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Abstract: In this paper, a module-combined stator is proposed, which is used for large and ultra-
low-speed permanent magnet synchronous motors, and the influence of stator core seams on the
no-load performance is studied. A method is proposed to weaken the negative influence of stator
iron core seams on the no-load performance of permanent magnet synchronous motors. Firstly, the
magnetic circuit model of the motor considering the stator iron core seams was deduced theoretically,
and the selection principle of stator core seam number was given a description. The influence of
different seam parameters on the no-load performance and the influence of different pole-slot fits and
the number of parallel branches on the no-load performance are analyzed. The proposed structure
of the stator iron core, which can weaken the influence of stator iron core seams on the no-load
performance of the motor, is proposed. Using analysis and simulation experiments, the effectiveness
of the proposed stator iron core structures in weakening the negative influence of the stator iron core
seams on the no-load performance was verified.

Keywords: module-combine stator; PMSM (permanent magnet synchronous motors); stator core
seams; no-load performance; auxiliary seams

1. Introduction

For large and ultra-low-speed motors, module-combined stator permanent magnet
motors are used to reduce the assembly difficulty and improve the fault tolerance [1–3]. The
stator module combination structure of permanent magnet motors has three main schemes:

Scheme 1: A single set of stator teeth and a stator yoke are superposed to form a
tooth–yoke sub-module, and the coil is wound on the tooth–yoke sub-module [4,5];

Scheme 2: A stator sector piece with a single set of stator teeth is separately superposed
onto a sub-module stator, and the wound coil is directly wound onto the stator tooth
module. This stator tooth module and the stator yoke are fixed via a separate connecting
piece or a pigeon tail slot on the stator sheet [6,7];

Scheme 3: A stator sector piece that can wind one group of three-phase windings is
separately superposed into a sub-module stator. The windings are wound on a single tooth
when the seams of the stator core module are in the yoke and the pitch y = 1, while the
seams of the stator core module are in the tooth or pitch Y > 1. The windings are divided
into two different span specifications: large and small-span windings [8–12].

A novel cogging torque mitigation method for modular permanent magnet (PM)
machines with flux gaps in alternate stator teeth has been proposed [13,14]. The influence
of these flux gaps on the electromagnetic performance of modular PM machines, such
as on the winding factor, open-circuit air-gap flux densities, back electromotive force,
cogging torque, on-load torque, inductance, magnetic saturation and copper losses, were
comprehensively investigated and general rules have been established [15].
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In this paper, a module-combined stator is proposed for large and ultra-low-speed
permanent magnet synchronous motors, and the influence of the stator core seams was
studied. For large and ultra-low-speed motors (<60 rpm), copper loss (>80% total loss) is
mainly dependent on the no-load back electromotive force and the same coil parameters
and cogging torque can significantly influence the motor parameter measurement accuracy
of the converter; therefore, this paper mainly studied the performance of the no-load back
electromotive force and cogging torque. Firstly, a magnetic circuit model considering the
stator core seams was established. The effect of the dimension parameters of the seams on
the no-load performance of the motor was studied using different pole slot fits and number
of parallel branches. Based on the comparison of the effects of different parts of the stator
core seams, two kinds of stator sheet structures are proposed to weaken the adverse effects
of the stator core seams.

2. Magnetic Circuit Model with Consideration of Stator Core Seams

A schematic of stator core seams with an outer rotor permanent magnet surface
mounting motor is given in Figure 1. In the enlarged view around the stator core seams
in Figure 1b, Nseam is the seam number; hj2 is the height of the rotor yoke; hm and r2 are
the inner diameter and thickness of the permanent magnet, respectively; g0 is the air gap
between the stator and rotor; h01 and b01 are the height and width of the stator notch,
respectively; bt is the regular tooth width; bt11 and bt12 are the left tooth width and the
right tooth width, respectively, with the seam on the tooth; bseam is the seam width; r1 is the
radius of the slot bottom; hj1 is the height of the stator yoke; and hs1 is the radial projection
height from the slot shoulder bottom to the slot notch.
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2.1. The Selection Principle of Seam Number

The number of slots per pole per phase in a multi-pole, ultra-low-speed permanent
magnet synchronous motor with fewer slots is shown in Expression (1).

q =
Qs

2pm
= b +

c
d

(1)

where q is the number of slots per pole per phase, QS is the number of stator slots, p is the
number of motor pole pairs, m is motor phase, and c and d are the minimum forms of the
numerator or denominator.

The maximum number of pole phase groups is 2p/d. When d is even, the value of
seam number Nseam should be the divisor of 2p/d because the large span coil must connect
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at least one pole phase group as shown in Figure 2a. When d is odd, the value of seam
number Nseam should be the divisor of p/d because the large span coil must connect at least
two pole phase groups as shown in Figure 2b.
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2.2. The Magnetic Circuit

The magnetic circuit model considering the stator core seams is given in Figure 3. In
order to facilitate the modeling, the following assumptions were made:

1. The flux in the left tooth and right tooth with the seam on the tooth are linearly
proportional to the tooth width;

2. The magnetic resistance of each segment was simplified to a rectangle in the calcula-
tion of the magnetic resistance;

3. The magnetic permeability of the ferromagnetic material was set to be invariable, and
the corresponding magnetic resistance was assumed to be invariable.
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Figure 3. Distribution of air gaps and stator magnetoresistance around the stator core seam.

In Figure 3, Rg is the equivalent air gap magnetoresistance corresponding to the regular
tooth; Rg11 and Rg12 are the equivalent air gap magnetoresistances corresponding to the left
and right tooth with the seam, respectively; Rb01 is the stator slot leakage magnetoresistance;
Rt is the regular tooth magnetoresistance; Rb01 is the stator slot leakage magnetoresistance;
Rt11 and Rt12 are the left and right tooth magnetoresistances with the seam, respectively; Rj
is the regular stator yoke magnetoresistance; and Rjseam is the stator yoke magnetoresistance
with the seam.
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The expression of magnetoresistance R is shown in (2), where l is the length of the
magnetic path, µ is the magnetoconductivity of the medium, and S is the sectional area of
the medium.

R =
l

µS
(2)

Based on the expression (2), Rg, Rg11, and Rg12 can be expressed as:
Rg = Qskδg0

2πµ0(r2 − hm − 0.5g0)LFe

Rg11 =
Qskδ1

bt11 + bt12
bt11

g0

2πµ0(r2 − hm − 0.5g0)LFe

Rg12 =
Qskδ1

bt11 + bt12
bt12

g0

2πµ0(r2 − hm − 0.5g0)LFe

(3)

where kδ and kδ1 are the air gap coefficients corresponding to the regular stator tooth
and stator tooth with the seam, respectively; g0 is the air gap between stator and rotor,
µ0 is the vacuum magnetic permeability, r2 is the inner diameter of rotor yoke, hm is the
magnetization direction length of permanent magnets, LFe is the iron core length of the
stator and rotor, bt11 is the tooth width on the left of the seam, and bt12 is the tooth width
on the right of the seam. Referring to reference [16–18], kδ and kδ1 can be expressed as:

kδ = 1
1 − Qsb01

2π(r2 − hm − g0)
σ

σ = 2
π

{
tan−1 0.5b01

hm + g0
− hm + g0

b01
ln
(

1 +
(

0.5b01
hm + g0

)2
)}

kδ1 = 1

1 − Qs(b01 + bseam)
4π(r2 − hm − g0)

σ1

σ1 = 2
π ln


tan−1 b01 + bseam

4(hm + g0)
−

2(hm + g0)
b01 + bseam

(
1 +

(
b01 + bseam
4(hm + g0)

)2
) 

(4)

where b01 is the width of the top stator slot, and bseam is the width of the stator core seam.
The stator tooth magnetoresistance and yoke magnetoresistance can be expressed as follows,
where µFe is the relative magnetic permeability of the stator:

Rt = r2 − hm − g0 − r1
µFeµ0bt LFe

Rt11 = r2 − hm − g0 − r1
µFeµ0bt11LFe

Rt12 = r2 − hm − g0 − r1
µFeµ0bt12LFe

Rjseam = bseam
µ0hj1LFe

(5)

where r1 is the outer diameter of the stator yoke, µfe is the magnetic permeability of the
stator core, bt is the width of the stator tooth without seam, and hj1 is the radial height of
the stator yoke.

3. Influence of Seams on No-Load Performance
3.1. Influence of Different Seam Numbers and Seam Widths on No-Load Performance

The motor parameters are given in Table 1. The winding end connection diagram is
shown in Figure 4 in the case of Nseam = 3, a = 3, aUnit = 1 and Nseam = 6, a = 6, aUnit = 1,
where a is the number of parallel branches of the whole stator and aUnit is the number of
parallel branches of one stator sub-module. The influence of the seam number Nseam and
the seam width bseam on the no-load motor performance is shown in Figure 5. It can be seen
from Figure 5 that:

(1) The cogging torque amplitude was directly proportional to the seam number Nseam
and the seam width bseam;
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(2) The effective value of no-load phase back electromotive force, the amplitude of the
self-inductance, and mutual inductance were inversely proportional to the seam
number Nseam and the seam width bseam;

(3) The self-inductance LAA and mutual inductance LAC of A phase, which were closest
to the seam, were the most affected by the seam number Nseam and the seam width
bseam because the maximum mutual inductance variation extent (0.35 mH), which is
influenced by the seam number Nseam and the seam width bseam, has little influence on
motor performance; the mutual inductances that are influenced by the seam number
Nseam and the seam width bseam are ignored in the following chapters.

Table 1. Parameters of the 60-pole 72-slot motor.

Parameter Values and Unit

Rated power of motor 220 kW
Rated voltage 660 V
Rated speed 30 r/min

Rated frequency 15 Hz
Number of rotor poles 60
Number of stator slots 72

Number of groups per pole per phase 12

Rotor structure Out rotor with permanent
magnet surface mounting

Outside diameter of rotor 1270 mm
Thickness of rotor yoke 50 mm

Core length 1000 mm
Thickness of PM 8 mm

Pole arc coefficient of PM 0.83
PM material N42UH
Br at 20 ◦C 1.3T
Hc at 20 ◦C 971 kA/m

Relative magnet permeability 1.06
Air gap 2.3 mm

Outside diameter of stator 1149.4 mm
Slot height 80 mm

Stator yoke height 50 mm
Pitch 1

No-load back electromotive force 609.5 V
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3.2. The Relationship between Motor No-Load Performance and the Number of Parallel Branches in
One Unit with Same Seam

Winding end connection diagram with two parallel branches in one stator unit are
shown in Figure 6, Where Nseam = 6, a = 12, aUnit = 2. The no-load performance with a
different number of parallel branches in one stator unit aUnit is shown in Figure 7; the
no-load cogging torque is not shown because the stator winding connection style had no
influence on it. The winding end connection diagrams with aUnit = 1 and aUnit = 2 are
shown in Figures 4a and 6, respectively.
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Additionally, the asymmetry factor for the back electromotive force in this paper is
max{|EA − Eav|;|EB − Eav|;|EC − Eav|} and the asymmetry factor for self-inductance is
max{|LAA − Lav|;|LBB − Lav|;|LCC − Lav|}, where EA is the effective values of A phase
winding no-load back electromotive force, EB is the effective values of B phase winding
no-load back electromotive force, EC is the effective values of C phase winding no-load
back electromotive force, Eav = (EA + EB + EC)/3; LAA, LBB, LCC are the average no-load self-
inductance value of A phase winding, B phase winding, and C phase winding, respectively,
and Lav = (LAA + LBB + LCC)/3.

It can be seen from Figure 7 that the asymmetry factor of the no-load three-phase back
electromotive force’s effective values and the inductance were inversely proportional to the
number of parallel branches in one stator unit aUnit.

3.3. The Relationship between Motor No-Load Performance and Slot–Pole Combination with Same
Seam Parameters

The stator winding wiring diagrams with different pole slots are shown in Figure 8,
where the winding wiring diagram of a 60-pole, 54-slot stator is divided into two kinds
according to the position of the seam on the A phase winding. The no-load performance,
which is shown in Figure 9, showed that:

(1) More stator slots with the same rotor poles can weaken the no-load motor performance
impact of seams: with the same 54-slot stator sheet parameter, the no-load motor
performance impact of a seam with the 36-pole scheme was less than the 60-pole
scheme; with the same 60-pole rotor parameter, the no-load motor performance impact
of a seam with a 72-slot scheme was less than that of a 54-slot scheme;

(2) When the number of stator teeth that continuously wind the same phase coil in one
polar phase group was more than three, the seam on the side of the same phase coil
tooth weakened the no-load motor performance impact of the seam. The no-load
motor performance impact of the seam in Figure 8b was less than that in Figure 8c,
where the seam is in the middle of the same phase coil tooth.
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In conclusion, the following electromagnetic parameters can weaken the no-load
motor performance impact of seams:

(1) Reduce the number of the stator core seams and width of the stator core seams;
(2) Reduce the number of parallel branches in one stator sub-module;
(3) Adopt fewer poles and more slots;
(4) When the number of stator teeth that continuously wind the same phase coil in one

polar phase group is more than three, place the seam on the same side as the phase
coil tooth.

4. Stator Sheet Structures That Can Weaken the Impact of Seams
4.1. No-Load Motor Performance Impact of Seams on Different Parts of Tooth

Figure 10 shows a schematic drawing of a seam on different parts of tooth. The
corresponding results, which are shown in Figure 11, showed that:

(1) The no-load cogging torque was chiefly affected by a seam on the top of the tooth
(compare Figure 10a,c);

(2) The no-load back electromotive force and self-inductance were mainly affected by a
seam on the top of the tooth (compare Figure 10a–c);

(3) The no-load motor performance impact of a seam on the yoke was negligible (compare
Figure 10b,c).
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4.2. Proposed New Stator Sheet Structures

According to the conclusions from Section 3.1, the new stator sheet structures, which
are shown in Figure 12, adopt the method of an opening auxiliary seam on the top of the
tooth to balance the no-load cogging torque impact of a seam, and narrow the tooth or
auxiliary seam on the whole tooth to balance the no-load back electromotive force and
self-inductance. In Figure 12, the width of narrow tooth btz = bt11 + bt12 = bt − bseam.
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Figure 13 shows that:

(1) Compared with the narrow tooth and auxiliary seam on the top of the tooth scheme
(Figure 12b,d), an auxiliary seam (Figure 12a,c) was better at weakening the no-load
cogging torque and self-inductance impact of the seam but worse at weakening the
no-load asymmetry factor of the back electromotive force impact of the seam;

(2) Compared with one tooth of B and C phase with an auxiliary seam or narrow tooth
(Figure 12c,d), each whole tooth with an auxiliary seam or narrow tooth (Figure 12a,b)
weakened the no-load cogging torque and self-inductance impact of the seam better,
but reduced the back electromotive force value more.
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Learning from the strengths and weaknesses shown in Figure 12, Figure 14 was
proposed on the basis of Figure 12b,d. An auxiliary seam 2 was added to balance the
air-gap magnetic field to reduce the negative impact of the seam on the cogging torque,
where the width of auxiliary seam 2 is equal to the width of auxiliary seam 1.
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The results in Figures 15 and 16 show that:

(1) Auxiliary seam 2 can effectively weaken no-load cogging torque (compare with
Figure 12b,d); meanwhile, auxiliary seam 2 weakened the no-load back electromotive
force value less when compared with the results in Figure 12a,c;

(2) Increasing the height of auxiliary seam hseam2 can weaken the no-load cogging torque,
but increase the asymmetry factor of no-load back electromotive force and decrease
the value of no-load back electromotive force;

(3) When the seam width bseam is increased (Figure 16), the cogging torque decreased to a
smaller degree, and the asymmetry factor decreased, while no-load self-inductance
and phase electromotive force remained nearly constant. Both schemes decreased
the effective value of the back electromotive force to a greater degree, especially the
Figure 14b scheme.

Energies 2023, 16, x FOR PEER REVIEW 11 of 14 
 

 

Learning from the strengths and weaknesses shown in Figure 12, Figure 14 was pro-
posed on the basis of Figure 12b,d. An auxiliary seam 2 was added to balance the air−gap 
magnetic field to reduce the negative impact of the seam on the cogging torque, where the 
width of auxiliary seam 2 is equal to the width of auxiliary seam 1. 

The results in Figures 15 and 16 show that: 
(1) Auxiliary seam 2 can effectively weaken no−load cogging torque (compare with Fig-

ure 12b,d); meanwhile, auxiliary seam 2 weakened the no−load back electromotive 
force value less when compared with the results in Figure 12a,c; 

(2) Increasing the height of auxiliary seam hseam2 can weaken the no−load cogging torque, 
but increase the asymmetry factor of no−load back electromotive force and decrease 
the value of no−load back electromotive force; 

(3) When the seam width bseam is increased (Figure 16), the cogging torque decreased to 
a smaller degree, and the asymmetry factor decreased, while no−load self−induct-
ance and phase electromotive force remained nearly constant. Both schemes de-
creased the effective value of the back electromotive force to a greater degree, espe-
cially the Figure 14b scheme. 

  
(a) (b) 

Figure 14. Winding end connection diagram with double auxiliary seams scheme(Nseam = 6, aUnit = 
1).(a) Auxiliary seam 1 on one tooth of B and C phase and auxiliary seam 2 on other tooth,(b) Nar-
row tooth of B and C phase + auxiliary seam 1 on the narrow tooth + auxiliary seam 2 on the other 
tooth 

  

(a) Cogging torque (b) Asymmetry factor of self−inductance 

Energies 2023, 16, x FOR PEER REVIEW 12 of 14 
 

 

  
(c) Asymmetry factor of back electromotive force (d) Effective value of back electromotive force 

Figure 15. The corresponding no−load performance with double auxiliary seam scheme and differ-
ent hseam2 (bseam = 5 mm). 

  

(a) Cogging torque (b) Asymmetry factor of self−inductance 

  
(c) Asymmetry factor of back electromotive force (d) Effective value of back electromotive force 

Figure 16. The corresponding no−load performance using double auxiliary seam scheme and dif-
ferent bseam (hseam2 = 6 mm). 

The disadvantage of the Figure 14a scheme is that auxiliary seam 1 produces difficul-
ties on the core, especially if the seam width bseam is too small. The disadvantage of the 

Figure 15. The corresponding no-load performance with double auxiliary seam scheme and different
hseam2 (bseam = 5 mm).



Energies 2023, 16, 4126 12 of 13

Energies 2023, 16, x FOR PEER REVIEW 12 of 14 
 

 

  
(c) Asymmetry factor of back electromotive force (d) Effective value of back electromotive force 

Figure 15. The corresponding no−load performance with double auxiliary seam scheme and differ-
ent hseam2 (bseam = 5 mm). 

  

(a) Cogging torque (b) Asymmetry factor of self−inductance 

  
(c) Asymmetry factor of back electromotive force (d) Effective value of back electromotive force 

Figure 16. The corresponding no−load performance using double auxiliary seam scheme and dif-
ferent bseam (hseam2 = 6 mm). 

The disadvantage of the Figure 14a scheme is that auxiliary seam 1 produces difficul-
ties on the core, especially if the seam width bseam is too small. The disadvantage of the 
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bseam (hseam2 = 6 mm).

The disadvantage of the Figure 14a scheme is that auxiliary seam 1 produces difficulties
on the core, especially if the seam width bseam is too small. The disadvantage of the
Figure 14b scheme is the effects on the asymmetry factor of no-load back electromotive
force, especially if the seam width bseam is too large. Therefore, when the seam width bseam
is larger, Figure 14a is the better scheme; when the seam width bseam is smaller, Figure 14b
is the better scheme.

5. Discussion

To model the impact of stator core seams on stator module-combined permanent
magnet synchronous motors, a magnetic circuit model considering the stator core seam
was deduced theoretically. The selection of electromagnetic parameters to weaken the
impact of seams on the no-load performance is summarized as follows: (A) reduce the
number and width of the seams; (B) reduce the number of parallel branches under the one
stator sub-module; (C) adopt a scheme with fewer poles and more slots; and (D) when
the number of stator teeth that continuously wind the same phase coil in one polar phase
group is more than 3, place the seam on the same side as the phase coil tooth. The new
stator core structures, which are shown in Figure 14, can significantly weaken the impact
of seams on the no-load performance, while reducing the decreasing value of the no-load
back electromotive force.
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This study mainly focused on the seam on the stator core tooth; however, the influence
of seams on the stator core yoke was not studied in this paper. The maximum modular
number, arrangement of coils in the groove, and winding end wiring modes with different
modular seam locations will be investigated in future studies.
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