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Abstract: Induced seismicity has been a serious problem for many coal mines in the Upper Silesian
Coal Basin in Poland for many decades. The occurring mining tremors of the rock mass generate
seismic vibrations that cause concern to the local population and in some rare cases lead to partial
damage to buildings on the surface. The estimation of peak ground acceleration values caused by
high energy mining seismic tremors is an important part of seismic hazard assessment in mining
areas. A specially designed bootstrapping procedure has been applied to estimate the ground motion
prediction model and makes it possible to calculate the confidence intervals of these peak ground
acceleration values with no assumptions about the statistical distribution of the recorded seismic
data. Monte Carlo sampling with the replacement for 132 seismic records measured for mining
seismic tremors exceeding 150 mm/s2 have been performed to estimate the mean peak ground
acceleration values and the corresponding upper limits of 95% confidence intervals. The specially
designed bootstrap procedure and obtained ground motion prediction model reflect much better
the observed PGA values and therefore provide more accurate PGA estimators compared to the
GMPE model from multiple regression analysis. The bootstrap analysis of recorded peak ground
acceleration values of high-energy mining tremors provides significant information on the level of
seismic hazard on the surface infrastructure. A new tool has been proposed that allows for more
reliable determination of PGA estimators and identification in the areas in coal mines that are prone
to high-energy seismic activity.

Keywords: underground coal mine; mining-induced seismicity; mining seismology; ground motion
prediction equations; seismic hazard; peak ground acceleration; Monte Carlo method

1. Introduction

Induced seismicity has posed a serious problem for many coal mines in the Upper
Silesian Coal Basin in Poland for more than a hundred years. The occurring mining tremors
of the rock mass generate seismic vibrations that cause concern to the local population and
in some cases lead to damage to underground galleries and buildings on the surface [1–5].
Recently, in this context, promising machine learning and deep learning techniques have
been employed to determine the seismic source location and to prevent rockburst oc-
currence [6]. The Ground Motion Prediction Equations (GMPEs) are commonly used to
calculate seismic peak ground acceleration (PGA) parameters to assess seismic hazards and
usually include the characteristics of the source, path, and site effects of mining seismic
events. The other frequently used parameter in seismic hazard assessment in mines is
the peak ground velocity (PGV) parameter [7]. Peak ground acceleration (PGA) and peak
particle velocity (PPV) are both measures of the intensity of ground motion during an
earthquake or seismic event. The relationship between PGA and PPV depends on several
factors, including the characteristics of the seismic source, the distance from the source,
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and the nature of the soil or rock through which the seismic waves travel. In general, there
is a correlation between PGA and PPV, with higher PGA values typically corresponding to
higher PPV values. However, this relationship is not straightforward, and the correlation
between PGA and PPV can vary depending on the specific conditions of the seismic event.
In this study, we have analyzed PGA values.

Ground motion prediction equations (GMPEs) are important because they provide a
mathematical relationship between mining tremor characteristics, such as seismic energy
and distance, and the resulting ground motion at a particular site. GMPEs are critical
tools for assessing the seismic hazard of coal mines, designing mining earthquake-resistant
structures, and managing seismic risk. Without these equations, it would be challenging to
estimate the potential ground motion during a mine earthquake and design structures that
can withstand it.

It is a known problem that the accuracy of ground motion prediction equations
(GMPE) can be low, especially for high-energy mining tremors at distances close to the
source. Therefore, it is very desirable to utilize methods leading to better predictions of
seismic vibration parameters such as peak ground acceleration (PGA). The regression
GMPE models usually assume the dependence of seismic peak ground acceleration (PGA)
on hypocentral distance and magnitude or seismic energy. This approach was primarily
presented by the Joyner–Boore model [8] and the parameters describing this model and its
uncertainties are estimated using multiple linear regression methods. Due to the fact that
recorded seismic data come from seismic surface stations installed in the area of local coal
mines in the Upper Silesian Coal Basin, Poland, this model is local in nature.

According to the statistics reported by the Polish Mining Authority, in the years
2016–2020, 7114 high-energy mining tremors occurred in hard coal mines in Poland with
seismic energies greater than 105 J (magnitudes M > 1.8) [9]. Despite the fact that a small
fraction of these tremors were felt by people, and an even smaller fraction caused damage
to buildings, the problem of induced seismicity in terms of surface infrastructure protection
in Polish coal mining is considered very serious.

The estimation of peak ground acceleration parameters caused by high-energy mining
seismic tremors with the use of the local GMPE model can be often biased by a large error
component, mainly because the maximum likelihood estimate obtained for the GMPE
model includes seismic observations both for strong and small seismic events. The solution
to this problem would be to determine the GMPE model limiting the recorded seismic data
set to strong seismic tremors, but such a procedure usually leads to unstable solutions of
multiple regression model parameters of GMPE due to the fact that the limited seismic
data consists of a small number of seismic records. Therefore, the estimation of the GMPE
model parameters with a limited data set may be disqualified by the t and F statistical tests
used to verify the statistical significance of the model parameters, especially in the case
where the normality of the residual assumption is violated.

As a remedy to this problem, we propose a specially designed bootstrapping procedure
that leads to much more stable estimation of GMPE model parameters. In our approach,
bootstrapping is applied to estimate the GMPE model parameters with the use of the
probabilistic density functions of these parameters, which makes it possible to calculate
the confidence intervals of these parameters with no assumptions about the statistical
distribution of the seismic data [10].

Statistical bootstrapping has been successfully utilized by researchers in many areas
of seismology. For example, bootstrapping was used to determine the standard deviation
of the parameters of the GMPE model and the estimation of confidence intervals [11–17].
Another application of bootstrapping in seismology is for determining the uncertainty
of estimated seismic deformations [18], determining the confidence intervals of the loca-
tion of historical earthquakes [19], calculating the horizontal component of the seismic
slowness vector [20], calculating the b parameter of the Gutenberg–Richter law [21], as
well as estimating the uncertainty of the values describing seismic magnitude attenuation
function [22]. There are fewer research studies on the use of bootstrapping to calculate the
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confidence intervals of GMPE parameters for seismic ground vibrations caused by induced
seismicity [23], or blasting works [24].

The purpose of this study is to evaluate one of the most important seismic hazard
parameters, i.e., the peak ground acceleration (PGA) estimator, which is based on the
bootstrapping statistical procedure on the basis of high-energy mining seismicity. In the
context of seismic engineering, we propose a bootstrapping algorithm that has been used
to estimate the uncertainty of the PGA calculated from a limited number of high-energy
mining earthquake records from one of the seismically active coal mines in the Upper
Silesian Coal Basin, Poland. Such a limited number of high-energy mining earthquake
records is a typical situation while conducting seismic monitoring in mines. We have
observed that the accuracy of recorded peak ground accelerations is higher based on the
bootstrap ground motion prediction model compared to the ground motion prediction
model based on the multiple regression procedure.

2. Materials and Methods
2.1. Experimental Setup

The data set for our bootstrap analysis consisted of mining-induced seismicity recorded
between 2008 and 2018 in one of the seismically active coal mines in the Upper Silesian
Coal Basin, Poland, Figure 1. Five surface seismic stations were installed in the analyzed
area consisting of triaxial accelerometers with a frequency range between 1 and 200 Hz
and a sampling rate of 500 samples per second. Each of the surface seismic stations was
synchronized with the GPS unit, yielding very precise recording time accuracy in the order
of microseconds. Additionally, we have utilized information on seismic event location and
seismic energy collected by the underground seismic network installed in the coal mine.
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Figure 1. Location of the Upper Silesian Coal Basin, Poland. The analyzed research area is marked 

in red color and the distribution of seismic stations is shown in the upper right corner. 
Figure 1. Location of the Upper Silesian Coal Basin, Poland. The analyzed research area is marked in
red color and the distribution of seismic stations is shown in the upper right corner.
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Our data consisted of 2625 seismic records of ground vibration accelerograms generated
by mining seismicity in one of the coal mines in the Upper Silesian Coal Basin, Poland,
which is characterized by a very high seismic hazard (Figure 2). Table 1 presents the basic
statistics of the analyzed parameters, i.e., seismic energy, hypocentral distance, and peak
ground acceleration (PGA). Figures 3–5 present histograms of the explanatory variables,
i.e., log E—logarithm of seismic energy; log R—logarithm of hypocentral distance; and log
PGA—logarithm of peak ground acceleration, used in our regression and bootstrap analysis.
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Figure 2. Examples of the three component (EW, NS, and Z) acceleration seismograms of 2 mining
seismic events: (a) with seismic energy E = 8.6 × 106 that occurred on 17 September 2017 and (b) with
seismic energy E = 5.5 × 107 [J] that occurred on 14 March 2019, both recorded at the station no. 1.,
horizontal axis units [s], vertical axis units [m/s2].
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Table 1. Basic statistics of the analyzed seismic data, Q1—first quartile, Q3—third quartile, Me—median.

Min Q1 Me Q3 Max

E [J] 1.06 × 105 4.03 × 105 7.61 × 105 2.02 × 106 1.00 × 108

R [m] 66.408 770.154 1229.176 1863.36 4587.284

PGA [m/s2] 0.004 0.017 0.031 0.056 1.204
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Figure 4. Frequency histogram of the logarithm of hypocentral distances of the analyzed mining
seismic events.

We have analyzed seismic records of high-energy tremors with seismic energies in
the range between 105 [J] and 108 [J]. The mining tremor with the highest energy caused
seismic vibrations with the recorded peak ground acceleration value of 1086 mm/s2. The
epicenter of this tremor was located 589 m from the nearest surface seismic station. The
maximum peak ground acceleration of 1204 mm/s2 was generated by mining seismic
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events with an energy of 7 × 107 [J]. The epicenter of this tremor was 311 m from the
nearest seismic station. In total, 75% of all analyzed seismic events have had energies not
exceeding 2 × 106 [J] represented as the third quartile (Q3) of seismic energies, and 75%
of all peak ground acceleration values did not exceed 56 mm/s2 represented by the third
quartile (Q3) of PGA in Table 1.
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analyzed mining seismic events.

All peak ground acceleration values (PGA) were obtained from 2625 seismic records of
mining-induced seismicity and corrected for local site response before performing further
analysis [25].

2.2. Model Setup
2.2.1. Multiple Regression Model

We have selected the functional model for GMPE regression accounting for the first-
order effects of seismic energy scaling, near source saturation, and geometrical spread-
ing [8]:

logPGA = β0 + β1logE + β2log
√

R2 + h2 + u (1)

Equation (1) can also be expressed in the equivalent vector form [26]:

Ŷ = Xβ̂ + ε̂ (2)

Additionally, the general solution of (2) that we utilize is of the form [26]:

β̂ =
(

XTX
)−1

XTŶ (3)

where: PGA—peak ground acceleration [m/s2]; E—seismic energy of mining tremors; R—
hypocentral distance [m]; h—near source saturation term that minimizes the sum of squares
of residuals and equal to 560 m; β0, β1, β2—coefficients determined by multiple linear
regression; u—normal variate with zero mean; Ŷ—vector with n elements of observations
of logPGA; ε̂—vector of errors; β̂—vector of parameters, in our case: β0, β1, β2; X—design
matrix of n by three elements of observations on independent variables in (1); and n—
number of observations.
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We have omitted the term proportional to the hypocentral distance, R, in Equation
(1) of the Joyner–Boore formula [8] because we found it statistically insignificant. Unfor-
tunately, the estimation of the PGA values for high-energy values at small hypocentral
distances of seismic tremors based on the GMPE model (1) is subject to a large error. This is
mainly because the PGA estimates are obtained for observations that oscillate around the
mean values that do not correspond to high-energy tremors. Moreover, additional errors in
the prediction of PGA values based on formula (1) may also result from the fact that the
distribution of the GMPE model does not follow the normal distribution. Additional errors
may also arise due to the fact that the distribution of hypocentral distances, R, is deter-
mined mainly by the geometry of the local seismological network, whereas the distribution
of the seismic energy tremors belongs to the asymmetric distribution determined by the
Gutenberg–Richter law, Figure 3. The possible solution to the problem of these large errors
is to estimate the GMPE model parameters in Equation (1) solely on the basis of the high-
energy tremor records with PGA values exceeding some predetermined threshold. Such a
procedure should make it possible to limit the sample to seismic recordings which caused
the most significant effects on the surface infrastructure. Unfortunately, such regression
parameter estimation is based on a limited sample size and usually leads to large errors in
parameter estimates, often violating the basic assumptions regarding the normality and
homoscedasticity of the random component u in (1). Therefore, we propose in our analysis
to utilize an appropriately designed bootstrapping procedure.

2.2.2. Bootstrapping Estimation Model

Statistical inference based on a sample drawn from the general statistical population
is conditioned by the knowledge of the probabilistic distribution of the analyzed regression
parameter, and in most cases, the normal distribution is assumed. In the case of bootstrap-
ping methods, the inference is not made on the basis of a sample but on the basis of a
general population created by the resampling concept. The central idea of bootstrapping
is to conduct a Monte Carlo simulation on an input data set with random sampling with
replacement [27]. According to this idea, it is not necessary to test the assumptions about
the statistical distribution of the analyzed parameters. Bootstrap linear regression parame-
ter estimation can be conducted in two ways. The first is to resample the observations if
the model parameters are assumed to be of a random nature. In the second approach, the
parameters of the regression model are assumed as deterministic and determined on the
basis of random sampling with replacement [27].

In the analysis of our seismic data we have utilized the second approach, and our
bootstrap procedure has been performed in the following steps:

(a) the vector ε̂ with the random components εi in Equation (2) is determined;
(b) the sampling with replacement is performed on ε̂ giving bootstrap vector

ε̂boot =
(

εboot
1 , . . . , εboot

n

)
;

(c) bootstrap vector ε̂boot is added to the theoretical values in Equation (2) giving the
vector Ŷboot = Xβ̂ + ε̂boot;

(d) the bootstrap regression parameters are calculated according to the Equation (3):

β̂boot =
(
XTX

)−1XTŶboot;
(e) steps (b)–(d) are repeated r times giving r vectors β̂boot

r estimating model parameters,
which allows us to determine their bootstrap statistical distributions F(β̂boot

r );
(f) the mean values of the r vectors of the bootstrap regression parameters are calculated as

the estimators of the model parameters of Equations (1) and (2): E( β̂boot
)
= 1

r

r
∑

r=1
β̂boot

r

and the corresponding lower and upper limits of 95% confidence intervals.

The above-presented bootstrap algorithm additionally allows us to determine the
bootstrap confidence intervals of the estimated regression parameters (1). Additional
assumptions have to be made for the confidence intervals calculated with the use of the
ordinary least squares method (3). For small sample sizes, t-Student distribution is assumed,
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and for large sample sizes, the normal distribution is assumed. Such assumptions do not
need to be made in determining bootstrap confidence intervals, and this is one of the
advantages of the presented bootstrap method.

The significance of using a bootstrap approach to estimate peak ground acceleration
(PGA) values caused by high-energy mining seismic tremors is that it allows for more
accurate and reliable estimates of these values. In the case of estimating PGA values caused
by high energy mining seismic tremors, the bootstrap approach has been used to estimate
the distribution of peak ground acceleration values that are likely to be observed based
on the available data. By using the bootstrap approach, it is possible to account for the
variability and uncertainty in the data and obtain more robust estimates of the peak ground
acceleration values. This is particularly important in the case of mining seismic tremors,
where the data can be highly variable and noisy due to factors such as the complex geology
of mining sites and the varying energy levels of the tremors. The bootstrap approach
can help to improve the accuracy and reliability of peak ground acceleration estimates,
which is essential for ensuring the safety of mining operations and protecting workers and
equipment from potential damage caused by high-energy seismic events. The bootstrap
ground motion prediction model we have utilized in our study provides more accurate
peak ground acceleration estimators compared to traditional linear regression models
by eliminating the normality and heteroscedasticity assumption of the analyzed samples
which is violated for our mining seismic data.

3. Results and Discussion
Multiple Regression Results of Ground Motion Prediction Equations, GMPE

The calculated regression parameters of Equations (1) and (2) for the logarithm of
the peak ground acceleration, PGA, are presented in Table 2. Figure 6 shows the recorded
values of the logarithm of the peak ground acceleration at the surface stations and the
theoretical values determined by the GMPE model (1). This regression procedure includes
all the gathered seismic data records.
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the logarithm of the PGA are shown. Regression performed for all seismic data records.

A large discrepancy between theoretical and observed peak ground acceleration values
can be readily noticed for extreme, i.e., low and high, PGA values in Figure 6. For low
peak ground acceleration values, a significant overestimation of the GMPE model is visible,
whereas for high peak ground acceleration values, the empirical values are significantly
higher than the theoretical values determined by the GMPE model. As mentioned earlier,
the solution to this problem can be to estimate the GMPE model parameters of peak ground
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acceleration models (1) and (2) only on the basis of seismic PGA records exceeding a
certain predetermined threshold. Therefore, in further analysis, it was assumed that seismic
records with PGA values not lower than 150 mm/s2 would be included in calculations.
This 150 mm/s2 threshold value corresponds to the lower limit of the first degree of the
mining seismic intensity scale, GSIS-2017 [3], and makes it possible to include seismic PGA
records felt by local communities on the surface. This threshold value resulted in limiting
the sample to 132 observations and also shows that only about 5% of all seismic PGA
records caused noticeable effects on the surface infrastructure according to the GSIS-2017
mining seismic intensity scale.

Table 2. Estimated parameters of the GMPE model (1) with coefficient of determination R2 and
standard error of estimate Serr. Regression performed for all seismic data records. Symbol ***
determines the value smaller than 10−16.

Parameter β0 β1 β2 R2 Serr

estimated value −1.411 0.433 −0.869 0.595 0.242

p-value *** *** *** - -

Figure 7a shows the recorded values of the logarithm of peak ground acceleration
at the surface stations and the theoretical values determined by the GMPE model (1) for
all seismic records. Figure 7b shows the recorded values of the logarithm of peak ground
acceleration at the surface stations and the theoretical values determined by the GMPE
model (1) for the seismic records with PGA values not lower than 150 mm/s2. It can be
easily noticed that the discrepancy between the theoretical and observed peak ground
acceleration values is much smaller for the GMPE model (1) which includes only seismic
records with PGA values not lower than 150 mm/s2 (Figure 7b). This partially validates
the concept of using PGA values not lower than 150 mm/s2 in the regression procedure.
The calculated regression parameters of Equation (1) for the logarithm of peak ground
acceleration with PGA values not lower than 150 mm/s2 are presented in Table 3.
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Table 3. Estimated parameters of the GMPE model (1) with coefficient of determination R2 and
standard error of estimate Serr. Regression performed for seismic data records with PGA values not
lower than 150 mm/s2. Symbol *** determines the value smaller than 10−16.

Parameter β0 β1 β2 R2 Serr

estimated value −1.306 0.249 −0.349 0.488 0.154

p-value *** *** *** - -

The regression GMPE model parameters in Table 3 are statistically significant. Never-
theless, it is not enough to use this model for the prediction of peak ground acceleration
values (PGA). The prediction accuracy and the correct construction of the confidence in-
tervals require us to conduct the verification of the estimated GMPE model in terms of
the normality and homoscedasticity of the random component. For the analyzed GMPE
model shown in Table 3, the p-values were calculated for the Kolmogorov–Smirnov and
Anderson–Darling statistical tests verifying the normality of the residual component. The
obtained p-values are 0.0175 and 0.0197, respectively, indicating that the distribution of
the residual component of this model does not form the normal distribution at the signifi-
cance α = 0.05. Additionally, the Breusch–Pagan statistical test indicates the presence of
heteroscedasticity in the analyzed model. Therefore, there are no grounds at the level of α
= 0.05 to reject the hypothesis of the homoscedasticity of the random component.

Therefore, a bootstrap approach was used to estimate the model parameters and to
determine the confidence intervals of the forecasts. This approach does not require the
normality and homoscedasticity of the random component.

Bootstrap model of ground motion prediction equations (GMPE) obtained from seismic data
records with PGA values exceeding 150 mm/s2.

In order to determine the bootstrap model of ground motion prediction equations
(GMPE), we have also constrained our seismic records to PGA values exceeding 150 mm/s2.
We have utilized the bootstrap procedure described in Section 2.2.2 and assumed that the
number of replications r is equal to 1000. The number of bootstrap replications needed
depends on the precision required for the estimation and the complexity of the model
being analyzed. In general, the more bootstrap samples are used, the more accurate the
estimation of the parameter of interest or the sampling distribution of a statistic will be.
However, as the number of bootstrap samples increases, so does the computational cost
of the analysis. There is no fixed number of bootstrap replications that can be universally
recommended, as the appropriate number depends on the specific analysis and research
question. A common rule of thumb is to use at least 1000 bootstrap samples to obtain stable
and reliable estimates [27].

Based on these 1000 resamplings with replacement replications, we have estimated
the mean values of the parameters of the GMPE model (1) and the corresponding lower
and upper limits of 95% confidence intervals. These values are presented in Table 4.

Table 4. Estimates of the parameters of the bootstrap GMPE model with 95% confidence intervals.

Mean Value Lower Limit of 95%
Confidence Interval

Upper Limit of 95%
Confidence Interval

β0 −1.373 −1.782 −0.960

β1 0.303 0.225 0.378

β2 −0.456 −0.649 −0.262

Figure 8 shows the GMPE model parameter distributions for our bootstrap procedure.
The dashed red line shows the estimated mean values of the GMPE parameters, whereas
the dashed blue lines show the lower and upper 95% confidence intervals.
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A comparison of the GMPE bootstrap model with the GMPE linear regression model
from Table 3 is shown in Figure 9. It is clearly seen that theoretical values determined
from the bootstrap GMPE model better correspond to the observed PGA values, i.e., the
differences between theoretical and recorded PGA values are smaller for most of the
observations for the second level of mining seismic intensity scale GSIS-2017 and in all
observations of the third and fourth levels of the mining seismic intensity scale GSIS-
2017. Table 5 summarizes these findings for the PGA values exceeding 600 mm/s2. The
differences between the theoretical values of the GMPE bootstrap model and the GMPE
linear regression model from Table 3 reach 136 mm/s2. Therefore, the bootstrap analysis
of recorded peak ground acceleration values of high-energy mining tremors can provide
important information regarding the level of seismic hazard on the surface infrastructure by
estimating the level of the mining seismic intensity scale, Figure 9. By estimating bootstrap
PGA values caused by high-energy mining tremors, it is possible to assess the seismic
hazard on the surface infrastructure related to the level of the mining seismic intensity
scale. For example, if the probability of the level of the mining seismic intensity scale is
high, then the surface infrastructure may be at a higher risk of damage or failure due to the
ground motions caused by the tremors. Thus, the proposed tool may be directly applicable
for preventing damage to buildings and protecting local populations by identifying areas
in coal mines that are prone to high-energy seismic activity and strong ground motions.
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model from Table 3. Levels of mining seismic intensity scale GSIS-2017 and observed logarithm of
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Table 5. Comparison of observed and estimated PGA values; units: 10−3 m/s2.

Observed PGA
Value

PGA Linear
Regression GMPE

Model

PGA Bootstrap
GMPE Model

Difference: PGA
Bootstrap and PGA

Regression

636.60 554.03 657.94 103.91

671.70 481.73 561.00 79.27

693.60 532.65 626.89 94.24

715.80 334.26 356.37 22.11

747.00 402.93 434.26 31.33

789.80 328.14 341.78 13.64

1086.40 527.87 614.80 86.93

1143.90 426.90 469.14 42.24

1204.30 606.75 742.95 136.21

Based on the 1000 resamplings with replacement replications for 132 seismic records
exceeding 150 mm/s2, we have estimated the mean PGA values. The results of our analysis
are presented in Figure 10a, which displays the estimated mean PGA values, and Figure 10b,
which shows the upper limits of the 95% confidence intervals. In addition to estimating
the mean PGA values, our analysis also involved performing a comparison test. This test
involved plotting the mean and upper 95% confidence intervals for a linear regression
model from Table 3, as shown in Figure 10. This allowed for a comparison between the
estimated mean PGA values and the predictions from the regression model, which was
previously fitted to the data. One can clearly observe that both the mean PGA values and
the upper limits of the 95% confidence intervals of our bootstrapping method yield higher
estimated values compared to the ordinary least square linear model (OLS) in the right part
of Figure 10a,b and correspondingly smaller values for the left part of Figure 10a,b. This
means we have obtained larger predicted values for samples 100–132, i.e., samples with the
highest recorded PGA values, and smaller predicted values for samples 1–50, i.e., samples
with the lowest recorded PGA. Overall, our analysis provides more valuable insights into
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the characteristics of the seismic records under consideration and helps to inform decisions
related to seismic hazard assessment and risk management.
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GMPE model (blue line) and the GMPE model from Table 3 (red line).

Table 6 shows the upper limits of 95% confidence for both considered models for
recordings exceeding the value of vibration acceleration equal to 0.6 m/s2. It is clearly seen
that the bootstrap GMPE model reflects the observed PGA values much better and therefore
provides more accurate estimators compared to the GMPE model from Table 3. This finding
has particular importance for the largest PGA values related directly to high seismic hazards
and the highest impact on the surface infrastructure. The accuracy of the analyzed bootstrap
model depends on the quality and representativeness of the observed seismic data. When
these factors are properly accounted for, our bootstrap ground motion prediction model
can provide a reliable and accurate estimate of the distribution of PGA values.

The proposed bootstrap tool for determining peak ground acceleration estimators and
identifying areas in coal mines that are prone to high-energy seismic activity has several
significant implications. First, it can improve safety in coal mines by identifying areas
in coal mines that are prone to high seismic ground motion vibrations, and second, by
providing more accurate estimations of peak ground acceleration values, the tool can help
companies assess the risk of seismic events more effectively and implement appropriate
risk management strategies.
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Table 6. Comparison of the upper 95% confidence intervals of the estimated PGA values; units 10−3 m/s2.

PGA Linear Regression
GMPE Model

PGA Bootstrap GMPE
Model

Difference: PGA Bootstrap
and PGA Regression

630.28 866.52 236.25

546.44 715.26 168.83

602.83 814.17 211.34

363.22 408.71 45.48

442.38 515.06 72.68

349.39 377.87 28.49

594.40 778.79 184.39

468.82 561.58 92.75

705.14 1022.61 317.47

4. Conclusions

The specially designed bootstrapping algorithm has been developed and used to
estimate the PGA values and their uncertainty calculated from a limited number of high-
energy mining earthquake records for one of the seismically active coal mines in the Upper
Silesian Coal Basin, Poland. This algorithm enables a new method for estimation, the peak
ground acceleration parameter, PGA, which is one of the critical parameters for assessing
seismic hazards in coal mines.

Seismic recordings of peak ground accelerations show that only high-energy mining
tremors at close hypocentral distances can induce ground motions that pose a threat to
underground and surface infrastructure. Therefore, the prediction of strong peak ground
accelerations is one of the most important tasks in the analysis of seismic hazards in mines.
Very often, the prediction of peak ground accelerations for strong mining tremors is often
severely underestimated. Therefore, a specially designed bootstrapping procedure was
introduced to determine ground motion prediction equations. It was found that the PGA
prediction based on the bootstrapped ground motion prediction model reflects the recorded
PGA accelerations more accurately than the ground motion prediction model based on the
multiple regression procedure.

The proposed bootstrap tool for determining peak ground acceleration estimators and
identifying areas in coal mines that are prone to high levels of seismic ground motions has
significant implications for improving safety, enhancing risk assessment, and improving
the design of mining infrastructure. By providing more accurate information on seismic
hazards, the tool can help mining companies reduce the risk of accidents and damage to
infrastructure and improve productivity and profitability.
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