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Abstract: Semi-coke has difficulties with stable ignition and high-efficiency combustion due to its low
volatile content. Preheating in a circulating fluidized bed before combustion offers a novel method
for the improvement of fuel properties. During preheating, the semi-coke was converted to preheated
fuel composed of coal gas and preheated char. When increasing the preheating temperature, the
ratio of CO/CO2 in the coal gas significantly increased, while the ratio of CH4/CO2 remained almost
unchanged. After preheating, the release ratios for different species from the semi-coke followed the
order C >H > N > S. Thermogravimetric analysis was used to evaluate the kinetic characteristics.
We found that the ignition and burnout temperatures of the preheated char decreased compared to
those of the semi-coke, and the reaction rate constant for the preheated char increased by 20 times.
Three models were used to predict the variations in the conversion ratio with time, and the modified
volumetric reaction model showed good agreement with the experiment. This investigation provides
support for better developing preheating combustion technology in the future.

Keywords: semi-coke; preheating; circulating fluidized bed; kinetic characteristics

1. Introduction

Low-rank coal, including lignite and sub-bituminous coal, accounts for more than 50%
of reserves, approaching 560 billion tons in China [1]. Pyrolysis is a key step in producing
high-value fuel such as coal gas or tar [2,3]. However, several hundred million tons of
semi-coke are produced from coal pyrolysis processes every year [4]. Semi-coke has some
difficulties with stable ignition and high-efficiency combustion, due to it possessing less
than 10% volatile content [5,6].

The co-firing of semi-coke and coal or biomass is a feasible method for combusting
low-volatile fuel in a utility boiler. Investigations by Zheng et al. [7] indicated that the
semi-coke proportion should be set at <45% to maintain stable combustion. In a 300 MW
tangentially fired pulverized coal furnace with a steam pressure of 18.3 MPa and a steam
temperature of 535 ◦C, the maximum ratio of co-firing semi-coke was found to be 40% [8].
When further increasing the ratio of semi-coke supplied to the boiler, unstable combustion,
even flameout, can occur, bringing serious challenges for the safe operation of power
plants. Wang et al. [9] studied the synergistic effects of coal and semi-coke and found that
the interactions between them upon NO formation increased with increasing proportions
of semi-coke. However, the co-combustion system was quite complicated, with at least
two sets of fuel-feeding equipment, leading to higher investment and operation costs in
power plants.

Novel methods or technologies are needed for 100% combustion of semi-coke to over-
come the ignition and combustion problems affecting low-volatile fuel. Preheating before
combustion, including preheating air or preheating fuel, is undoubtedly a better method to
realize stable ignition and high-efficiency combustion [10,11]. Suda et al. [12] preheated
air to above 800 ◦C and achieved high combustion efficiency and low NOx emissions for
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anthracite. Lv et al. [13,14] preheated semi-coke to above 1000 ◦C in a first stage and com-
busted the preheated fuel in a second stage. The results showed that a higher preheating
temperature could further lower NOx emissions and increase the combustion efficiency.
In recent years, another novel preheating method has been proposed by the Institute of
Engineering Thermophysics, Chinese Academy of Sciences, with pulverized fuel preheated
in a circulating fluidized bed (CFB) [15–17]. However, the conversion characteristics of
semi-coke in CFB preheating have not yet been well-elucidated. Importantly, the kinetic
characteristics of preheated fuel have not been previously described.

In this work, we conducted an experimental study on semi-coke preheating in a CFB,
analyzed the conversion behavior, and built a kinetic model to support the development
and application of preheating combustion technology using semi-coke as fuel.

2. Experiment
2.1. Experimental Apparatus

Figure 1 shows a schematic of the kW-scale preheating combustion experimental
platform used in this study, which consisted of a CFB for fuel preheating, a horizontal
combustor for preheated fuel combustion, and other auxiliary equipment. The CFB was
composed of a riser, a cyclone, and a loop seal.
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Figure 1. The kW-scale preheating combustion experimental platform.

The CFB riser was 81 mm in diameter and 1500 mm in height. In the experiment
platform, the primary air flowed into the riser from the air distribution plate positioned
at the bottom, and the semi-coke was supplied into the riser via a screw feeder located
250 mm above the air distribution plate. The cyclone was 200 mm in diameter and 400 mm
in height, with a center tube of 32 mm diameter inside. The loop seal for transporting
material to the riser was 50 mm in diameter. Five K-type thermocouples were used in the
CFB, three of which (T1–T3) were 200, 500, and 1450 mm above the air distribution plate,
and the other two (T4–T5) were located in the loop seal and the outlet of the cyclone, as
shown in Figure 2.

As the amount of primary air was far less than that of the stoichiometric air needed
for theoretical combustion, a strong reducing atmosphere was present in the CFB, resulting
in some combustion and gasification reactions. In the process of preheating, semi-coke was
converted into coal gas and preheated char; i.e., preheated fuel. The relationship between
the coal gas flowrate and the preheated char production rate was related to the coal type,
preheating temperature, and so on.
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Figure 2. The temperature measure points in the CFB.

The horizontal combustor consisted of a square structure with an inner section of
500 × 500 mm and a length of 2115 mm. The preheated fuel flowed into the horizontal
combustor through a nozzle with annular secondary air outside. The tertiary air was
supplied 1200 mm behind the secondary air inlet.

2.2. Fuel Characteristics

The semi-coke used in this experiment was obtained from Shanxi Province, China, and
its ultimate and proximate analyses are shown in Table 1. The particle size of the semi-coke
ranged from 0 to 0.25 mm, as shown in Figure 3, with a d50 value of 40 µm.
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Figure 3. Particle size distribution for the semi-coke.

As seen in Table 1, the water content of the semi-coke was 12.80%, which was not very
low due to the fact that, during the pyrolysis, the hot semi-coke was directly cooled via
water injection; however, this provides beneficial conditions for safe transportation and
storage. The volatile matter content was only 4.18%, corresponding to a high fixed carbon
content of 76.74%. Compared with bituminous coal, the H and O content in the semi-coke
showed an obvious decrease resulting from the pyrolysis itself.
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Table 1. Proximate and ultimate analyses of the semi-coke.

Item
Proximate Analysis (wt.%) Ultimate Analysis (wt.%)

Mar Aar Var FCar Car Har Oar Nar Sar

Data 12.80 6.28 4.18 76.74 76.81 0.86 2.26 0.67 0.31

Note: the subscript “ar” represents “received basis”.

2.3. Experimental Conditions

Table 2 lists the experimental conditions. The preheating temperature was the average
temperature at T1, T2, and T3 in the CFB, and λCFB, Vpr, and λ indicate the air equivalent
ratio in the CFB, the primary air flowrate in the CFB, and the excess air coefficient in the
system, respectively. These definitions can be expressed as:

λCFB = VPr/VStoic, (1)

λ =
VPr + VSe + VTe

VStoic
, (2)

where VStoic is the airflow rate with stoichiometric combustion and VPr, VSe, and VTe
denote the airflow rates of the primary air, secondary air, and tertiary air, respectively.

VStoic can be described by:

VStoic = F (0.0889(Car + 0.375Sar)+0.265Har− 0.0333Oar) (3)

where F is the feeding rate for the semi-coke supplied to the CFB and Car, Sar, Har, and Oar
represent the ultimate analysis given in Table 1.

Table 2. Experimental conditions.

Item Case One Case Two Case Three Case Four

Feeding rate (kg/h) 3.57 3.56 3.62 3.67
VStoic (m3/h) 24.9 24.8 25.3 25.6

λCFB 0.3 0.3 0.3 0.3
VPr (m3/h) 7.5 7.5 7.6 7.7
VSe (m3/h) 12.5 12.5 12.6 12.8
VTe (m3/h) 10.0 10.0 10.1 10.2

λ 1.20 1.20 1.20 1.20
Preheating temperature (◦C) 850 880 910 950

2.4. Experimental Procedure and Sample Analysis Methods

At the start of the experiment, 2.5 kg of quartz sand was added to the riser as the
bed material, and the primary air was supplied from the air distribution plate. The
electric heating device was powered on simultaneously to heat the riser. When the
bottom temperature of the riser was approximately 500 ◦C, bituminous coal for starting
up the platform was fed into the riser to raise the bed material temperature. When the
average temperature of the riser was approximately 800 ◦C, the fuel was switched to
semi-coke, and the parameters were adjusted to meet the experimental conditions listed
in Table 2.

The preheated fuel included coal gas and preheated char, which was collected with a
sampling system, as shown in Figure 4, with cooling water to prevent further reactions.

The coal gas composition, including CO, CO2, CH4, H2, O2, and CnHm, was mea-
sured online via a Gasboard-3100P gas analyzer. For the preheated char, ultimate,
proximate, and thermogravimetric analyses were performed. For the ultimate analysis,
the content of carbon, hydrogen, nitrogen, and sulfur was measured with a UNICUBE
analyzer (Elementar Company, Langenselbold, Germany), and the oxygen content was
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determined with differential calculation. The proximate analysis was carried out accord-
ing to the Chinese standard GB/T 28731-2012 [18]. The thermogravimetric experiment
was performed to analyze the sample mass variations with time using an SAT 449F3
analyzer (NETZSCH Company, Selb, Germany). In the thermogravimetric experiment,
the mass of the sample was 15 ± 0.2 mg, and the reaction atmosphere was air at a flow
rate of 20 mL/min. The measurement was terminated when the ultimate sample mass
remained unchanged.
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3. Results and Discussion
3.1. Preheating Temperature Variations

The temperature distribution variations with time for case one are shown in Figure 5.
The temperatures at each measuring point in the CFB were quite stable, with the tempera-
ture differences between the three measurement points (T1, T2, and T3) being below 50 ◦C.
CFBs have the advantage of excellent gas–solid mixing across the entire circuit due to the
massive material circulation and have been widely applied in the industry for low-grade
fuels, such as coal gangue, coal sludge, and rubbish. At the outlet of the CFB, the preheated
fuel temperature was approximately 830 ◦C, indicating that the semi-coke had completed
ignition before flowing into the combustor.

In conventional combustion, the process of ignition and combustion of fuel occurs in
the boiler or combustor. If there is a low boiler load, it is extremely difficult to maintain a
stable flame and ensure safe operation. Compared with conventional pulverized coal-firing
technology, the big difference is that the preheated fuel with a temperature higher than
800 ◦C flows into the combustor, forming a stable flame and leading to the ignition and
combustion in separated equipment. Preheating in a CFB before combustion could offer an
advanced, feasible, and economical solution to overcome the combustion problems caused
by low-volatile fuel.
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Figure 5. Temperature variations in the CFB with time.

3.2. Coal Gas Components

The main coal gas components in cases one to four for the four preheating temperatures
are depicted in Figure 6 with the same primary air equivalence ratio of 0.3.
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Figure 6. Coal gas components with different preheating temperatures.

As shown in Figure 6, when the CO and H2 content increased, the CO2 content de-
creased, and the CH4 content remained unchanged as the preheating temperature increased.

The CO increased due to the following two reactions [19]:

CO2 + C→ 2CO∆H = 166.13 kJ/mol (R1)

C + H2O→ CO + H2∆H = 135.83 kJ/mol (R2)

Figure 6 also shows that, at temperatures higher than 900 ◦C and a primary air equiva-
lence ratio of 0.3, the (R1) reaction resulting in semi-coke gasification was enhanced in the
CFB. When the primary air equivalence ratio remained unchanged, the CO concentration
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still increased with a further increase in the preheating temperature. The CH4 concentration
was about zero with the different preheating temperatures, as seen in Figure 6, which was
due to the fuel itself. As known from previous research, the semi-coke was a by-product of
the coal pyrolysis, and the CH4 in the coal was extracted during the pyrolysis. Furthermore,
the synthesis reaction of CO2 with H2 resulting in CH4 is impossible without catalysts.

In accordance with the content of the coal gas components, the heating value for
the coal gas could be calculated. The coal gas production rate was determined using the
N2 balance method based on the hypothesis that the nitrogen flowrate would remain
unchanged before and after preheating. The formula is expressed as follows:

YGas =
0.79VPr

XN2 × FIn
, (4)

where YGas is the production rate for coal gas (m3/kg), XN2 is the content of nitrogen in the
coal gas, and FIn is the feeding rate for semi-coke supplied into the CFB (kg/h).

As a result, the coal gas production rates and heating values with different preheating
temperatures were calculated and are shown in Figure 7.
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Figure 7. The heating values and production rates for the coal gas with different preheating temperatures.

When the preheating temperature increased from 850 ◦C to 950 ◦C, the heating value
and production rate for the coal gas increased. The increase in the heating value for the
coal gas was larger, while the increase in the production rate for the coal gas was quite
small. The maximum heating and production rate values for the coal gas were 3.7 MJ/m3

and 2.57 m3/kg, respectively.
To further analyze the intensities of the gasification and combustion reactions, the

ratios of CO/CO2 and CH4/CO2 with different preheating temperatures were calculated,
as shown in Figure 8.

As shown in Figure 8, with increasing preheating temperature, the CO/CO2 ratio
increased while the CH4/CO2 ratio remained unchanged due to the dominance of the
gasification reaction. Notably, if the air equivalence ratio had varied, the tendency of the
CO/CO2 would have been different.
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Figure 8. The ratios of CO/CO2 and CH4/CO2 with different preheating temperatures.

3.3. Preheated Char Characteristics

The preheated char was collected at the outlet of the CFB, and the particle sizes for the
preheated char, semi-coke, and quartz sand supplied to the CFB as bed material are shown
in Figure 9.
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Figure 9. Particle size distributions for preheated char, semi-coke, and quartz sand.

Due to the smallest particle size being larger than 0.1 mm, the quartz sand was fully
separated out by the cyclone to the loop seal, meaning that the preheated fuel flowing
into the combustor was not mixed with quartz sand. Compared with the semi-coke, the
particles of the preheated char became finer after preheating because of the breakthrough
of particles in the CFB.

The proximate and ultimate analyses of the preheated char are listed in Table 3.
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Table 3. The proximate and ultimate analyses of the preheated char.

Item
Proximate Analysis (wt.%) Ultimate Analysis (wt.%)

Mar Aar Var FCar Car Har Oar Nar Sar

@850 ◦C 1.20 14.54 5.15 79.11 80.80 1.21 0.68 0.99 0.59
@880 ◦C 1.21 14.39 4.81 79.59 81.63 1.16 / 1.01 0.60
@910 ◦C 0.59 14.61 4.41 80.40 82.05 1.17 / 0.93 0.65
@950 ◦C 0.75 16.42 3.53 79.31 80.20 1.00 / 0.99 0.64

Note: “@” represents the preheated char samples at specific temperatures.

Using the ash balance method with the basic hypothesis that the ash content would
remained unchanged [20,21], the ratio of conversion from semi-coke to preheated fuel for
each component could be calculated as follows:

CX = 1− A1 × X2

A2 × X1
, (5)

where A1 is the ash content in the semi-coke, A2 is the ash content in the preheated char,
X1 is the component X content in the semi-coke, and X2 is the component X content in the
preheated char.

Figure 10 shows the conversion ratios for different species with different preheating
temperatures, and almost over 50% of carbon was converted into coal gas, such as CO2 or
CO. The order of the conversion ratios was C > H > N > S. The conversion of S was the
lowest because some of the inorganic sulfur did not undergo a conversion reaction [22,23].
Interestingly, at the condition with 910 ◦C, the conversion of S was lower than that with
other temperatures, perhaps due to reactions of S with Ca occurring in the CFB. The ratio
of carbon conversion was completely linear in relation to that of nitrogen. In contrast to
findings for pulverized coal, the conversion of H was not the highest due to the lower H
content in the semi-coke.
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Figure 10. The conversion ratios for C/H/N/S/VM with different preheating temperatures.

When increasing the preheating temperature from 850 ◦C to 910 ◦C, the conversion
ratio for carbon increased from 54.5% to 60.0% due to the gasification reaction of C and CO2.
In addition, increasing the preheating temperature promoted the release of N fuel. Due to
the strong reducing atmosphere in the CFB, most of the released N fuel was converted into
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N2, providing an extremely important condition for realizing ultra-low NOx emissions for
this system.

Comparing Tables 1 and 3, we found that, compared to the semi-coke, the volatile
matter content increased for preheated char at 850 ◦C, 880 ◦C, and 910 ◦C due to the
comprehensive effect of the multi-species content. However, what we want to emphasize is
that, with the increase in the preheating temperature from 850 ◦C to 950 ◦C, the conversion
ratio for volatile matter indeed increased continuously, as shown in Figure 10, meaning
that more volatile matter was converted into coal gas.

3.4. Kinetic Analysis of the Semi-Coke and Preheated Char

The thermal gravity–differential thermal gravity (TG-DTG) curves for the samples are
shown in Figure 11. We found that the maximum weight loss temperature occurred earlier
for the preheated char than the raw semi-coke.
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Figure 11. TG-DTG curves for the preheated char and semi-coke.

As shown in Figure 11, the ignition, burnout, and maximum weight loss temperatures
were calculated and are listed in Table 4. The ignition and burnout temperatures for
the preheated char decreased compared to those for the semi-coke, illustrating that the
preheated char had better combustion characteristics. The reason was that during the
process of fuel preheating in the CFB, some gases were released from the inside of the
particles, which also made the structure of the inner pores develop with a large specific
surface area. Zhang et al. [24] preheated anthracite with a specific surface area of 3.53 m2/g
in a CFB and found that the specific surface area of the preheated char was enlarged to
67.1 m2/g, increasing by 19 times. The developed inner pores could facilitate the progress
of the reactions, such as combustion or gasification.

Table 4. The ignition, burnout, and maximum weight loss temperatures.

Sample Ignition Temperature (◦C) Burnout Temperature (◦C) Maximum Weight Loss Temperature (◦C)

Semi-coke 472 581 551
@850 ◦C 464 565 533
@950 ◦C 465 563 526
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The Coats–Redfern method was used to calculate the kinetic parameters with the
following formula and the hypothesis of a first-order reaction [25,26]:

ln
[
−ln(1− x)

T2

]
= ln

AR
βE
− E

RT
, (6)

where x is the mass conversion ratio, T is the heating temperature (K), A represents the
pre-exponential factor (min−1), E is the activation energy (kJ/mol), β is the heating rate
(◦C/min), and R is the gas constant (8.314 × 10−3 kJ/(mol·K)).

The ln
(
−ln(1− x)/T2 ) relationships for 1/T with the raw semi-coke and preheated

char are shown in Figure 12, with the linear fitting curve given by Origin software 2021.
The slope of the curve was −E/R, and the intercept was ln AR

βE . Thus, the activation energy
E and pre-exponential factor A could be determined.
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The kinetic parameters with the different conversion ratios were calculated, as shown
in Table 5. Figure 13 shows the activation energy distribution characteristics for the semi-
coke and preheated char with different conversion ratios.

Table 5. The kinetic parameters with different conversion ratios.

Conversion
Ratio

Semi-Coke @850 ◦C @950 ◦C

E
(kJ/mol)

A
(min−1) R2 E

(kJ·mol)
A

(min−1) R2 E
(kJ/mol)

A
(min−1) R2

0.1–0.2 66.3 1196 0.99 158.9 6.8 × 109 0.99 179.9 1.7 × 1011 0.99
0.2–0.3 90.0 7.3 × 104 0.99 171.0 5.0 × 1010 0.99 199.5 4.2 × 1012 0.99
0.3–0.4 102.4 5.6 × 105 0.99 157.7 5.7 × 109 0.99 163.1 1.2 × 1010 0.99
0.4–0.5 110.0 1.9 × 106 1.00 129.2 5.7 × 107 0.99 144.4 6.1 × 108 0.99
0.5–0.6 111.6 2.4 × 106 0.99 121.9 1.8 × 107 1.00 136.7 1.7 × 108 1.00
0.6–0.7 116.0 4.9 × 106 0.99 121.8 1.7 × 107 1.00 135.2 1.4 × 108 1.00
0.7–0.8 125.6 2.1 × 107 0.99 128.3 4.9 × 107 0.99 141.9 4.0 × 108 0.99
0.8–0.9 148.5 6.6 × 108 0.99 139.2 2.6 × 108 0.99 153.6 2.4 × 109 0.99

Average 109.8 1.9 × 106 0.99 132.1 8.8 × 107 0.99 147.7 1.0 × 109 0.99
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Figure 13. The activation energy distribution with staged conversion ratios.

Interestingly, compared to the semi-coke, although the activation energy E of the
preheated char increased, the pre-exponential factor A also significantly increased. For the
semi-coke, the activation energy increased with an increasing conversion ratio, while for
the preheated char, the activation energy showed a decreasing tendency with an increasing
conversion ratio.

To further explain the effect of preheating on the fuel reaction characteristics, the
reaction rate constant k was obtained using the Arrhenius formula, as expressed by [27]:

k = Aexp(− E
RT

). (7)

The reaction rate constant k values for the raw semi-coke and preheated char with
different temperatures are shown in Figure 14.
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Figure 14. The comparison of k for the raw semi-coke and preheated char.
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The reaction rate constant for the preheated char at 950 ◦C was 20 times higher
than that for the semi-coke when the combustion temperature was higher than 1100 ◦C,
which provided a very important condition for the high-efficiency combustion of the
preheated fuel.

Three models [28]—namely, the homogenous reaction model (HRM), the shrinking
core model (SCM), and the modified volumetric reaction model (MVRM)—were used to
describe the variations in the conversion ratio with time.

The HRM was defined as a first-order reaction with the hypothesis that the particle size
would not change in the reaction process, and the conversion ratio could be expressed by:

dx
dt

= k(1− x), (8)

and its integral transformation expression equation:

− ln(1− x) = kt, (9)

where t is time and k is a constant. In this model, the k value was first determined by fitting
the experimental data, and then x could be calculated based on this HRM.

In the SCM, the hypothesis was that the particle size would vary with time. The
reaction rate could be described by:

dx
dt

= k(1− x)2/3. (10)

For this expression, the equation was integrated and changed into a new exponential
expression as follows:

3
[
1− (1− x)

1
3
]
= kt. (11)

The MVRM improved the homogeneous volumetric reaction model and proved to be
more suitable with variable reaction rates. In the MVRM, the solution function could be the
same with Formula (8), where k could be described by:

k = Ai
1/Bi Bi[−ln(1− x)

Bi−1
Bi ], (12)

and x could be expressed by:
x = 1− exp(−AitBi ). (13)

In this calculation, the i value was 4, indicating that the calculation was divided into
four stages for accurate prediction.

A comparison of the experimental and simulation data with the different models is
shown in Figure 15. We observed that the MVRM model showed good agreement with
the experimental data, and the worst predictions for the semi-coke or preheated char were
given by the HRM model.
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4. Conclusions

Due to its low volatile content, semi-coke has difficulties with ignition and burnout.
Preheating in a CFB before combustion was found to be a good solution to this problem.
Several experiments were performed. The main conclusions are as follows:

(1) There was a strong reducing atmosphere in the CFB with an air equivalence ratio of
0.3, and the temperature was quite stable with a temperature difference lower than
50 ◦C, indicating a uniform preheating process;

(2) As the preheating temperature increased, the ratio of CO/CO2 significantly increased,
which was due to the gasification reaction of CO2 and C intensifying at temperatures
higher than 900 ◦C. The maximum heating value for the coal gas was 3.7 MJ/m3 and
the production rate was 2.57 m3/kg when the preheating temperature was 950 ◦C;

(3) Using the ash balance method, the conversion ratios for different species were calcu-
lated. Over 50% of carbon was converted into CO or CO2, and the conversion of the
different species followed the order C >H > N > S. The conversion ratio for carbon
was linear in relation to that of nitrogen, and the conversion ratio for sulfur was the
lowest due to the presence of inorganic sulfur in the ash;

(4) Thermogravimetric analysis was used to evaluate the kinetic characteristics of the
semi-coke and preheated char. The results showed that the ignition and burnout
temperatures of the preheated char were lower than those of the semi-coke. The
activation energy of the preheated char increased but with a larger pre-exponential
factor. The reaction rate constant for the preheated char was 20 times higher than that
for the semi-coke when the temperature reached 1100 ◦C, which supplied a basis for
the high-efficiency combustion of the preheated char in the following combustor;

(5) Three models—namely, the HRM, SCM, and MVRM—were used to describe the
variations in the conversion ratios with time for the semi-coke and preheated char.
The results indicated that the modified volumetric reaction model agreed well with
the experiment.
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