 
SCHB/ACHB to feed a standalone load. On the other hand, the reduced-switch topologies 
RHCB [35,36,38,66–76] and ACHHB [90] are optimally appropriate for standalone systems 
but face absolute limitations when it comes to the grid injection.  

In a nutshell, it can be deduced that there is no single universal topology that can be 
considered optimal for both grid-connected and standalone operation; however, SCHB 
[62,63] can perform reasonably well for dual mode of operation. 
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3.1. Off-Grid/Standalone Operation 
Comparing all potential topologies from (i) to (vi), it is clear that the RCHB topology 

holds the advantage due to having the lowest number of semiconductor switches (16) and 
passive components (1). It can control the discharging of various battery modules inde-
pendently, reach any number of cascaded HBs/voltage levels, and allow redundant oper-
ation. In addition, RHCB has good fault tolerance, as it can bypass the faulty module with-
out affecting the performance of running modules, thus considerably improving the reli-
ability of the system. Another feature of RCHB and ACHHB topologies is the DC mi-
crogrid support. The intermediate multistep DC link can be used to feed an independent 
load or a DC microgrid. 

3.2. On-Grid Operation 
Unlike off-grid mode, RHCB lacks the current-control mode due to the synchronous 

operation of the front-end FB. As a result, it can only offtake power (uncontrolled and 
non-sinusoidal current) from the grid but cannot inject the power into the grid. The mod-
ular MLC topologies (MCMLC, HB, FB) can perform both offtake and injection but suffer 
from high passive-component counts, as they require two inductors in each arm. 

ACHHB works on the same operating principle as RHCB and therefore lacks the 
ability to inject power into the grid.  

SCHB [62,63] and ACHB [64,65,67,88] can perform both offtake and injection with no 
operational limitation. However, ACHB entails a large string of cells in each module (>30), 
which leads to large and uneven steps in the AC voltage, ultimately resulting in high THD 
exceeding the grid codes.  

Both SCHB and ACHB topologies hold the advantage of grid-connected applications, 
including AC-fault ride-through, power quality, and frequency balancing, but are not the 
best candidates for the standalone system due to their large footprint (i.e., high switch 
count). However, unlike RHCB, such limitations do not impede the functional ability of 
SCHB/ACHB to feed a standalone load. On the other hand, the reduced-switch topologies 
RHCB [35,36,38,66–76] and ACHHB [90] are optimally appropriate for standalone systems 
but face absolute limitations when it comes to the grid injection.  

In a nutshell, it can be deduced that there is no single universal topology that can be 
considered optimal for both grid-connected and standalone operation; however, SCHB 
[62,63] can perform reasonably well for dual mode of operation. 
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3.1. Off-Grid/Standalone Operation 
Comparing all potential topologies from (i) to (vi), it is clear that the RCHB topology 

holds the advantage due to having the lowest number of semiconductor switches (16) and 
passive components (1). It can control the discharging of various battery modules inde-
pendently, reach any number of cascaded HBs/voltage levels, and allow redundant oper-
ation. In addition, RHCB has good fault tolerance, as it can bypass the faulty module with-
out affecting the performance of running modules, thus considerably improving the reli-
ability of the system. Another feature of RCHB and ACHHB topologies is the DC mi-
crogrid support. The intermediate multistep DC link can be used to feed an independent 
load or a DC microgrid. 

3.2. On-Grid Operation 
Unlike off-grid mode, RHCB lacks the current-control mode due to the synchronous 

operation of the front-end FB. As a result, it can only offtake power (uncontrolled and 
non-sinusoidal current) from the grid but cannot inject the power into the grid. The mod-
ular MLC topologies (MCMLC, HB, FB) can perform both offtake and injection but suffer 
from high passive-component counts, as they require two inductors in each arm. 

ACHHB works on the same operating principle as RHCB and therefore lacks the 
ability to inject power into the grid.  

SCHB [62,63] and ACHB [64,65,67,88] can perform both offtake and injection with no 
operational limitation. However, ACHB entails a large string of cells in each module (>30), 
which leads to large and uneven steps in the AC voltage, ultimately resulting in high THD 
exceeding the grid codes.  

Both SCHB and ACHB topologies hold the advantage of grid-connected applications, 
including AC-fault ride-through, power quality, and frequency balancing, but are not the 
best candidates for the standalone system due to their large footprint (i.e., high switch 
count). However, unlike RHCB, such limitations do not impede the functional ability of 
SCHB/ACHB to feed a standalone load. On the other hand, the reduced-switch topologies 
RHCB [35,36,38,66–76] and ACHHB [90] are optimally appropriate for standalone systems 
but face absolute limitations when it comes to the grid injection.  

In a nutshell, it can be deduced that there is no single universal topology that can be 
considered optimal for both grid-connected and standalone operation; however, SCHB 
[62,63] can perform reasonably well for dual mode of operation. 
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3.1. Off-Grid/Standalone Operation 
Comparing all potential topologies from (i) to (vi), it is clear that the RCHB topology 

holds the advantage due to having the lowest number of semiconductor switches (16) and 
passive components (1). It can control the discharging of various battery modules inde-
pendently, reach any number of cascaded HBs/voltage levels, and allow redundant oper-
ation. In addition, RHCB has good fault tolerance, as it can bypass the faulty module with-
out affecting the performance of running modules, thus considerably improving the reli-
ability of the system. Another feature of RCHB and ACHHB topologies is the DC mi-
crogrid support. The intermediate multistep DC link can be used to feed an independent 
load or a DC microgrid. 

3.2. On-Grid Operation 
Unlike off-grid mode, RHCB lacks the current-control mode due to the synchronous 

operation of the front-end FB. As a result, it can only offtake power (uncontrolled and 
non-sinusoidal current) from the grid but cannot inject the power into the grid. The mod-
ular MLC topologies (MCMLC, HB, FB) can perform both offtake and injection but suffer 
from high passive-component counts, as they require two inductors in each arm. 

ACHHB works on the same operating principle as RHCB and therefore lacks the 
ability to inject power into the grid.  

SCHB [62,63] and ACHB [64,65,67,88] can perform both offtake and injection with no 
operational limitation. However, ACHB entails a large string of cells in each module (>30), 
which leads to large and uneven steps in the AC voltage, ultimately resulting in high THD 
exceeding the grid codes.  

Both SCHB and ACHB topologies hold the advantage of grid-connected applications, 
including AC-fault ride-through, power quality, and frequency balancing, but are not the 
best candidates for the standalone system due to their large footprint (i.e., high switch 
count). However, unlike RHCB, such limitations do not impede the functional ability of 
SCHB/ACHB to feed a standalone load. On the other hand, the reduced-switch topologies 
RHCB [35,36,38,66–76] and ACHHB [90] are optimally appropriate for standalone systems 
but face absolute limitations when it comes to the grid injection.  

In a nutshell, it can be deduced that there is no single universal topology that can be 
considered optimal for both grid-connected and standalone operation; however, SCHB 
[62,63] can perform reasonably well for dual mode of operation. 
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3.1. Off-Grid/Standalone Operation 
Comparing all potential topologies from (i) to (vi), it is clear that the RCHB topology 

holds the advantage due to having the lowest number of semiconductor switches (16) and 
passive components (1). It can control the discharging of various battery modules inde-
pendently, reach any number of cascaded HBs/voltage levels, and allow redundant oper-
ation. In addition, RHCB has good fault tolerance, as it can bypass the faulty module with-
out affecting the performance of running modules, thus considerably improving the reli-
ability of the system. Another feature of RCHB and ACHHB topologies is the DC mi-
crogrid support. The intermediate multistep DC link can be used to feed an independent 
load or a DC microgrid. 

3.2. On-Grid Operation 
Unlike off-grid mode, RHCB lacks the current-control mode due to the synchronous 

operation of the front-end FB. As a result, it can only offtake power (uncontrolled and 
non-sinusoidal current) from the grid but cannot inject the power into the grid. The mod-
ular MLC topologies (MCMLC, HB, FB) can perform both offtake and injection but suffer 
from high passive-component counts, as they require two inductors in each arm. 

ACHHB works on the same operating principle as RHCB and therefore lacks the 
ability to inject power into the grid.  

SCHB [62,63] and ACHB [64,65,67,88] can perform both offtake and injection with no 
operational limitation. However, ACHB entails a large string of cells in each module (>30), 
which leads to large and uneven steps in the AC voltage, ultimately resulting in high THD 
exceeding the grid codes.  

Both SCHB and ACHB topologies hold the advantage of grid-connected applications, 
including AC-fault ride-through, power quality, and frequency balancing, but are not the 
best candidates for the standalone system due to their large footprint (i.e., high switch 
count). However, unlike RHCB, such limitations do not impede the functional ability of 
SCHB/ACHB to feed a standalone load. On the other hand, the reduced-switch topologies 
RHCB [35,36,38,66–76] and ACHHB [90] are optimally appropriate for standalone systems 
but face absolute limitations when it comes to the grid injection.  

In a nutshell, it can be deduced that there is no single universal topology that can be 
considered optimal for both grid-connected and standalone operation; however, SCHB 
[62,63] can perform reasonably well for dual mode of operation. 
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reliability of the system. Another feature of RCHB and ACHHB topologies is the DC
microgrid support. The intermediate multistep DC link can be used to feed an independent
load or a DC microgrid.

3.2. On-Grid Operation

Unlike off-grid mode, RHCB lacks the current-control mode due to the synchronous
operation of the front-end FB. As a result, it can only offtake power (uncontrolled and non-
sinusoidal current) from the grid but cannot inject the power into the grid. The modular
MLC topologies (MCMLC, HB, FB) can perform both offtake and injection but suffer from
high passive-component counts, as they require two inductors in each arm.

ACHHB works on the same operating principle as RHCB and therefore lacks the
ability to inject power into the grid.

SCHB [62,63] and ACHB [64,65,67,88] can perform both offtake and injection with no
operational limitation. However, ACHB entails a large string of cells in each module (>30),
which leads to large and uneven steps in the AC voltage, ultimately resulting in high THD
exceeding the grid codes.

Both SCHB and ACHB topologies hold the advantage of grid-connected applications,
including AC-fault ride-through, power quality, and frequency balancing, but are not the
best candidates for the standalone system due to their large footprint (i.e., high switch
count). However, unlike RHCB, such limitations do not impede the functional ability of
SCHB/ACHB to feed a standalone load. On the other hand, the reduced-switch topologies
RHCB [35,36,38,66–76] and ACHHB [90] are optimally appropriate for standalone systems
but face absolute limitations when it comes to the grid injection.

In a nutshell, it can be deduced that there is no single universal topology that can be
considered optimal for both grid-connected and standalone operation; however, SCHB [62,63]
can perform reasonably well for dual mode of operation.

4. Modulation Strategies of Multiport MLCs
4.1. Basic Principle

The primary role of an MLC modulation strategy is to enhance the output voltage
quality so that it stays close to a pure sinusoidal waveform, as explained in [36,91–96]. For
three-phase systems, there can be a circulating current among the legs of an MLC, which
needs to be suppressed by the modulation strategy [36]. The switching frequency of the
semiconductor switches should be minimized to reduce the switching losses [97,98]. Addi-
tional requirements from the distribution system operator (DSO) mandate a grid-connected
MLC to comply with the grid codes [99,100]. These requirements include injecting pure
sinusoidal current at unity power factor, active and reactive power control, DC-current
suppression, total harmonic distortion in current below 5% during grid-injection mode,
and fault-ride-through capability for various grid faults and defects in the battery modules.

The modulation technique needs to ensure that the operating principle of active
balancing is not violated while also maintaining good-quality AC voltage. This means the
injection angle needs to be updated during zero transition of the AC voltage.

Figure 10 depicts the overview of the potential modulation techniques for a multiport
MLC in compliance with active balancing among the battery modules.

4.2. Classification of Modulation Strategies

The modulation strategies can be broadly classified into fixed- and variable-frequency
modulation, as reported in [36]. The fixed-frequency modulation can be further divided into
multicarrier- and fundamental-frequency modulation. Multicarrier PWM is subdivided
into level-shifted carrier (LSC)- and phase-shifted carrier (PSC)-based PWM methods,
whereas in fundamental-frequency modulation, the underlying methods include selective
harmonic elimination (SHE)-, nearest-level control (NLC)-, and optimized control angle
(OCA)-based PWM schemes.
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The variable-frequency PWM methods include hysteresis and hybrid PWM. They
provide a faster dynamic response compared to fixed-frequency-based PWM techniques
but are not widely used due to high switching losses.

4.2.1. Multiple-Carrier-Based PWM

In LSC, multiple-carrier signals are generated, which are shifted vertically in the
modulation space, as explained in [101–104]. Typically, the carrier signals have a frequency
that is 20 to 30 times the fundamental frequency of the AC output voltage. Each carrier
signal corresponds to two switches of one leg.

For the FB topology shown in Figure 4, the two carrier signals are used. C1 corresponds
to S11, and S21 whereas C2 correspond to S12 and S22. For the HB topology there is a single
carrier signal C representing S1 and S2. The total number of carrier signals depends on
the number of cascaded FB and HB structures (12 for the CHB topology in Figures 5 and 6
for the RHCB topology in Figure 6). A single modulating reference signal coming from
higher-level control (explained in the next subsection) is compared with the multiple-carrier
signals to generate PWM for the switches.

Figure 11 shows various sub-techniques for LSC-based PWM schemes. A single cycle
of the modulating reference signal is considered for better illustration. The x-axis shows
the time in seconds, whereas the y-axis reflects different levels of carrier amplitude.
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In an equal-phase (EP) PWM scheme [105], the multiple-carrier signals are shifted
vertically with a DC offset equal to the carrier magnitude symmetrically above and below
the mean value of the modulating reference signal, as shown in Figure 11a.

In an opposite-phase (OP) PWM scheme [106], the carrier signals are shifted similar
to EP-PWM but with the complementary phases. The carrier waves (C1, C2) above the
mean value of the modulating reference are out of phase to C1 lying below, as shown
in Figure 11b.

The DC offset corresponds to mn and therefore directly controls the switch-in time of
each module. A lower value of DC offset indicates more turn-on and less turn-off time, and
vice versa.

During standalone or grid-injection mode, the battery modules with higher OCV
or SOC are placed near the mean value of the modulating reference signal, whereas the
modules with lower OCV or SOC occupy the top layer. Figure 10c reflects the concept
reported in [70] where the carrier signals are ordered such that C1 > C2 > C3. This means
that the battery modules at the top layer (C1) receive less switch-on time, and therefore less
energy is consumed from module 1 compared to module 2 and module 3.

To reduce the switching transients, the carrier signals are reordered every half cycle or
complete cycle when the modulating wave goes through the zero crossing. The reordered
carrier signal becomes effective during the next cycle.

Comparing Figure 11a–c, it can be seen that the modulating reference signal (Vmr) for
HB has a frequency two times higher than that of FB, so the carrier signals can be re-ordered
twice in each cycle of the AC output voltage.

In the PSC-based PWM scheme [106], all carrier signals have the same magnitude and
frequency as the modulating reference signal but are phase shifted by 180o

n (where n is the
number of modules) in each period of the modulating reference signal.

Unlike amplitude-based carrier-shifting techniques, each carrier signal in PSC occupies
the same modulation space, as shown in Figure 11d. This allows PSC to achieve a linear
modulation range for all switches and better quality of the output voltage. However, it
cannot regulate the switch-in and -out duration of different battery modules due to the
fixed period, which means all battery modules supply the same energy at the end of each
switching period.

4.2.2. Fundamental Frequency-Based PWM

In this method, the switches are turned on once during each cycle of the fundamental
AC voltage. The turning on of each switch is governed by the switching angle, which
is calculated using various techniques. Prominent techniques include SHE-, NLC-, and
OCA-based PWM.

In the SHE-based PWM method, the undesired odd harmonic components and distor-
tion factor of the AC-voltage waveform is suppressed, as explained in [107,108]. This is
achieved by finding the complementary firing angles α1 and β1 using non-linear methods.

These complementary angles result in the switch turn-on times that correspond to a
pure sinusoidal waveform, as depicted in Figure 12b. The output AC-voltage waveform
can be expressed in Fourier series as follows:

VAC−out =
∞

∑
k=1,3,5,...

4VB
kπ
{cos (kα1) + cos (kα2) + . . . + cos(kα6)}sin(kwt) (15)

where k is the number of the undesired odd harmonics and VB is the module voltage.
The magnitude of the Fourier coefficients for the fundamental voltage VAC−1 (k = 1) and
maximum value VAC−1 can be expressed as follows:

V1 = 4VB
π {cos (α1) + cos (α2) + . . . + cos(α6)}

V1−max = n 4VB
π f or αi = 0

}
(16)



Energies 2023, 16, 4133 21 of 38

Energies 2023, 16, 4133 21 of 38 
 

 

In the PSC-based PWM scheme [106], all carrier signals have the same magnitude 
and frequency as the modulating reference signal but are phase shifted by 180 𝑛 (where 
n is the number of modules) in each period of the modulating reference signal.  

Unlike amplitude-based carrier-shifting techniques, each carrier signal in PSC occu-
pies the same modulation space, as shown in Figure 11d. This allows PSC to achieve a 
linear modulation range for all switches and better quality of the output voltage. How-
ever, it cannot regulate the switch-in and -out duration of different battery modules due 
to the fixed period, which means all battery modules supply the same energy at the end 
of each switching period. 

4.2.2. Fundamental Frequency-Based PWM 
In this method, the switches are turned on once during each cycle of the fundamental 

AC voltage. The turning on of each switch is governed by the switching angle, which is 
calculated using various techniques. Prominent techniques include SHE-, NLC-, and 
OCA-based PWM. 

In the SHE-based PWM method, the undesired odd harmonic components and dis-
tortion factor of the AC-voltage waveform is suppressed, as explained in [107,108]. This 
is achieved by finding the complementary firing angles 𝛼 and 𝛽  using non-linear meth-
ods.  

These complementary angles result in the switch turn-on times that correspond to a 
pure sinusoidal waveform, as depicted in Figure 12b. The output AC-voltage waveform 
can be expressed in Fourier series as follows: 

 
Figure 12. Various sub−techniques for LSC PWM scheme: (a) opposite−phase PWM for FB structure 
[106], (b) alternate opposite−phase PWM for FB structure [106], and (c) synthesized nine−level volt-
age waveform for SHE modulation [108]. 

𝑉 = 4𝑉𝑘𝜋 cos(𝑘𝛼 ) + cos(𝑘𝛼 ) + ⋯ + cos(𝑘𝛼 ) sin(𝑘𝑤𝑡), , ,...  (15)

where 𝑘 is the number of the undesired odd harmonics and 𝑉  is the module voltage. 
The magnitude of the Fourier coefficients for the fundamental voltage 𝑉  (𝑘 = 1) and 
maximum value 𝑉  can be expressed as follows: 𝑉 = 4𝑉𝜋 cos(𝛼 ) + cos(𝛼 ) + ⋯ + cos(𝛼 )𝑉 = 𝑛 4𝑉𝜋    𝑓𝑜𝑟 𝛼 = 0  (16)

The modulation index 𝑀  is then expressed as: 

Figure 12. Various sub−techniques for LSC PWM scheme: (a) opposite−phase PWM for FB
structure [106], (b) alternate opposite−phase PWM for FB structure [106], and (c) synthesized
nine−level voltage waveform for SHE modulation [108].

The modulation index MSHE is then expressed as:

MSHE =
πVAC−1

n4VB
(17)

To cancel the odd harmonics, the magnitude of the Fourier coefficients specific to odd
ones are set to zero, as shown below [108]:

21

∑
k=3,5,7,...

{cos (kα1) + cos (kα2) + . . . + cos(kα6)} = 0 (18)

From Equation (18), it can be seen that there are 10 nonlinear transcendental equations
that need to be solved using iterative methods such as the Newton–Raphson method [75]
to obtain the optimized value for switching angles.

Once the switching angles are obtained, the energy balance is achieved by alternately
reversing the angle assignment in pairs, as explained in [107,108] As a result, α1 = α6,
α2 = α4, and α4 = α5 after each period of the fundamental AC voltage. This allows the
energy balance to be maintained among the modules. To avoid solving nonlinear equations
in each AC voltage, the firing angles were calculated offline in [108] and stored in a look-up
table. SHE is applicable for both FB and HB configurations.

In the nearest-level control (NLC) method, a sinusoidal reference is compared with
the actual output AC voltage to select the nearest sinusoidal voltage level. NLC is com-
putationally less intensive compared to SHE, as it does not require nonlinear equations
to be solved. It also offers a better quality of output voltage and a smaller ripple in the
load current [109–111].

In optimal switching angle (OCA), the harmonics are minimized by calculating the
optimal value of the switching angle using nonlinear methods [36].

4.2.3. Variable-Frequency-Based PWM

In the underlying methods for this category, the current error signal and fixed-width
reference-hysteresis band are compared to generate the switching signals for MLC switches.
Refs. [112–114] explain different variable-frequency PWM strategies and assess the impact
of filter elements on network harmonics.

4.3. Comparative Analysis

All the fixed-frequency-based modulation techniques explained in Section 4.2 pro-
vide adequate performance from the power-quality perspective. However, when the
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active-balancing functionality is added, the fundamental-frequency-based PWM methods
reported in [107,108] suffer from computational complexity. For example, in the SHE
method, the offline calculation of injection angles reported in [108] maintains only the en-
ergy balance among the modules. This means that each module supplies the same kWh after
a definite time interval T. Therefore, it is effective only as long as all the battery modules
have same capacity, initial SOC, and discharge/charge rate (C). In the case of a battery pack
with different capacity modules, the energy-balancing approach forces the lower-capacity
modules to operate at higher C rates, resulting in much faster discharging/charging than
the rest of the battery modules.

To avoid this issue, the angle assignment needs to be updated during each switching
interval based on either the SOC or OCV of each module. As explained in Section 4.2.2,
when the angle-assignment time is combined with the time to solve the nonlinear equation
in each AC cycle, the computational complexity increases manifold.

The multi-carrier-based PWM methods have the advantage of simple calculation
but face other limitations; for example, all LSC techniques reported in [74,103,104] are
inherently nonlinear and unbalanced due to the fractional share of modulation space,
as shown in Figures 11 and 12. If the battery modules have fresh cells with the same
initial voltage/SOC, the LSC always makes the battery modules unbalanced first before
performing the active balancing.

The PSC scheme does not undergo this issue and continues the balanced operation
for an extended range. However, like SHE, the PSC method can only perform the energy
balance among modules and is therefore not effective if the modules are initially unbalanced
or do not have the same capacity.

5. High-Level Control
5.1. Main Objective

A robust high-level controller ensures that a good tracking of the active and reactive
current reference is achieved for grid-connected (current-control) mode [115,116]. In the
standalone (voltage-control) mode the controller must reduce the voltage transients, dv/dt,
semiconductor losses, and switching delays. A good estimation of semiconductor voltage
drop and compensation of switching delays is also critical to achieve an accurate reference
following on the AC side.

The controller must also maintain the system stability during active balancing, module
bypassing, or hot swapping. Additionally, it must perform a smooth transition from
grid-connected mode to standalone mode.

The output of a high-level controller is a sinusoidal modulating-reference signal that
drives the modulation block.

In grid-connected mode the high-level controller can also perform power-quality
conditioning, which includes current-harmonics suppression and reactive-power compen-
sation for nonlinear loads to enhance the grid power quality.

5.2. Classification of Higher-Level Control Strategies

Figure 13 provides a classification of various high-level control strategies that can be
used for multiport MLCs.

5.2.1. Synchronous Reference-Frame (SRF)-Based Control

In the sub types of SRF-based control methods, voltage-oriented control (VOC) is quite
common for grid-connected MLCs [117].

In VOC, all the synchronous quantities are first converted to the orthogonal α–β
stationary reference frame using the Park transformation and then to DC components in
a rotating dq reference frame using the Clark transformation [118,119]. Figure 14 shows the
block diagram of VOC control reported in [120] for a single-phase MLC.
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A single-phase phase-locked loop (PLL) is used to synchronize the rotating dq frame
with the angle (θ) of the fundamental grid voltage. For cascaded battery modules a single
current-control loop is used.

Two proportional-integral (PI) controllers are used to control the id (d-axis component
representing active power) and iq (q-axis component representing reactive power). The
output of the PI controllers is added to the feedforward signals for cross-coupling elimi-
nation. The output corresponds to Vre f−d and Vre f−q, which are the dq components of the
reference voltage. After the reverse Park transformation, the two orthogonal reference
output voltages Vre f−α and Vre f−β are obtained. Vre f−α is used as a modulating-input signal
for the modulation stage.

The direct current controller (DCC) is reported in [121] for m-level PV-fed MLCs
but can be applied to a BESS-fed MLC topology as well. It provides an accurate current
control in grid-connected mode and allows for robust performance under system-fault
conditions. Figure 15 depicts the controller reported in [122]. DCC uses a sinc filter as
reported in [122,123] along with the multiple second-order generalized integrators (multi-
SOGI) to filter the measured grid voltage and AC-side current. The output of the current
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controller can be used with the module-balancing algorithms, which select the switching
vector so as to minimize the distortion in the output voltage.
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5.2.2. Predictive Current Control (PCC)

PCC uses the discretized MLC-model behavior in the previous time instant to predict
the output at next time instant.

It makes multiple control-index predictions in each sampling interval and chooses the
one that leads to the minimum deviation between the desired output and the predicted
value. Generally, the control target is to track a pure sinusoidal AC reference in phase with
the grid voltage.

PCC is reported in [124–127], where forward Euler discretization is first used to obtain
the discrete-time dynamic model of the MLC. The tracking error of predicted-current values
is governed by cost function C, which can be expressed as follows:

Ck+1 = i∗k+1 − ik+1

∣∣∣i*k+1 − ik+1

∣∣∣2
2

(19)

where i∗k+1 is the desired value at k + 1 time instant, and |.|22 represents the quadratic
eucledian norm.

In PCC, the sampling time is kept small to hold the approximation of i∗k+1 = ik true.
The resulting actual current ik+1 at k + 1 time instant is the same as i∗k+1.

To avoid common-mode voltage generation for three-phase implementation, PCC
incorporates the uncertainty or mismatch between the actual and sampled filter parameters.
To reduce the calculation time for PCC, a fast-optimization algorithm based on sphere
decoding is reported in [126,127].

5.2.3. Non-Synchronous Reference-Frame (PR)-Based Control

In this method, the frame transformation does not take place. The actual and reference
current values are compared in a stationary reference frame and the difference is fed
to a proportional resonant (PR) controller [128,129]. The PR controller is tunned at the
fundamental frequency of the grid. In the case of harmonic suppression, multiple PR
controllers can be used. Each controller is tuned at a frequency that is an odd multiple of
the fundamental grid frequency. The output of the PR controller is the modulating reference
signal, which drives the modulator block.

PR-based controllers face higher tuning issues than PI-based controllers but offer high
speed, as they do not need frame transformation.

5.2.4. Nonlinear Control

Nonlinear controllers feature smaller amplitude variations and offer quick response
but face design challenges when load parameters are dynamic and change over time, such
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as off-grid systems. The sub-techniques in this category include sliding-mode control
(SMC), hysteresis controllers, and deadbeat controllers.

SMC is reported in [130,131] for cascaded three-phase dual-inverter systems and
cascaded H-bridge, respectively.

In SMC, first a sliding surface is defined using nonequality constraints such as common-
mode voltage reduction and cancellation of higher-order harmonics. Once the constraints
are defined, the control variable, which is usually the MLC output current, is squeezed
onto the sliding surface s(t), as expressed below:

s(t) = c1e(t) +
d
dt

e(t) (20)

where e(t) = Ire f − i(t) is the error signal obtained by comparing the reference and actual
MLC output current. Figure 16 reflects the schematic overview of the SMC with a low-pass
filter for a CHB MLC, as reported in [132]. The low-pass filter is used to prevent overshoot
and slipping around the sliding surface. To define the stability condition for the sliding
surface, the Lyapunov stability standard is used in [132] and is expressed below:

d
dt

e(t) = − ∈ sign(s)− ks−ω
R
L

i(t) +
..

i(t) (21)

where ∈> 0, sign(s) is the signum function, and k is the inequality constraint, which is
defined as follows:

k >

[
ω

R
L

i(t) +
..

i(t)
]

(22)
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Figure 16. Schematic representation of the sliding-mode control scheme with a low-pass filter,
reported in [130,131].

Another important nonlinear controller is a hysteresis controller. This is used in
applications where the requirements include fast transient response, unconditional stability,
and wide setpoint-tracking bandwidth [133].

In the hysteresis control method, the controlled parameter i(t) (MLC output current) is
made to follow the reference current by applying a suitable voltage at the MLC output. Each
voltage level corresponds to a single hysteresis limit. If i(t) exceeds the initial hysteresis
limit, the next (higher or lower) voltage level is selected to force i(t) again within the
specified limit. If i(t) remains out of bounds for all the voltages levels in one direction,
the process repeats with reverse polarity and stops only when a particular voltage level is
selected that reverses the direction of i(t).

One challenge for hysteresis controllers is to select the correct voltage level that keeps
the MLC output current within the desired band. Quite often, a single-band hysteresis
controller faces limitations in controlling the current. To solve this issue, a multiband
hysteresis-modulation technique is reported in [134,135] that uses multiple symmetrical
hysteresis bands to control the output current.

Figure 17 shows the multiband hysteresis controller reported in [134]. In this technique,
the inner hysteresis band carries out switching between adjacent levels, whereas the outer
band carries out additional switching-level changes.
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The last nonlinear controller reviewed for MLCs is the deadbeat controller. Deadbeat
controllers are reported in [136] as an alternate choice for synchronous reference-frame-
based controllers. They are built in stationary alpha-beta reference frames to minimize the
complexity and computation burden for transformation to and from dq reference frames.
Figure 18 reflects the deadbeat controller that is reported in [136].
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The deadbeat action forces the MLC current i(t) to follow the reference current in
each sampling interval. The deadbeat transfer function for ialpha and ibeta can be expressed
as follows:

iαβ

iαβ−re f
=

1
1 + Ts

==
1

1 + (T + C)s
(23)

where C is a constant and T is the time delay of a single sample. The constant C is set as the
same value as T in order to cancel the delay time between reference and actual current, as
reported in [137].

5.3. Comparative Summary

Due to simplicity, response speed, and ease of implementation, the hysteresis control
method outperforms all other methods. It exhibits robustness and a reduction in system
order compared to the rest of the methods. However, it faces a serious drawback due to
variable-switching frequency, as it causes non-uniform electrical and thermal stress across
all the switches and entails a high cost for the heat sink.
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The non-synchronous controller features fast reference tracking, but a capacity mis-
match among the battery modules may lead to overmodulation and degraded power
quality for standalone applications.

It is important to note that the switching frequency of an MLC is significantly lower
than standard two-level VSI, which means a relatively higher sampling time is available to
update the reference signal. This means that the steady-state performance and transient
stability are more critical parameters than the speed of response.

It is explained in the previous subsection that both VOC- and PCC-based methods [47,119]
achieve zero steady-state error and ensure system stability for a dual mode of operation.
Therefore, VOC-based high-level control is considered for the simulation study in this
review paper.

6. Simulation Study

In this section, a simulation study is conducted using (i) the topology based on the
explanation in Section 3, (ii) the modulation methods based on the explanation in Section 4.3,
and (iii) higher-level control based on the explanation in Section 5.3.

It can be seen from Table 4 that the CHB MLC topology holds the advantage over
other topologies in many features. Therefore, 13-level grid-connected CHB configuration
was selected for the study, as depicted in Figure 19. Based on the explanation in Section 5.3,
a higher-level closed-loop controller using the synchronous reference frame was developed
in a MATLAB environment.
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Figure 19. Schematic representation of single−phase CHB-MLC with voltage and current measurements.

Multicarrier-based modulation methods show improved performance compared to
other PWM schemes, as explained in Section 4.3, but there are multiple subtypes, and each
type has different features.

The simulation study compares these subtypes, including (i) EP-, (ii) OP-, (iii) AOP-,
and (iv) PS-based PWM methods.

The performance indicators include balancing speed, voltage THD, current THD, and
maximum voltage difference among the unbalanced modules. The THD of MLC voltage
and current were measured using fast Fourier-transform (FFT) analysis. Table 5 shows the
different system parameters considered for the simulation study.
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Table 5. System parameters considered for the simulation study.

System Parameters

Number of modules 6
Number of cells per module 16
Nominal module voltage 65 V
Cell type LFP
Rated power 5 kW
Nominal cell capacity 5 Ah
Number of AC voltage levels LAC 13
Carrier-signal frequency fC 1100 Hz
Fundamental frequency fo 50 Hz
Modulating ration {−1,1}
Filter inductance LAC 200 uH
Filter resistance RAC 0.1 mΩ
Full-bridge switch type MOSFET
Switch ON resistance 10 mΩ
Total number of switches 24
Grid voltage (rms) 230 V
Proportional-gain PI controller 0.4
Integral-gain PI controller 50
Control sampling time 50 µs

To evaluate high-level control and active balancing for different PWM methods, three
tests were conducted, as follows:

I. Monitor the AC-side parameters using a short-duration test at low and rated current.
The measurements include current-tracking error and voltage/current THD).

II. Monitor the impact of active balancing on the DC voltage of all six battery modules
using a long-duration charge–discharge test with balanced modules with the same
initial OCV.

III. Monitor the impact of active balancing on unbalanced battery modules with different
initial OCV and SOC.

The difference among module voltages was measured at the beginning and end of
each cycle. Further details of the balancing algorithm, including the OCV/SOC calculation
and a reference-modulating signal update, are beyond the scope of this paper.

Figure 20 reflects various results for the EP-PWM method. Figure 20a shows the
MLC output voltage, whereas Figure 20b reflects the MLC output current and grid voltage
on the same graph. The grid voltage was scaled down (by a factor of 15) to improve
the visualization.
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From t = 0 s to t = 0.2 s, the MLC remained in the grid-injection mode, where
it injected a constant active power of 6 kW into the grid at unity power factor. This
corresponds to the reference current Id_re f = 30 A and Iq_re f = 0 A for the high-level
controller. The modulating reference (output of high-level controller) and multiple career
signals are depicted in Figure 19c.

It can be seen from Figure 20b that the MLC injected current was in phase with the
grid voltage during the grid-injection mode. At t = 0.2 s the MLC went into offtake mode
and the MLC offtook 6 kW from the grid. The reference current changed from +30 A to
−30 A. The actual current followed the reference, as is clear from Figure 20b, where the
MLC current was 180o out of phase with the grid voltage. The THD of the MLC voltage was
10.6% throughout t the test, whereas the output current had a THD of 1.6% in grid-injection
mode and 2% in offtake mode.

In the second test, the initial OCVs of the battery modules 1− 6 were set to the same
value of 65 V, whereas the initial SOC of all the modules was kept at 80%. Figure 21a
reflects the battery-module voltage profile for a charge–discharge cycle. It can be seen that
the module voltages remained balanced, with a small difference (∆V) of less than 0.01 V
throughout the operation.

Energies 2023, 16, 4133 30 of 38 
 

 

 
(a) 

 
(b) 

Figure 21. Battery-module voltage profile during a charge–discharge-cycle test for EP-PWM with 
(a) no initial imbalance in the module voltage and (b) a maximum initial imbalance of 5.5 V. 

In the third test, the initial OCVs and SOC of battery modules 1 − 6 were set as 70.3 V, 69.2 V, 68.1 V, 67.1 V, 65.9 V , and 64.8 V , and 75%, 74%, 73.5%, 72.5%, 71%, and 70.5%, respectively. The test ran for a duration of 100 s. The maximum initial OCV differ-
ence was measured as 𝑉 − 𝑉 = 5.5 V. The discharging cycle continued for a dura-
tion of 50 s. The EP-PWM method gradually reduced the difference to 2.4 V at the end of 
the discharging period. The difference was eventually reduced to zero after 24 s of the 
charging cycle, as shown in Figure 21b. 

Figure 22 reflects the different test results of the OP-PWM method. In the test with 
unbalanced modules, the same initial SOC and OCV profiles as those used for the EP-
PWM method were considered. 

 
(a) 

 
(b) 

Figure 21. Battery-module voltage profile during a charge–discharge-cycle test for EP-PWM with
(a) no initial imbalance in the module voltage and (b) a maximum initial imbalance of 5.5 V.

In the third test, the initial OCVs and SOC of battery modules 1 − 6 were set as
70.3 V, 69.2 V, 68.1 V, 67.1 V, 65.9 V and 64.8 V, and 75%, 74%, 73.5%, 72.5%, 71%
and 70.5%, respectively. The test ran for a duration of 100 s. The maximum initial OCV
difference was measured as Vmod1 − Vmod6 = 5.5 V. The discharging cycle continued for
a duration of 50 s. The EP-PWM method gradually reduced the difference to 2.4 V at the
end of the discharging period. The difference was eventually reduced to zero after 24 s of
the charging cycle, as shown in Figure 21b.

Figure 22 reflects the different test results of the OP-PWM method. In the test with
unbalanced modules, the same initial SOC and OCV profiles as those used for the EP-PWM
method were considered.
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Figure 22. (a) Battery-module voltage profile during a charge-discharge-cycle test for OP-PWM
method with initial imbalance of 5.5 V and (b) battery-module current profile for two modules with
maximum and minimum OCV.

Figure 22a depicts the module voltage profile for the test (iii) with unbalanced modules.
The initial imbalance was measured as 5.5 V. The maximum difference at the end of the
50 s discharging cycle was measured as 2.5 V, whereas the at the end of the 24 s charging
cycle the difference was reduced to 0 V.

To illustrate the impact of active balancing on the current of battery modules, the
current profiles of modules 1 and 6 are depicted in Figure 22b. These two modules were
selected because module 1 had the highest initial OCV, whereas module 6 had the lowest
initial OCV.

It can be seen that battery module 1 had a higher average current in the discharging
mode as it conducted throughout the switching period, whereas module 6 only conducted
the switching current fractionally (less than 5 ms) during the switching cycle. This means
that module 1 underwent rapid discharging compared to module 6, which is clear from the
voltage profile of module 6 in Figure 21a.

Figure 23 reflects the battery-module voltage and current profile of the AOP-PWM
method for the test (iii) with unbalanced modules. The initial imbalance was measured as
5.5 V. The maximum difference at the end of the 50 s discharging cycle was measured as
2.5 V, whereas at the end of the 24 s charging cycle the difference was not reduced to 0 and
was measured as 0.3 V.

Table 6 provides an overview of different parameters for four multicarrier-based PWM
methods. Using fast Fourier transform (FFT), the MLC voltage and current THD were
calculated at rated and low (less than 20%) power. At rated power, the AOP-PWM method
exhibited the highest voltage THD but the lowest current THD, whereas the EP-PWM
method showed the lowest voltage THD but the highest current THD.
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Table 6. Comparative summary for different amplitude-based modulation strategies.

Modulation-Technique
Feature

EP PWM
[105,106]

OP PWM
[105,106]

AOP PWM
[105,106]

PSC
[105,106]

MLC voltage THD at
low power 12.6% 12.72% 16.4% 10.6%

MLC current THD at
low power 5.6% 5.66% 5.3% 2.6%

MLC voltage THD at
rated power 10.6% 12.26% 19.6% 10.6%

MLC current THD at
rated power 2.6% 2.3% 1.7% 2.6%

Balancing potential Yes Yes Yes Partially

∆V for discharge cycle 2.5 V 2.5 V 2.5 V NA

∆V for charge cycle 0 V 0 V 0.3 V NA

Compared to the EP and OP based PWM methods, AOP−PWM was less effective at
reducing the imbalance factor to zero for the reference charge−discharge profile.

7. Conclusions

MLCs are increasingly applied as BESS interfaces due to their improved voltage
qualities over conventional two-level voltage-source inverters. In this paper, several MLC
topologies are explored for grid-connected and off-grid applications. A critical overview
of traditional and recently proposed multiport topologies is presented to offer a better
understanding of MLC operation and limitation in grid-connected and off-grid modes. The
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principle of active balancing is explained to show the implementation of the configurations
in grid-connected and off-grid modes. The key findings can be summarized as follows:

(1) The state-of-the-art reduced-switch MLC topologies reported in the literature [35,36,38,66–76]
are good candidates for only standalone applications and cannot inject power in
the grid-connected mode. Two such topologies are reduced-switch cascaded half-
bridge [73] and modified cascaded configurations [35,38].

(2) There is no universal topology that can be attributed as the best candidate for a dual
(grid-connected and standalone) mode of operation. However, except for a relatively
higher footprint, the symmetric cascaded H-bridge can be an optimal topology for
a dual mode of operation.

(3) Many modulation strategies that are used for multiport MLCs maintain energy balance
only among the battery modules. Therefore, these PWM strategies lack effectiveness
when combined with the role of active balancing among unbalanced modules with
different capacities/chemistries. These include all phase-shifted PWM methods and
fundamental-frequency PWM methods with offline-angle calculations [108].

(4) Amplitude-based carrier PWM methods are inherently unbalanced, and the carrier
signals need to be readjusted every few cycles even if the modules have the same
initial OCV/SOC.

(5) At low power, the phase-shifted PWM strategy offers the lowest voltage and current
THD (10% and 2.6%, respectively) compared to level-shifted carrier-based techniques.
At rated power, AOP-PWM offers the lowest current THD of 1.7%.

(6) The balancing potential of the AOP-PWM strategy is 33% lower than the EP and
OP-PWM methods.

To summarize, the diversity in cascaded MLC modulation, control, and switching
strategies can allow for further improvement in the AC-side transient response and reduc-
tion in the losses. For future studies, a loss analysis can be conducted for state-of-the-art
modulation strategies. In addition, during the idle state, either for grid-connected or
standalone mode, the self-balancing feature of CHB-MLC can be further explored. To
allow for faster balancing, it is critical to allow for a simultaneous charging/discharging
feature, which means that high-capacity modules can discharge into low-capacity mod-
ules. A hybrid modulation, control, and switching strategy can be developed to allow
such a feature to expedite the integration of battery modules with different capacities in
stationary applications.
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