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Abstract: The decline curve analysis (DCA) technique is the simplest, fastest, least computationally
demanding, and least data-required reservoir forecasting method. Assuming that the decline rate of
the initial production data will continue in the future, the estimated ultimate recovery (EUR) can be
determined at the end of the well/reservoir lifetime based on the declining mode. Many empirical
DCA models have been developed to match different types of reservoirs as the decline rate varies
from one well/reservoir to another. In addition to the uncertainties related to each DCA model’s
performance, structure, and reliability, any of them can be used to estimate one deterministic value of
the EUR, which, therefore, might be misleading with a bias of over- and/or under-estimation. To
reduce the uncertainties related to the DCA, the EUR could be assumed to be within a certain range,
with different levels of confidence. Probabilistic decline curve analysis (pDCA) is the method used
to generate these confidence intervals (CIs), and many pDCA approaches have been introduced to
reduce the uncertainties that come with the deterministic DCA. The selected probabilistic type of
analysis (i.e., frequentist or Bayesian), the used DCA model(s), the type and the number of wells, the
sampling technique of the data or the model’s parameters, and the parameters themselves undergo a
probability distribution, and these are the main differences among all of these approaches and the
factors that determine how each approach can quantify the uncertainties and mitigate them. In this
check for work, the Bayesian and frequentist approaches are deeply discussed. In addition, the uncertainties of
updates DCA are briefly discussed. Further, the bases of the different probabilistic analyses are explained.
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After that, 15 pDCA approaches are reviewed and summarized, and the differences among them
are stated. The study concludes that Bayesian analysis is generally more effective than frequentist
analysis, though with narrower CIs. However, the choice of DCA model and sampling algorithm
can also affect the bounds of the Cls and the calculation of the EUR. Moreover, the pDCA approach
is recommended for quantifying uncertainties in DCA, with narrower CIs that indicate greater
effectiveness. However, the computational time and the number of iterations in sampling are also

considered critical factors. That is why various assumptions and modifications have been made in
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the pDCA approaches, including the assumption of a certain probability distribution for the sampled
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parameters to improve their reliability of reserve estimation. The motivation behind this research
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data, which frequently have a lot of noise [4]. When production profiles show an unknown
behavior at a late time during an evaluation of the reservoirs, uncertainty analysis is
extremely important. Hence, it is essential to predict production using a probabilistic
methodology [5].

The challenge in estimating probabilistic reserves using DCA is not only in determining
how to identify the probabilistic features of complicated production data sets but also in
determining which approach (i.e., set of steps) should be followed to improve the reliability
of the uncertainty quantification and forecasting of the reserve with a higher level of
confidence.

In this paper, the bases of the probabilistic analysis are firstly introduced. Secondly, the
main sources of uncertainties related to production forecasting using empirical methods are
summarized. In addition, the combined DCA models in the previous studies are presented.
After that, 15 pDCA approaches are comprehensively reviewed and compared. The goal of
this research was to highlight the key distinctions between the pDCA techniques, as well
as their difficulties, constraints, and dependability.

1.1. Overview of DCA Models

DCA, as a tool to estimate reserves in oil and gas wells/reservoirs, was firstly intro-
duced by Arps [6]. Three models were proposed to describe the production decline of a
conventional well (exponential, harmonic, and hyperbolic). The three main assumptions re-
lated to Arps’s models are: (1) the flow has reached the boundary (i.e., boundary-dominated
flow (BDF)), (2) there are stable producing conditions over a certain period, and (3) there
are stable reservoir conditions [7]. The three models are distinguished based on the value of
the decline curve exponent b (Table 1). Several models were developed for DCA after Arps’
models [1]. The reason was mainly that Arps’s models are not effective for unconventional
reservoirs [3,8,9], and the EUR is overestimated with a b-value of greater than one [10].

In unconventional oil and gas wells, the production mode is described by a fast decline
in the flow rate in the early time and a long tail of a very slow decline in the late time [11,12].
The main reasons for this are the system complexity and the developing methodology of
such reservoirs [13]. These reservoirs are developed by drilling a horizontal well with
multistage hydraulic fractures [14]. The hydraulic fractures create artificial permeability,
allowing flow to the wellbore [14,15]. The flow is transient in these fractures and could
last for a long time before reaching the BDF [16-18]. To match the production behavior of
unconventional reservoirs, many DCA models have been developed [19]. Table 1 shows
several DCA models, such as Arps’s models, modified Arps’s model, the logistic growth
model (LGM), the stretched exponential production decline (SEPD) model, Duong’s model,
the extended exponential decline curve analysis (EEDCA) model, Pan’s model, and the
power law exponential (PLE) model. Different DCA models were developed to predict
future performance of both conventional and unconventional reservoirs [20]. These DCA
models (Table 1) are coupled with various pDCA methods to estimate reliable EUR.

Table 1. Summary of the DCA models combined with the pDCA approaches.

Model (q) versus (t) * Reference
Exponential Arps (1945) gt = g;exp(—D;t) [6]

. _ ql
Hyperbolic Arps (1945) gt = ATy [6]
Harmonic Arps (1945) gt = (1+qib-t) [6]

Modified Arps approach (2008) gt = D )(qi)A(zt:Ot o [21,22]
i)Aat=0\} —lLast
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Model (q) versus (t) * Reference

PLE (2008)

De # 0 q = g;.elD~1=Dit"] 23,24]

Do =0 q= qi.e[*th"]

SEPD (2010) q = q; - exp[—(t/T)"s= | [25,26]

Duong (2010, 2011) 9= g1t "exp | LB (10— 1)] [27,28]
o — LGmM—1

LGM (2011) q=gqi —"m{ﬁmﬁ“ﬁw)z [29]

EEDCA (2015) q=q;i exp[—(B1+Be-e " )t] [30]

Pan (2017) 9 = AP (L + Joo e @PVEHTD/ (@V)) [31]

* Letters with the subscript of the model’s initials are the fitting parameters.

1.2. Uncertainties Related to DCA

The EUR estimated from any DCA model is a deterministic value that might be over-
and/or under-estimated according to the used model [32]. The amount of data available
for fitting and defining the model’s parameters, the regression technique itself utilized for
fitting, the quality of the data, and the outlier detection and removal strategies used to
improve the quality of the data are all potential sources of uncertainty. Some DCA models
are more sensitive to the quantity and quality of production data while others are more
sensitive to both. These variations change depending on the model [33]. Each mentioned
source of uncertainty subjected to DCA models should be separately investigated and
quantified. This investigation is out of the scope of this research, however, and as an
example, Figure 1 shows that different regression techniques can introduce uncertainty
into the estimation of the EUR, despite using the same DCA model, the same portion of the
fitting data set, and the same portion of the prediction data set for analysis [34].
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Figure 1. Differences when using the ordinary least squares (OLS) versus weighted least squares
(WLS) regression techniques with the same DCA model (Reproduced from [34]).
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It should be pointed out that a reliable EUR is more affected by the performance
of the selected DCA itself. In other words, if a DCA model tends to overestimate the
reserve, the EUR that could be obtained from any pDCA will still be overestimated, and
vice versa. The only difference is that the DCA model provides a deterministic value
of the EUR while the pDCA approach provides a range of EUR values. In our previous
research, we comprehensively reviewed numerous DCA models and their performances in
overestimating or underestimating the EUR [35]. Moreover, other studies have addressed
the conditions of applying an effective DCA [36,37].

1.3. Probabilistic DCA (pDCA)

With pDCA, probabilities are introduced for any estimated value based on the degree
of uncertainty. Unlike DCA models, pDCA approaches consider talking with probability
language rather than with deterministic values [38]. pDCA approaches usually estimate
the reserves with three levels of confidence (P10, P50, and P90) and a corresponding 80%
confidence interval (CI). The question is, how accurate is this 80% CI? In other words, is
the real worth of reserves included within this range 80% of the time based on a substantial
body of analyses? The genuine reserve will be outside of 80% confidence ranges of more
than 20% if the uncertainties are undervalued, which is frequently the case. These three
levels of confidence can be determined using Equations (1)—(3) [39]:

e ~(inx - 2
fio= /0 (xov2n) exP( 20° ) W
1 (e
Psg = ; (x.am) exp( 202 ), and )

I R
Py —/0 (x.m/ZTT) eXP( 252 ), ®3)

where x is the sample value, y is the mean, and ¢ is the standard deviation of the parameter
under study.

Usually, P19, P5p, and Pgg represent these three levels of uncertainties. Pqg is the
optimistic case, Psg is the moderate case, and Py is the pessimistic case. In other words,
P1g and Pyj represent the limits that the true EUR might be located within. The CI between
those limits is crucial as the narrower the CI, the less uncertainty we have [40].

1.4. Types of Statistical Analysis

Frequentist and Bayesian are the two main statistical analyses related to probabilistic
studies. A frequentist analysis is only driven by the data, but a Bayesian analysis takes
into account prior information (background knowledge) [41]. The frequentist technique
evaluates the likelihood of finding another data set at least as extreme as the one gathered,
whereas the Bayesian approach calculates the likelihood that a certain hypothesis will be
true, given the p-value that is updated with more data [42,43].

The prior distribution (simply prior) of the outcome 6 is labeled as P(f). It is the
probability distribution that reflects what is known about an outcome before a test or other
piece of information is acquired. Priors may have little to no background data if they are
unavailable or of questionable reliability. These priors are called non-informative. The prior
of any parameter is assumed to follow a certain probability distribution. Many probability
distributions could be assumed [44].

Uniform distribution is the most common assumption. Given particular parameter
values, the likelihood function reflects the assumed distribution of the data. The likelihood
function comprises all of the information regarding parameter values collected from the
data and how the data affect the posterior distribution [45]. A Bayesian model can only
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be fully characterized when both the prior distribution and the likelihood function are
completely described. The prior distributions and the observed data are combined to create
the posterior distribution [46]. It takes into account the most recent knowledge of the
parameter values and entails balancing prior knowledge against observed data. Depending
on the observed data, it expresses the remaining uncertainty about the set of parameters in
question [38].

After taking into consideration the uncertainty of the parameter value that is indicated
in the posterior distribution, the posterior predictive distribution indicates the distribution
of upcoming, further observations that are collected from the population. It may be
calculated via compositional sampling, where fresh observations are generated by drawing
parameters from the posterior and adding them to the likelihood function. Equation (4)
represents Bayes” Theorem, by which the most recent understanding of a parameter or
hypothesis may be updated when new data become available [47].

p(6 | Data) = P(Da;?[lfti)' p(g), 4)

where Data refers to the set of observations in the data and 6 is a set of the parameters in
the model. p(6 | Data) represents the posterior distribution of the parameters, p(Data | 6) is
the likelihood function, p(f) is the prior distribution of the parameters, and p(Data) is the
marginal likelihood function (i.e., a normalizing constant).

One of the main distinctions between frequentist and Bayesian inference is the prior;
in frequentist studies, findings are purely based on the data that are collected [48]. The
previous knowledge might be created using historical information, expert opinions, or a
combination of both. When compared to the frequentist technique, which is frequently
misinterpreted, the interpretation of results is more intuitive when using a Bayesian ap-
proach as considering good prior information can lead to improved predictions. Both
the frequentist and Bayesian techniques are effective for data analysis as long as they are
appropriately interpreted.

1.5. Resampling Technigues

To perform a probabilistic study, the possible outcomes of uncertain parameters must
be estimated. This requires multiple samples to simulate and consider a wide range of
possibilities of the important variables. In the case where a single data set is available,
multiple data sets are generated by resampling the original data set [49]. Monte Carlo
(MC) and Markov Chain Monte Carlo (MCMC) simulations are mathematical techniques
used to predict the probability of a variety of outcomes. Unlike MC sampling methods
that can draw independent samples from the distribution, the MCMC methods draw
dependent samples.

Many sampling algorithms can be coupled with each technique to generate a large
number of simulated samples. “A sampling algorithm is said to be enumerative if all the
possible samples must be listed to select the random sample and an efficient sampling
algorithm is—by definition -the fast one” [50]. Each sampling algorithm has different
characteristics. Table 2 summarizes the algorithms that are coupled with the MC or MCMC
simulation techniques for the different pDCA approaches being addressed in this study.
It should be mentioned that the sampling process is the main intensive mathematical
computation in the pDCA. Generally, it has been recommended by many recent studies to
depend on current computing capabilities, data structures, and management workflows
for fast and cost-effective data analysis [51-53].
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Table 2. Summary of the resampling techniques combined with the pDCA approaches.

Simulation Technique Types of Statistic Analysis Sampling Algorithms
‘ e Bootstrap
MC Frequentist e  Time series
Bayesian e  Prior sampling
Posterior sampling
. Likelihood-based Nonlikelihood-based
MCMC Bayesian

e Metropolis Hasting (MH) e  Approximate Bayesian
e  Gibbs computation (ABC)

2. pDCA Approaches

pDCA is one of the analysis tools used to quantify and reduce uncertainties. However,
the basis of analysis also carries uncertainties. Those uncertainties are mainly related to the
assumptions of the probability distributions of the parameters, the sampling techniques,
and the computational time. All of these reasons and more have led to the development
of several pDCA approaches to make it more effective in predicting the production and
narrowing the bounds of P1g, Psg, and Pyy.

As mentioned earlier, pDCA is based on providing probability distributions of the
parameters of a selected DCA model(s). Here, some questions should be asked, such as:
Which model or a combination of models should be used? What was the used sampling
technique? What is the type of probability distribution to be assumed that the model’s
parameter/s are following? What is/are the parameter(s) to be probability distributed?
The different answers to and preferences of these questions have led to the development of
many pDCA approaches.

2.1. Jochen’s Approach (1996) [54]

Jochen and Spivey introduced the bootstrap sampling technique, which is related
to DCA models [54]. The motivation behind this work was the reason for building the
probability levels of interest (i.e., P19, Psp, and Pgg) based on the deterministic results. The
simple assumption that the model’s parameters are following a certain distribution is not
efficient and easily could be wrong. The authors showed that the unreliability related to
such pDCA approaches was due to the use of the same original data to create a probability
distribution of the estimator’s (i.e., the selected DCA model’s) parameters. Therefore, the
bootstrap technique was used to resample the original data several times and the MC
simulation was used to create the probability distribution and estimate Py, Psg, and Pyp.
Moreover, they proved that if the number of iterations is larger than 100, the trend will be
the same.

Although this method does not require previous knowledge about the prior distri-
butions of the parameters, it assumes that there is no relation between the original data
(i.e., independent) and it follows the same distribution, which is wrong as the production
data points are, somehow, correlated, and therefore, they are considered a time-series-data
structure. Moreover, creating several synthetic data sets from the original production data
make this approach computationally intensive, as was reported in their studies.

2.2. Cheng’s Approach (2010) [55]

To preserve the data structure, two more steps were added to mitigate the assumptions
of the Jochen approach, where Cheng et al. introduced what they called the modified
bootstrap method (MBM) [55]. The first step was to perform a nonlinear regression with
a hyperbolic or exponential model to fit the production data, and the second step was to
use a block resampling of the autocorrelated residuals obtained from the fitted DCA model
(Arps, in this case) to the actual data. In the end, the regressed production data are then
sampled several times to create synthetic data sets and the accuracy of MBM is dependent
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on the block size, as denoted by the authors. Table 3 states the differences between Jochen’s
and Cheng’s approaches while Figure 2 shows Cheng’s approach modifications to the
bootstrap sequence.

Table 3. The differences between Jochen’s and Cheng’s approaches.

Jochen’s Approach Cheng’s Approach

Uses bootstrap as a sampling technique

Uses Arps’ models as the DCA model

Assumes a time-series-data structure

Resampled the fitted data obtained from a DCA model (Arps)

Assumes no correlation between the data points

Resampled the original data

Random samples from the original data are generated Samples are generated based on autocorrelated residual blocks
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Figure 2. A scheme that shows the modifications to Jochen’s approach by Cheng.

In testing Cheng’s approach on 100 oil and gas wells, the coverage range (CR) was
improved to 83% compared to the original approach by Jochen (34%). It was suggested that
reusing this approach after fitting the recent production history will lead to improving the
CR of future production within an 80% CI, as shown in Figure 3. This is called a backward
scenario. Conventionally, when all of the production history is used for regression, the
actual performance becomes outside of the 80% CI. On the other hand, when only the recent
production history is used for regression, the actual performance is within the 80% CI.

Although the MBM has proven to be well-calibrated in unconventional reservoirs [56],
it could be inferred that the efficiency of the forecasting decreases for the far future because

the interval width becomes wider.
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Figure 3. The “backward scenario”.

2.3. Minin’s Approach (2011) [57]

The Arps relationship was utilized to analyze 150 horizontal and hydraulically frac-
tured shale gas wells using the pDCA approach and the conventional MC sampling
method [57]. A probability distribution was created for the initial decline rate (D;), decline
exponent (b), initial flow rate (g;), and the initial flow rate divided by the lateral length
of the wells (g;, n). Additionally, they estimated the cumulative distribution functions
(CDFs) for each parameter four times (i.e., one CDF after each year of production). They
concluded that with time, the b-exponent tended to decrease and stabilize, and D; tended to
increase and stabilize. This is because the flow regime is shifted with time from transient to
BDE. Moreover, an incensement of the g; could be related to the incensement of the lateral
horizontal length in the case of drilling a new development well. In addition, there could be
a negative correlation between g; and the horizontal length after reaching a certain length.

The novelty of this work was the conducted pDCA to quantify the uncertainty, and to
characterize the flow regime changes with time. It was also used to recommend a drilling
design in the case of further development of wells.

2.4. Gong’s Approach (2011) [56]

DCA based on Bayesian statistics was first introduced by Gong [56]. The MCMC sam-
pling technique based on the MH algorithm was used to obtain the posterior distribution
of the Arps parameters.

The approach was tested based on 197 shale gas wells. There were two main advan-
tages were related to this work: (1) compared to the MBM method, this approach was
10 times faster, and (2) unlike using the MBM method, the CI did not diverge too much in
forecasting the far future. Figure 4 shows a comparison between Gong’s approach and the
MBM approach when both approaches are applied to the same dataset.
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Figure 4. A comparison between Gong’s approach and the MBM approach.
2.5. Brito’s Approach (2012) [58]

Working on multiple wells rather than a single well, Brito introduced an approach
based on a normalized rate called production decline envelopes (PDE) [58]. This approach
allowed for analyzing multiple wells and creating decline bands that could be used as the
pDCA. This approach can be summarized in three steps, as shown in Figure 5.

i T

Preprocessing and

. e . Normalized histories
synchronizing histories

q(t) = Normalized Rate (qt/ql.) X q;

Hyperbolic decline SEPD

q(t) = Average Rate (qt/qi) x P50(q,)

Figure 5. Summary of Brito’s approach.

The maximum, average, and minimum decline curves can be seen as Py, Psp, and
Pgg. The probability distribution is conducted to the initial flow rate and not to the selected
DCA model parameters.

2.6. Gonzalez'’s Approach (2012) [5]

Following the same steps proposed by Gong et al. (i.e., using the MCMC sampling
technique and even the same data), Gonzalez et al. extended this work to be combined
with more than one DCA model [5,59]. They used the Arps, modified Arps, Duong’s,
PLE, and SEPD models with the MCMC sampling technique. They denoted that Psj using
Arps was the best amongst all of them, with the exception of the short production data,
while PLE came second and performed well using the short production data. Overall, the
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Start

estimated Psp from any model was more reliable than each single deterministic reserve
value. This work suggested that many DCA models can be combined with the MCMC
technique. Comparing all of them can help in minimizing uncertainty about forecasting.

2.7. Fanchi’s Approach (2013) [60]

Fanchi introduced a simple approach to conduct a pDCA-based approach on any
selected deterministic model [60]. Working on 110 shale gas wells from different fields
and using the Arps and SEPD models, the authors proposed the steps of the approach
shown in Figure 6. The MC simulation sampling technique was used to create a probability
distribution of the chosen model’s parameters through 1000 iterations after selecting a
certain probability distribution for them.

Gather
—— | rate-time
data
s . Triangle
pecify input Specify
bbb | constrains
distribution
- Objective
Uniform function
Gas rate
Cumulative
gas
\/
Generate EUR Apply Generate a
distribution |«—— constrains |<«—— "angll‘?Of
for subset (select subset) decline
curves
Determine =
P10,P50,P90

Figure 6. Summary of Franchi’s approach.

It should be pointed out that the study did not compare the results of the two proposed
pDCA studies, and it did not present the coverage range of both of them. Therefore, it
could not be considered a comparative analysis.

2.8. Kim’s Approach (2014) [61]

Appling both approaches introduced by Brito and Fanchi, but with small differences,
Kim used the MC simulation sampling technique with 5000 iterations and a triangle
probability distribution for a single well analysis based on the Arps and SEPD models
(similar to Fanchi). Moreover, the PDE was applied for multiple-wells analysis, similar
to Brito’s approach [61]. Compared to the previous works of Brito and Fanchi, Kim's
work introduced nothing new, but it used a triangle probability distribution instead of the
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uniform distribution followed by Fanchi. In addition, Kim performed 5000 iterations while
Fanchi performed 1000 iterations.

2.9. Zhukovsky Approach (2016) [62]

Zhukovsky et al. worked on more than 200 shale oil wells [62]. The EUR was esti-
mated using the EEDCA model. The authors used the MCMC simulation as the sampling
technique with 100,000 iterations to estimate the posterior probability distribution of the
EUR using Matlab software. Calculating Py, Psg, and Pgj from the CDF, they found that
the coverage rate of the 80% CI was 78.4% of the used DCA models, which was a good
result. However, many wells showed high average relative errors and average absolute
errors related to the actual EUR. They assigned these errors to the low quality of the data
collected and being tested and not to the approach itself. Even if the resampling algorithms
and different approaches could reduce some of these errors, the heavy noise and fluctuating
data could lead to unreliable estimations.

2.10. Paryani’s Approach (2017) [63]

Paryani et al. introduced their approach by combining the Arp and logistic growth
(LGM) models in a probability study [63,64]. It was based on using the ABC sampling
technique to approximate the complicated likelihood function of the model’s parameters
by 1000 iterations. The approach was tested based on 121 oil and gas shale wells from two
different fields. They denoted that their approach was much faster and could be combined
with other deterministic DCA models. They indicated that LGM was much better than the
Arps model and provided better CRs. They also compared their approach with Gong’s
approach, as shown in Figure 7. Based on this comparison, although the two approaches
bounded the production history from Pjg to Pgg, Paryani’s approach had narrower intervals,
which indicated low uncertainty.

100

] Fittiné : Prediction
P >

. |
[T 1
] 1
= !
S 1
-~ : — ABC P90
g 1 — ABC P50
B io — ABCP10
=
°
2
& - — MCMC P90
= = = MCMC P50
] MCMC P10
[*]
S

0 2 4 6 8 10 12 14 16 18 20

Time (Years)

Figure 7. A comparison between Paryani’s and Gong’s approaches.

2.11. Jimenez’s Approach (2017) [65]

Working on tight gas reservoirs, Jiménez introduced an approach to estimate the
reserves based on a probability study [65]. In this work, they started with a parametric
study on the Arps model’s parameters D; and b to determine which parameter affected the
reserve estimation more than the other. They denoted that the b parameter had a greater
effect than the D; parameter. This was known before this work as the b exponent is the
controller of the curvature degree. Therefore, it affects the EUR value more than the D;
parameter does.
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Applying different DCA models (hyperbolic Arps, SEPD, PLE, and LGM), the authors
determined the EUR from each model. They proposed that SEPD was the conservative
model among them. Therefore, they conducted a probability study to calculate Pyq, Ps,
and P9y based on the MC simulation sampling technique and Chi-square distribution of
the model parameters.

2.12. Joshi's Approach (2018) [34]

Joshi used a time series analysis technique and a frequentist statistical analysis to
quantify uncertainty [34]. The LGM and SEPD models were used to test their approach
on 100 shale gas wells. Based on de-trending (i.e., subtracting the deterministic trend of
the model from the actual data), the time series autoregressive integrated moving average
(ARIMA) model was integrated with the LGM and SEPD models to generate the CIs (i.e.,
P19, P5p, and Pgg) around the production forecast.

It could be inferred that by increasing the available production data for fitting, the 80%
CI became narrower (i.e., the uncertainty decreased), as shown in Figure 8.

=
o
o

100 100

(a) (b) (c)

— Production data
— Average trend
-~ P50

-— P10

10 10 N — P50

10

Monthly gas production (MMscf/month)

1 1 1
0 2 4 6 8 1012 14 16 18 20 22 0 2 4 6 8 10121416 18 20 22 0 2 4 6 8 10121416 18 20 22

Time (Years)
Figure 8. Results of Joshi’s approach when increasing the production data being fitted from (a—c).

Additionally, the authors also compared their approach with Gong’s approach, and
they denoted that Gong’s approach was much more reliable as it had narrower ClIs, as
shown in Figure 9 [56]. The comparison could be considered as evidence of the effectiveness
of the pDCA approach based on Bayesian analysis compared to the pDCA approach based
on frequentist analysis.

100

Fitting Prediction

19 —— Bayesian P90

—— Bayesian P50
—— Bayesian P10

-~ ~ MBM P90

= = MBM P50
- = MBM P10

Monthly production (MMcf)

0 2 4 6 8 10 12 14 16 18 20

Time (Years)

Figure 9. A comparison between Gong’s and Joshi’s approaches.
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2.13. Hong’s Approach (2019) [66]

Hong worked on nearly 69 unconventional oil wells from two different fields [66].
Four DCA models—Arps, SEPD, LGM, and Pan—were used. Using MATLAB software
(MathWorks 2017a), they fitted each model 10 times using the cross-validation technique
instead of the least squares estimation, which is commonly used in non-linear regression.
This technique helped in improving the curve-fitting. The motivation behind this work
was to determine which DCA model had the highest potential to perform pDCA among
the other models. After choosing the prospective DCA model, the MC simulation sampling
technique was used to generate a uniform distribution of the model’s parameters.

The authors concluded that the goodness of fitting was not a condition for the best
model, but the best model was that one able to represent the actual flow behaviors. They
also denoted that a large production history may not reduce the model’s uncertainty. Finally,
and based on their work, Arps and LGM became more optimistic in estimating the reserve
compared to the SEPD and Pan models. They did not indicate the number of iterations
used to generate the uniform distribution or the computational time, which would have
been important for evaluating their approach compared to other approaches.

2.14. Fanchi’s New Approach (2020) [67]

Fanchi introduced his pDCA approach after working on 15 shale oil wells in two
different fields [67]. Using the MC simulation sampling technique, he created a uniform
probability distribution of the used DCA models (Arps and SEPD) with 1000 iterations.
The Py, Psg, and Pgy were also estimated for both models. The study did not compare
the results of the two proposed pDCA studies and denoted nothing about each study’s
coverage. Therefore, it could not be considered a comparative analysis. The difference
between this work and his previous work is that the domain of this study was shale oil
while that of the previous work was shale gas.

2.15. Korde’s Approach (2021) [68]

Korde et al. worked on 74 conventional and unconventional wells (51 gas wells and 23
oil wells) to introduce their approach [68]. They used five DCA models (Arps, PLE, Duong,
SEPD, and LGM). They assessed each DCA model based on three Bayesian sampling
techniques (Gibbs, MH, and ABC). The probability distribution used was the maximum
likelihood distribution. They introduced two ways to conduct the pDCA. The first was to
choose one DCA model and evaluate the performance of the sampling techniques. They
found that LGM performed well with all the sampling techniques except for MH. The
second was to choose one sampling technique and evaluate the performance of all the DCA
models. They found that the Gibbs algorithm performed well with all the DCA models
except the Arps model. The computational time for each pDCA was between 2 and 25 s.

Figure 10 shows the different Bayesian sampling algorithms used in conjunction with
the Arps model. It is easy to see how the interval width (IW) was the largest with the
Gibbs algorithm and the lowest with the ABC algorithm. The author suggested that by
preprocessing the data and reducing the noise, the IW was improved and the prediction
errors were reduced.

The authors also concluded that, adding more production data to the pDCA model
improved its results. Therefore, conducting more than pDCA helped to assure the results
of the EUR.

The major differences between the aforementioned pDCA approaches are clearly
stated and summarized in Table 4. The sampling techniques, the study domain, the selected
models, and the used probability distributions are categorized and compared.
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Figure 10. The different Bayesian sampling algorithms that were used in conjunction with the Arps
model: (a) MH algorithm, (b) Gibbs algorithm, and (c) ABC algorithm.

Table 4. Summary of the pDCA approaches.

. . Used
pDCA Model PrObab.ﬂlSth Samleg No. o.f Computational Time Probability
Technique Technique(s) Integrations e
Distribution
Jochen (1996) Frequentist Analysis MC >100 6.5h -
q y Bootstrap ’
Cheng (2010) Frequentist Analysis MC More than 6.5 h -
& q y Bootstrap ’
Minin (2011) B ian Analysi MC - - Uniform
e ayesia yeis Latin Hypercube 1o
Brito (2012) Bayesian Analysis MC - - Uniform
. . MCMC . Approximate
Gong (2011) Bayesian Analysis MH 2000 25 min posterior
. . MCMC . Approximate
Gonzalez (2012) Bayesian Analysis MH 1000 25 min posterior
Fanchi (2013) Bayesian Analysis MC 1000 - Uniform
Kim (2014) Bayesian Analysis MC 5000 - Triangle
Zhukovsky . . MCMC . Approximate
(2016) Bayesian Analysis MH 100,000 25 min posterior
MCMC
ABC
. . . MC Faster than Gong Likelihood-free
Paryani (2017) Bayesian Analysis ABC 10,000 (2011) approximation
Rejection
ABC
Jimenez (2017) Bayesian Analysis MC - - Chi-square
Joshi (2018) Frequentist Analysis Time series
Hong (2019) Bayesian Analysis MC - - Uniform
Fanchi (2020) Bayesian Analysis MC 1000 - Uniform
MCMC
. . Gibbs I
Korde (2021) Bayesian Analysis MH 20,000 5-25s Likelihood

ABC
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Table 4. Cont.
pDCA Model The Study Domain The CI(\)/In(;l;lel;(esc)l DcA Reference
Conventional oil wells,
Jochen (1996) two different fields Arps [54]
Conventional mature oil and gas wells;
Cheng (2010) 100 wells Arps [55]
Minin (2011) Shale gas reservoirs; Arps 157]
150 gas wells P
Brito (2012) Conventional oil wells PDE [58]
Shale gas reservoirs;
Gong (2011) 197 gas wells Arps [56]
Shale gas reservoirs; Arps, PLE, SEPD,
Gonzalez (2012) 197 gas wells and Duong 5]
. Shale gas reservoirs;
Fanchi (2013) 110 gas wells Arps and SEPD [60]
. Shale gas reservoirs; Arps, SEPD,
Kim (2014) 4 gas wells and PDE [61]
Zhukovsky Shale reservoirs;
Approach (2016) 199 shale oil wells EEDCA [621
Unconventional reservoirs;
Paryani (2017) 21 oil wells (Eagle Ford) and Arps and LGM [63,64]
100 gas wells (Barnett Shale)
Jimenez Tight gas reservoir; Arps, SEPD, PLE, [65]
Approach (2017) 1 gas well LGM, and Duong
Joshi Approach Shale reservoirs;
(2018) 100 shale gas wells LGM and SEPD [34]
Unconventional shale oil;
Hong (2019) Bakken field, 28 wells, and AIPS;;];PIE; ’n LGM, [66]
Midland field, 31 wells
Unconventional shale oil;
Fanchi (2020) Bakken field, 9 wells, and Arps and SEPD [67]
Eagle Ford, 6 wells
Conventional and unconventional reservoirs;
. ! Arps, SEPD, PLE,
Korde (2021) 23 oil wells and Duong, and LGM [68]

51 gas wells

3. Conclusions and Recommendations

In this research, 15 different pDCA approaches were comprehensively reviewed and

compared. The following conclusions can be drawn:

The main differences among them are: (1) the selected DCA model(s) combined with
the pDCA approach, (2) the used sampling technique and the assumed probability
distributions of the model’s parameters, (3) the domain of the study, and (4) the

The probability techniques of the approaches are mainly Bayesian analyses and only a
few approaches are frequentist analyses. A frequentist analysis has a larger compu-
tational time than a Bayesian one. In addition, a Bayesian analysis is more effective,

[ ]

computational time for each approach.
[ ]

given narrower Cls than in a frequentist one.
[ ]

The bounds of the CIs and the CR change when using a different decline curve
model(s) and when using different sampling algorithms. The ABC algorithm was the
best at bounding the ClIs when it was used with the Arps’s model. The assumption
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that the parameters that undergo sampling follow a certain probability distribution
is important. The uniform distribution was the most common among the various
approaches. Other assumptions such as posterior approximation and maximum
likelihood are highly recommended.

pDCA helps in quantifying the uncertainties related to DCA. Ranges of the EUR with
a certain level of confidence are better than one deterministic EUR value that might
be over- or under-estimated. The narrower the CIs, the more effective the pDCA
approach. The computational time is critical, especially with approaches such as those
of Cheng and Gong. The number of iterations in sampling is critical. As the number of
iterations increases, the uncertainties decrease, but the computational time increases.
As a recommendation, the larger the production history, the narrower the CIL In
addition, improving data quality before an analysis by removing the outlier from the
production data will reduce uncertainties and improve forecasting. Using more than
one DCA model can also help in improving accuracy.

4. Suggestions for Future Research and Development

Based on this critical and detailed review of the previous works relevant to pDCA, it

might be noticed that many research gaps should be filled and investigated. The following
can be recommended for future research:

Data size and data quality are crucial for any analysis. Therefore, testing the sensitivity
of some of the proposed approaches to different data sizes and data qualities is
recommended to gain deep insights into their performance under such conditions.
Data of the early production period have a great impact on the whole analysis for two
main reasons: (1) at an early time, especially in shale hydrocarbons, changes in flow
regimes are severe, and (2) the flowback period is too noisy and could last for a long
time. As result, further investigations of the impacts of this period of data on pDCA
are recommended in order to develop more robust approaches.

Computational time is critical for such analysis and is greatly affected by the number
of iterations, the data size, and the used sampling algorithm. Based on this, more in-
vestigation is recommended about: (1) the sampling techniques and their effectiveness,
(2) which critical parameters of a model should undergo probability distribution, and
(3) which is the most effective and reliable distribution for each parameter.

It is recommended to comprehensively use the new advancements in machine learn-
ing algorithms and supercomputing, which are capable of dealing with pDCA and
include other production records such as pressure, water cut, chock size, periodic
liquid loading, etc. in the analysis, which could lead to great improvements in produc-
tion forecasting.
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Nomenclature

ABC Approximate Bayesian Computation
ARIMA  Auto-Regressive Integrated Moving Average
BDF Boundary Dominated Flow

BHP Bottom Hole Pressure

CDF Cumulative Distribution Functions

CI Confidence Interval

CR Coverage Range

DCA Decline Curve Analysis

EEDCA  Extended Exponential Decline Curve
EUR Estimated Ultimate Recovery

W Interval Width

LGM Logistic Growth Model

MBM Modified Bootstrap Method

MC Monte Carlo

MCMC  Marcov Chain Monte Carlo

MH Metropolis-Hasting

OLS Ordinary Least Squares

pDCA Probabilistic Decline Curve Analysis
PDE Production Decline Envelopes

PLE Power Law Equation

SEPD Stretched Exponential Decline Model
WLS Weighted Least Squares

b Decline-Curve Exponent

D Decline Rate (Day 1)

Di Initial Decline Rate (Dayfl)

qi Initial Flow Rate (bbl/D or scf/D)
t Time (day)
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