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Abstract: The forecasting of building energy consumption remains a challenging task because of
the intricate management of the relevant parameters that can influence the performance of models.
Due to the powerful capability of artificial intelligence (AI) in forecasting problems, it is deemed to
be highly effective in this domain. However, achieving accurate predictions requires the extraction
of meaningful historical knowledge from various features. Given that the exogenous data may
affect the energy consumption forecasting model’s accuracy, we propose an approach to study the
importance of data and selecting optimum time lags to obtain a high-performance machine learning-
based model, while reducing its complexity. Regarding energy consumption forecasting, multilayer
perceptron-based nonlinear autoregressive with exogenous inputs (NARX), long short-term memory
(LSTM), gated recurrent unit (GRU), decision tree, and XGboost models are utilized. The best model
performance is achieved by LSTM and GRU with a root mean square error of 0.23. An analysis by
the Diebold–Mariano method is also presented, to compare the prediction accuracy of the models.
In order to measure the association of feature data on modeling, the “model reliance” method is
implemented. The proposed approach shows promising results to obtain a well-performing model.
The obtained results are qualitatively reported and discussed.

Keywords: energy consumption forecasting; LSTM; NARX-MLP; model reliance; machine learning;
time series prediction

1. Introduction

Currently, climate change and natural resource shortages have become significant
issues. According to the research of Gaya Herrington [1], resources will run out in a few
decades if the consumption rate remains stable. France has been involved internationally in
combating climate change with the multiannual energy plan (MAEP), which was published
on 25 January 2019 [2]. Residential and industrial buildings are the highest consuming
sectors in France, with a share of almost 44% of the total final energy consumption [2,3].
Hence, there are substantial investments to accelerate the transition from traditional to
smart buildings. Smart buildings have remarkable resource management and control
capabilities. The ability of future smart buildings to forecast energy consumption not only
can enhance the energy consumption optimization in buildings, but also, at a higher level,
can play a vital role in planning the energy demand response in smart grids. Artificial
intelligence techniques are widely used in this domain, and they show their powerful
influence, though there remains a wide range of studies to be performed to advance in this
investigation area. One of the study areas that needs more attention, and for which there is
still a shortage of work, is the importance of feature data and the role they can play to obtain
not only an accurate model, but also efficient model construction. The investigation of this
area is always complicated due to the unclear participation of various data that can improve
or deteriorate the model performance. Having a clear idea of this subject can enhance the
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model performance and decrease its computation cost. Due to the abovementioned factors,
in this investigation, we would like to dig deeper into energy consumption forecasting and
study the influence of different data features.

Building load forecasting essentially falls into three categories: short-term forecasts
(an hour to one week), medium-term forecasts (a week to a year), and long-term forecasts
(longer than a year). Knowing that the majority of building energy data incorporates
time-dependent components, recurrent neural networks (RNNs) can usually dissect the
building’s energy data directly, and learn the historical information by themselves. The
most popular RNN model is the long short-term memory network (LSTM), whereas the
use of nonlinear autoregressive models with exogenous inputs (NARX) also show their
performance in several important applications [4]. The authors of [5] applied RNN models
to forecast the heating load for various buildings within a university campus. Their study
suggested that the RNN models have the potential to perform better than feedforward
neural network models for medium- to long-term forecasts. However, the study has
underlying limitations, as the role of the features is not clear in the learning process. In
2020, Xue et al. compared different ML algorithms to forecast the heating demand of a
district system [6]. Their experiment demonstrated that the LSTM models usually obtained
higher accuracy than the other data-driven models. The authors selected the features for
the training phase based on several methods, such as autocorrelation; however, as methods
such as autocorrelation are linear, the role of the features in the construction of a nonlinear
model remains questionable. According to a review published in [7], the major factors that
affect energy consumption are climate, building system, occupants, and socioeconomic
characteristics. Although the studies identified a set of five main categories and other
sub-factors affecting building energy consumption, the subfactors can be a major factor,
depending on the case study. There is much investigation in this area, and the studies
mainly focus on implementing different algorithms, comparing them, and examining the
time horizon prediction. The research works of [8,9] are some examples that focus on using
deep learning techniques. The work of [10] focuses on forecasting in different time horizons,
while also comparing several learning algorithms. It is an interesting study that presents
the performance of different learning algorithms in various time horizons; however, it also
has leakage regarding the proper protocols for time lag selection and the analysis of input
features to the model.

In an investigation by [11], the activity of occupancy data and its influence on am-
bient data were considered for better prediction of load forecasting in a building. The
approach is divided into two directions. In the first direction, the data are separated into
nonworking and working hours in order to reduce the effect of occupant activities. In the
second direction, an artificial neural network and fuzzy logic are used to predict not only
the energy consumption, but also the level of the occupant rates. The obtained results show
the performance of the model is improved by 35% and 42% regarding the two approaches,
respectively. Their analysis shows the correlation between ambient condition data and
energy consumption due to occupant rates, which is a key factor in the prediction model.
Despite the novelty of their work in dealing with the challenges of considering different
scenarios regarding the occupant rates, the work suffers from a lack of historical data lags
as an input to the model. Indeed, the authors were attentive only to ambient data with
a regression algorithm, and considered the occupant rates for the prediction. In [12], the
authors made an effort to predict the energy consumption of a lighting system based on a
support vector machine (SVM)-based approach. They considered daily sky coverage and
day type in the modeling of an office building. They used only the SVM and ambient data
for constructing the model. However, the effect of ambient data on modeling, which is the
prediction of the lighting load, is questionable. This is apart from taking into consideration
the time delays of the data, which can be a weakness in such research.

Opposite to the two last investigations, the authors of [13], by keeping in mind the
weather data for the energy consumption prediction, used LSTM, support vector regression
(SVR), and Gaussian process regression (GPR). Additionally, they considered an analysis
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of finding important features by the Shapley additive explanation (SHAP) method. The
proposed research is interesting, as they presented different algorithms to face the problem,
and also paid attention to the effect of important features that can lead to less complex
models. They finally made a conclusion that LSTM performed better compared to other
examined algorithms. Although, time delay analysis on the dataset is not provided in this
work, despite the important role that it plays in algorithms such as LSTM.

The investigation by [14] is focused on using deep neural networks to predict energy
consumption, using LSTM, GRU, and drop-GRU for different time horizons. They note
that the purpose of their work is to compare which algorithm will come up with better
prediction results. After data processing, analyzing, and implementing feature selection,
they constructed the models. The hyperparameters were set based on trial and error. Finally,
to compare the models, they used RMSE, MAE, R2, and time of computation as the metrics.
They conclude that GRE, compared to LSTM and drop-GRU, has a better ability to predict
while needing fewer hyperparameters to set, and has a simpler architecture compared to
the other two. In the work of [15], the electricity consumption forecast of high-rise office
buildings is taken into account. The authors used LSTM as the implemented algorithm.
They believed the electricity consumption prediction of lighting systems is easier than air
conditioners. Due to this fact, they used relative humidity and scheduling as exogenous
inputs to improve the accuracy of the model. They also used a backpropagation algorithm,
and ARIMA to compare their results. The authors finally, by comparing the results of
the three presented algorithms, show the superior performance of LSTM. They noted a
high prediction accuracy in the case of lighting electricity consumption, while for the air
conditioning electricity consumption prediction, the relative humidity and scheduling data
slightly improved the LSTM performance. In the two recent works, despite the efforts of
authors to propose an accurate model for predicting, they never considered the optimized
number of time lags for prediction. In addition, despite the work of [15] that considered
several features as input to improve the performance of the model, the role of features in
the training phase was clearly not examined.

In all of the above investigations, despite huge efforts to improve the performance of
the model with different model tuning, various data inputs, etc., and examining several
algorithms, the majority of them suffer from not enough work illustrating the role of
features in modeling performance. More importantly, the configuration of time lags for
prediction can greatly affect the complexity of the model, consequently affecting the model’s
performance and computational costs. However, this is not studied precisely in a clear
framework. Mainly, in favor of feature selection and, also, the setting of time lags, they
fulfilled their investigations with empirical or simple data analysis, such as autocorrelation.
The objective of this investigation is to deeply analyze the influence of exogenous data and
optimized time lags on energy consumption forecasting in buildings within a structured
framework by data-driven techniques before and, moreover, after modeling. To that end,
this study illustrates the effective methods for modeling energy consumption forecasting in
several steps.

The rest of this paper will contribute as follows: Section 2 presents the methodol-
ogy and the protocols of the implementation, Section 3 introduces the dataset, Section 4
depicts the experimentation, results, and discussion, and finally, Section 5 concludes the
investigation and presents the future work.

2. Methods and Protocols

In this section, the approach and methods that are utilized in this research work are
presented. The schema of the considered protocol for advancing the proposed research
idea is illustrated in Figure 1. It is divided into 5 parts: The first part is the data collection
to form the needed dataset. In the case of this research work, an open-access dataset is
utilized, which is explained in Section 3. The second part is regarding the representation of
the raw data, which is followed by data analysis and processing. In this part, the raw data
will be prepared for the training process. As shown in the figure, several processes, such as
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data imputation and scaling of data, are included in this section. The third part is leading
to the construction of machine learning models according to different algorithms and input
features. The optimum time lags are realized in this part of the study, based on a protocol
that is presented in Section 4 of this article. The fourth part illustrates the important inputs
and their roles in the learning process of the model based on error measurement and permu-
tation of data features in a defined framework, which is explained comprehensively. Finally,
the last part presents the results of the work for analysis, comparison, and discussion. In the
next Sections 2.1 and 2.2, the utilized materials and techniques for conducting the research
are presented.
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2.1. Machine Learning Algorithms for Modeling Energy Consumption Forecaster

The methodological approach of this research is based on data-driven energy con-
sumption forecasting. Due to the effectiveness of machine learning methods in mimicking
complicated time series patterns, LSTM, NARX-MLP, GRU, decision tree, and XGboost
are applied.

LSTM is a widely used recurrent neural network in time series forecasting. Its per-
formance in solving time series problems is remarked upon in several works [14,16,17].
LSTM neural networks achieve temporal dependency using special units called memory
blocks, which is the main difference between RNNs and ANNs. LSTM is an improved
form of RNNs that is capable of overcoming the vanishing gradient problem [18]. The
information is passed through a mechanism known as cell states, with three gates to update
the previous hidden state. Figure 2 shows the gates and architecture of LSTM [19], where,
Wf, Wo, and Wi are the weight matrices, and bf, bo, and bi are the bias vectors. Xt is the
current input. ht and ht−1 are the output at the current time t and the previous time t−1,
respectively. Finally, σ represents the sigmoid function.
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Similarly to LSTM, the nonlinear autoregressive with exogenous (external) inputs
(NARX) model predicts series y(t) given past values of series y and another external
series u(t). NARX is a specific class of RNN that is widely implemented in various
applications [20,21]. NARX can be based on different internal network architectures as
a training rule. Figure 3 shows the architecture of NARX, where, TDL is the tapped de-
layed line, Wir and Wil are the weights, bi and bj are the biases, and f1 and f2 are the
activation functions.
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A time series is a sequence of vectors u(t), t = 0, 1, 2, . . . where, t represents elapsed
time and u is a parameter such as temperature, humidity, etc., which varies with time.

Gated recurrent unit (GRU) is an algorithm which is effective in time series prediction.
GRU and LSTM have similar architectures; however, GRU has one less gate, and generally
has a simpler architecture than LSTM, though its effectiveness in finding sequential data is
undeniable. Figure 4 shows the architecture of GRU and its gates formula, where, ht is the
hidden layer vector, xt is the input layer vector, br and bz are the bias vectors, wz and wr
are the weight matrices, and σ represents the sigmoid activation function.
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Hence, choosing the ideal tapped delayed line (TDL) or time delay for each feature is
crucial for the model’s predictive accuracy. Forecasting time series with neural networks
consists of finding a function f to obtain an estimate of y at time t + 1, from N past time
steps, so that:

y(t + 1) = f
(
y(t), . . . , y

(
t− ny

)
, u(t), . . . , u(t− n)x)

)
(1)

where, u(t), . . . , u(t− nx) are the present and delayed exogenous inputs, respectively,
y(t), . . . , y

(
t− ny

)
are historical data of y(t + 1), and f is the function that computes

y(t + 1) based on historical exogenous and nonexogenous data. The ideal combination
of features chosen in the final model differs from one dataset to another. Therefore, a
quantitative and correlation analysis will determine the model’s input. The predictive
model aims to predict the final energy consumption one step ahead [22].

Decision tree is the fourth machine learning algorithm that is utilized to face the pro-
posed challenges. Figure 5 presents the architecture of a decision tree. It has a hierarchical
architecture. At each level, based on an attribute, the branches are divided into different
nodes (internal nodes) until it reaches the final attribute, which is the leaf. While the
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decision tree algorithm seems to be simpler than the previously mentioned methods, it
proves effective in several works that deal with time series prediction.
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Finally, as the last conventional machine learning algorithm, XGboost is implemented.
The architecture of XGboost is similar to decision tree, though it is more complex. Figure 6
presents the architecture of XGboost. It includes several sequential decision trees and, with
the gradient method, corrects the error of the previous tree. Indeed, the output of each tree
is considered by the gradient method in order to make the next tree and decrease the error.
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2.2. Feature Importance Analysis by “Model Reliance” Method

In this research work, the model reliance method (MR) permits us to select the most
efficient model that has the highest performance with less computational cost, regarding
the number of participant features and time delays. The model reliance method [23] is
based on an analysis of prediction errors. A machine learning method relies on the learning
features to perform the prediction. However, depending on relations between the input and
output of the model, the reliance on features can differ. If one of the features of the model
is permuted, it implies that the association of the permuted feature with other features
is broken. As a consequence, in the prediction phase of the model, it is expected that the
error based on a permuted feature varies from the original feature. While there are several
methods that aid in finding feature importance (e.g., XGboost [24]), MR permits the study
of these aspects, by the learning algorithm, for the particular constructed model. In fact, MR
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is more interpretable for explaining the operation of utilized machine learning algorithms
for modeling.

The variation of error based on permuted features is dependent on the importance of
the permuted feature in the learning phase. Due to this fact, if the error is jumped more, it
indicates that the permuted feature is more important, and the model relies more on that
feature. Once the original error is computed, the permuted error for each feature can be
calculated by dividing the collected samples of the considered feature into two groups, and
swapping the first half with the second half. By doing that, the association between the
permuted feature with other features will be broken, and model reliance can be calculated
and evaluated. The following equations present the calculation of model reliance.

eoriginal = L(y, f(x)) (2)

epermuted = L
(

y, f
(

xpermuted

))
(3)

epermuted =
1

2
[n

2
] ∑[ n

2 ]

i

[
L
{

f, (yi, x1[i + n
2 ]

, x2, xm

}]
+
[
L
{

f, (y[i + n
2 ]

, x1, x2[i + n
2 ]

, xm[i + n
2 ]

}]
(4)

where, eoriginal is the original error of the machine learning model, epermuted is the permuted
error on the machine learning model, L is the function that calculates the error, f is the
machine learning model, n is the number of incidences (samples) in the dataset, y is the
true output of the machine learning model, and {x1, x2 . . . xm} are the features.

Then, for calculating MR, the following equation is applied:

MR =
eoriginal

epermuted
(5)

The more that MR is larger than one (1 < MR), the more influence it has on the
modeling. In the case that MR is strictly less than one (1 > MR), there would be another
model that performs better.

Now, considering the proposed materials in the above sections, and regarding Figure 1,
in the next step, the dataset will be presented, analyzed, and processed. It provides the
needed data to study the selection of tapped delayed line parameters for learning. In
time series forecasting problems it is one of the parameters for which there is never a
clear approach. Following that, the modeling by different machine learning algorithms is
proposed, and several statistical analyses of the results are presented. Finally, a study on
features by MR is presented to discuss the performance of models based on exogenous data.

3. Dataset Presentation, Analysis, and Processing
3.1. Dataset Presentation

The dataset in this study was previously collected and is publicly available. The
dataset was collected in an office of the University of Calabria, which is a public building
located in the south of Italy (39◦21′58.6′′ N 16◦13′30.9′′ E) with Mediterranean weather
conditions. The area of the concerned office is 19 m2 and its height is 2.50 m. The room
has two wing windows that face the west. The windows dimensions are 68 × 76 cm.
The room is equipped with desktop computers and printers, and its heating and cooling
systems are autonomous [25,26]. The data are numerical data. Occupancy data were
collected only taking into account the working days and the hours between 8 a.m. and
9 p.m. The occupancy count is performed manually by the person in the monitored office.
The considered dataset is sampled every 1 min, from 13 May 2016 to 12 May 2017, using
different types of sensors: two CO2 sensors and air quality thermometers. The state of the
door and the window were monitored using magnetic switches. Figure 7 presents the list
of measured features of the dataset.
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3.2. Dataset Analysis and Processing

The missing values of the dataset are imputed by interpolation techniques. The
autocorrelation between each two features is computed based on the following equation:

Autocorr =
Cov(x1(t), x2(t))

σx1(t)σx2(t)
(6)

where, x1(t), x2(t) are the variables at time, Cov is the covariance, and σ is the standard
deviation. The three features highly correlated with energy consumption are the number of
occupants, CO2, and volatile organic compounds (VOC). Their correlations are 0.76, 0.64,
and 0.45, respectively. CO2 and VOC are two variables that are directly related to occupants
of spaces in closed environments. The autocorrelations between occupants, CO2, and VOC
are 0.63 and 0.45 respectively.

The density of each continuous variable for each number of occupants is presented in
Figure 8. In fact, by density, it shows how many times a measurement is repeated for each
feature based on different occupancy numbers, and illustrates the distribution.

Figure 8 shows that the densities of energy consumption, VOC, and CO2 are higher in
the presence of occupants, which confirms our prior knowledge regarding autocorrelation.
However, as revealed in the case of temperature density and occupancy, there is no clear
pattern. It is also seen that the inhalations and exhalations of people affect the CO2 and
VOC measurements. The abovesaid analysis shows that VOC, CO2, and occupancy data
are valid features that can affect the performance of machine learning models.
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Figure 9. Data visualization of selected features, considering their variation against energy consump-
tion during 12 h of a randomly selected working day: (a) occupant number and energy consumption,
(b) CO2 variations and energy consumption, (c) VOC variations and energy consumption, (d) fluctua-
tion of occupant number and CO2. The red and blue points are data points and blue and red lines are
the fitted lines to data points.
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Considering Figure 8, it is understood that CO2, VOC, and occupancy play undeniable
roles as exogenous data for modeling. In fact, according to Equation (1), while considering
them as sole inputs to the model, it could be argued that energy consumption in time t is a
function of CO2, VOC, and occupancy. Relatively, CO2 and VOC can be considered as a
function of occupancy in covered environments:

E(t) = f(CO2(Occ(t)), VOC(occ(t)), OCC(t)) (7)

where, occ(t) illustrates the occupation level in time t, f is the function that shows the relation
of occupancy level to CO2, g represents the relation between CO2 and energy consumption,
and E(t) depicts the energy consumption in time t. The following equation reveals the
effect of changes in occupancy level and CO2 concentration on energy consumption by a
derivative of energy consumption in Equation (8), with respect to occupancy (occ(t)):

dE(t)
dOCC

=

(
df

dCO2
× dCO2

dOCC

)
+

(
df

dVOC
∗ dVOC

dOCC

)
+

df
dOCC

(8)

It shows that the changes in occupancy lead to changes in CO2, and energy consump-
tion changes following the change in CO2. Figure 9 shows the variations between the
abovementioned features during 12 h, with a granularity of 5 min.

Finally, Figure 10 shows the time series of CO2, VOC, occupancy, and energy con-
sumption during one working week (five days), which are the selected features for the
learning phase. The data granularity is 5 min, and the energy consumption is calculated
every five minutes (sum of consumption in watts for every five minutes).
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(d) energy consumption time series.
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By knowing features that participate in the modeling phase, to prepare the data for
the training phase, standardization is performed to scale the input variables. This process
adjusts the magnitude of the measured variables and converts them to a common size, as
shown in the following equation:

Xstandardisation =
X− X
σ

(9)

where, X is the data samples, X is the mean value of the data samples, and σ is the standard
deviation of the data. In the next section, experimentation and results of the mentioned
dataset are presented.

4. Experimentation and Results

The experimentation of this investigation is implemented based on several protocols
and criteria. Three different models, based on three types of matched input features, are
constructed for each proposed algorithm:

1. The first set of input features is the energy consumption with applied time lags (ECTL)
to predict the energy consumption in their next steps.

2. In the second model, only the exogenous data with applied time lags (ETL), which
lacks the energy consumption data, are utilized as inputs to study the model perfor-
mance and the association of exogenous data.

3. In the third model, energy consumption and exogenous data with applied time lags
(ECETL) are used as the inputs to study their roles in the final model’s performance.
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After finding the appropriate model for each abovementioned case, the model reliance
can be implemented to analyze the important features associated with the constructed
models. However, before that, it is imperative to find a model with good performance.
Applying time lags to features is the most crucial parameter that plays an undeniable role
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in time series forecasting problems. They affect the computation cost, complexity, and
accuracy of the models. Due to this fact, a protocol is presented in the next section to
obtain the optimized number of time lags for each case of modeling, based on the different
abovementioned input sets.

4.1. Experimentation to Realize Tapped Delay Line (TDL)

A critical step in solving time series forecasting problems is choosing past observations
(tapped delay lines, time delays, or time lags) to train the models. Time delays provide the
neural networks with valuable information. Nevertheless, it can be challenging to adjust
historical time step parameters, as the target value’s relationship with the input variables
changes over time, and doing so would require high computational costs. Hence, a proper
time delay selection method is necessary, as it provides a minimal set of time-correlated
historical data, as well as a less complex predictive model.

Considering the abovementioned, an approach is proposed to examine the optimized
tapped delay line: observing and studying the root mean square errors of models based on
a solid protocol-based approach.

The autocorrelation function is used to determine the relationship between time t and
t + k. Figure 11 shows the autocorrelations; as illustrated, by increasing the time steps,
the autocorrelation declines. The preference is to select the shortest time steps to not only
decrease the complexity of the model, but also to keep the time steps that have the most
relevant autocorrelation to the target output (energy consumption).

To study the plausibility of the TDL selection method, several models are constructed
by LSTM, NARX based on MLP, GRU, decision tree, and XGboost. For each delay between
1 and 20, the training and testing are performed 10 times to evaluate the models; in each
training phase, the weights and biases are initialized randomly (200 models for LSTM,
NARX, and GRU for each predefined feature set as inputs). Regarding the decision tree
and XGboost, 20 models are constructed for each set of inputs. Considering three sets
of inputs, the total number of trained models is 1920. The process of implementation
is performed by Python and by several machine learning and deep learning packages.
The hyperparameters for NARX, LSTM, and GRU are configured by Bayesian grid search
techniques and by trial and error. Of the data, 80 percent is used for training and 20 percent
is used for testing. Regarding NARX-MLP, after several trials and errors, two hidden layers
with sizes of 25 and 6, with a tangent hyperbolic activation function, are utilized. The
maximum iteration is 30. Referring to LSTM and GRU, two layers with sizes of 32 and 16
are used. The activation functions for the two are rectified linear unit (ReLU) and scaled
exponential linear unit (SeLU). The batch size is 128 with 10 epochs. Finally, the maximum,
minimum, and average root mean square errors of the models for each TDL are computed.
Regarding decision tree and XGboost hyperparameters, a grid search is implemented.
Figure 12 presents the graph of the implementation of the protocol. The same protocol
is implemented for decision tree and XGboost. However, instead of training 10 times for
each time delay, a search grid is implemented (as decision tree training is not based on the
initialization of weights).

According to Figure 13, for each curve, the optimum time delay is estimated for each
model and the related algorithm. As shown in the figure, the consequence of increasing the
time lags is the growth of errors and a bigger distribution of errors. Indeed, the enlargement
of time lags does not improve the model’s performance, and it makes the problem more
complex. In the first case (Figure 13a,d), where solely the energy consumption delays are
used as the inputs to the models, delay number 10 (in the acceptable range of 10 to 12)
and delay number 3 (in the acceptable range of 2 to 5) are selected for LSTM and NARX,
respectively. For the first case, due to reducing the computational cost and a lower median
and minimum error, a delay of 10 is selected. In the second case, in delay three, the average
and median of the RMSE are smaller than two, and comparing delay three to delay four,
the computational cost is less. The defined ranges are the optimum of the curves. The same
approach is followed for the rest to obtain the optimized value of time delays.
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Figure 13. Boxplot of the RMSE for ten models for each time delay: (a) ECTL by LSTM, (b) ETL by
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by GRU, (h) ETL by GRU, (i) ECETL by GRU (average: green dotted line; median: yellow line).
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Finally, the models are assessed by the calculation of three metrics, RMSE (root mean
squared error), MAE (mean absolute error), and R2 (R-squared), defined, respectively, as
follows:

RMSE =

√
1
N ∑n

i=n(yi − ŷi)
2 (10)

MAE =
∑n

i=1|yi − ŷi|
N

(11)

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1 (yi − y)2 (12)

where, yi is the actual energy consumption, ŷ is the predicted energy consumption, and
n is the number of samples. Table 1 presents the results regarding the models with the
optimized number of time delays for each case.

Table 1. Results summary of model performances based on different input features based on LSTM,
NARX, GRU, decision tree, and XGboost.

Models Algorithm Time Lags RMSE-MIN RMSE-MAX MAE-MIN MAE-MAX R2-MIN R2-MAX

1. ECTL

LSTM 10 0.23 0.234 0.072 0.085 0.95 0.95

NARX 4 0.243 0.247 0.077 0.082 0.944 0.946

GRU 3 0.23 0.24 0.069 0.078 0.94 0.95

Decision
tree 7 0.234 0.072 0.95

XGboost 8 0.232 0.073 0.95

2. ETL

LSTM 4 0.49 0.50 0.22 0.24 0.76 0.77

NARX 15 0.48 0.50 0.21 0.23 0.77 0.78

GRU 5 0.50 0.52 0.20 0.24 0.74 0.77

Decision
tree 12 0.50 0.22 0.77

XGboost 18 0.48 0.22 0.78

3. ECETL

LSTM 3 0.23 0.237 0.07 0.08 0.94 0.95

NARX 3 0.24 0.25 0.08 0.089 0.942 0.946

GRU 3 0.23 0.236 0.07 0.09 0.94 0.95

Decision
tree 2 0.234 0.072 0.95

XGboost 10 0.22 0.073 0.95

In addition to assessing the models individually, for comparing the accuracy of the
models, each against the other, the Diebold–Mariano (DM) test is implemented [27–29]. It
is a statistical approach that permits us to make a comparison of the prediction accuracy.
It assumes:

Assumption DM :


E(d12t) = µ, ∀t

Cov
(

d12t, d12(t−τ)

)
= γ(τ),

0 < var(d12t) = σ2 < ∞
∀t (13)

where, d12 is the loss differential between predictions one and two. E(d12) represents the
hypothesis of equal predictive accuracy, which is E(d12) = 0, under the retained assump-
tion DM:

DM12 =
d12

σ̂d12

d→ N(0, 1) (14)
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where, d12 is the average of the sample of loss differential and σ̂d12
is a consistent estimate

of the standard deviation of d12. If the assumption of DM is maintained, consequently, the
N(0, 1), which is the limiting distribution of the static test, should be preserved.

To begin, it has to be noted that in the case of decision tree and XGboost there is just
one value for each metric, which is due to the different configurations of decision tree and
XGboost. NARX, GRU, and LSTM are neural networks and, in the training phase, each of
the time weight biases are initialized randomly. However, decision tree and XGboost fit the
data based only on tuning of the hyperparameters. The best performance, by considering
RMSE as the critical condition, is achieved by the LSTM and GRU models, with the energy
consumption time delay (ECTL) selected as input. The RMSE for the concerned models
is 0.23. However, GRU achieved this RMSE by 3 time lags, and LSTM by 10 time lags.
The time delay in the case of ECTL for LSTM is higher than all of the other algorithms.
However, it should be noted that, for instance, according to Figure 13a,d, LSTM still has a
better performance than NARX in time lag four. In addition, the selected time lag of 10 does
not mean that LSTM could not perform better with a less computationally demanding and
complex model.

In the case where only ambient data is used for modeling (ETL model), concerning
RMSE values and the number of delays, GRU and LSTM perform the opposite of other
algorithms. LSTM and GRU have lower error in lower time lags, but on the other hand,
other algorithms need more historical data in order to perform as well as LSTM and GRU.
This indicates their ability to achieve better results with lower historical data, in this case.
Although, NARX and decision tree, in two other cases (ECTL and ECETL) and with lower
time lags (two and three), performed more comparably. In the case of ECETL, it should be
mentioned that decision tree with a lower number of time lags has a better performance
than NARX, and a little higher than GRU and LSTM.

In general, while energy consumption is included in the input data, the performance of
the models is much higher than in the case where only the ambient data is utilized as input.
In both MAE and RMSE criteria, the performances of the models for ECTL and ECETL
are comparable, with a slightly better performance for ECTL. However, it should be noted
that in conditions where multistep prediction (where the predicted energy consumption is
output with a closed-loop feedback to the input) is considered, the exogenous data will
influence the performance, and ECETL can show its advantage over the other two [21].
Figure 14 presents the prediction of energy consumption during one working week, and
the zoomed in portion shows one working day (for better visualization) by LSTM-ECTL.
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In order to compare the prediction accuracy of each model to the other models,
according to selected optimized time delays, the Diebold–Mariano test is applied. To this
end, for each model (named ECTL, ETL, ECETL), based on optimized time lag setting
for each algorithm based on Table 1, the following table is presented to compare the
performance of modeling with different algorithms. Despite the abovementioned metrics
based on the RMSE, MAE, and R2, the DM test yields a statistical view of the prediction
accuracy of each constructed model compared to the others.

According to Table 2 and ECTL, comparing LSTM with the four other algorithms, the
p-value is greater than the threshold of 0.05. This indicates that there is no evidence that
LSTM and the other models have a statistical advantage over each other, in the case of
prediction accuracy. However, the DM value reveals the slightly better performance of the
other models over LSTM. Comparing NARX with GRU and decision tree, the p-value is
very low (lower than the threshold), which indicates the accuracy of prediction is different.
The negative value of DM shows the better performance of NARX over the two mentioned
algorithms. The result of the DM test for the comparison of GRU with decision tree and
XGboost also shows no clear evidence of better-performing models, due to the high p-value.
The results of ECETL, in almost all cases, also follow the results of ECTL, except in the case
of LSTM and XGboost in ECETL, in which, in contrast to ECTL, LSTM has slightly better
performance over XGboost. Considering Table 1, these two models also have very close
metrics values that confirm the results of Table 2.

Table 2. Results summary of model accuracy comparisons by the Diebold–Mariano test for each
model case and implemented machine learning algorithms.

Models Algorithms XGboost LSTM NARX GRU

DM p-Value DM p-Value DM p-Value DM p-Value

1. ECTL

LSTM −1.86 0.031 --- --- --- --- --- ---

NARX 5.35 0.99 6.56 1 --- --- --- ---

GRU 0.86 0.8 2.51 0.99 −5.28 6.42×10−8 --- ---

Decision tree 1.047 0.85 2.42 0.99 −4.83 6.85×10−7 0.277 0.609

2. ETL

LSTM 4.53 0.99 --- --- --- --- --- ---

NARX 0.70 0.75 −3.88 5.22×10−5 --- --- --- ---

GRU 8 1 2.8 0.99 6.45 1 --- ---

Decision tree 5.4 0.99 0.52 0.701 4.56 0.99 −1.3 0.096

3. ECETL

LSTM 2.03 0.97 --- --- --- --- --- ---

NARX 7.78 1 6.17 1 --- --- --- ---

GRU 2.87 0.99 0.135 0.55 −5.55 1.43×10−8 --- ---

Decision tree 3.05 0.99 1.39 0.91 −3.49 0.0002 1.288 0.90

With regards to ETL, for the case of comparing NARX and LSTM, the p-value of
5.22×10−5, which is smaller than the threshold of 0.005, shows that there are statistical
differences in the model’s prediction accuracy. In addition, the value of −3.88 confirms
that the modeling by LSTM, in this case, is better than NARX. The comparison of XGboost
with decision tree, LSTM, and NARX reveals the same results, that there are no statistical
differences between the models due to their high p-values. Although, regarding decision
tree and GRU, the p-value is 0.096, and there is a slightly better performance of GRU over
decision tree. To sum up, considering ECTL and ECETL, all models do not have meaningful
differences, except in the case of comparing NARX to decision tree and GRU. In this case,
the p-value is smaller than the threshold, and shows a clear advantage of NARX. It is the
same for ETL, where the p-values for NARX and LSTM show a better performance of LSTM.
Despite slight differences between RMSE, MAE, and DM, the time lags of each model
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should not be forgotten when making model selection decisions. As an example, while for
ECETL the performance of the model, in the case of LSTM and GRU, is almost the same,
the time lags for GRU is 3, while for LSTM it is 10, which makes the model more complex
and has a higher computational cost. In the next section of this paper, the experimental
results of model reliance on input features are analyzed.

4.2. Experimental Results Regarding Model Reliance

At this stage of the investigation, a deeper analysis of participant input data is
performed by the model reliance method. The proposed method is implemented in
two different scenarios:

1. Exploring the model reliance score on input features.
2. Exploring the model reliance score on time delay layers.

This will assist in the discovery of imperative data that are associated with model
construction. Table 3 presents the results of the models’ reliance on input features. Re-
garding ECTL, as there is only one input feature, clearly the model reliance score is high,
equal to 4.95, 6.5, 4.92, 6.88, and 6.92 for LSTM, NARX, GRU, decision tree, and XGboost,
respectively. Considering all of the models, and apart from energy consumption as input,
occupancy is associated with modeling more than CO2 and VOC data. It is noteworthy
that occupancy data is more correlated (based on the autocorrelation table) to energy con-
sumption than the two others, and as mentioned in Section 3.2, Equation (7), CO2 and VOC
are functions of occupancy, which is confirmed by the reliance model. The MR score of
almost 1 indicates it does not affect the model performance too much. Regarding ECTL
and ECETL, Table 3 shows that when lacking exogenous data, LSTM and NARX are more
under the influence of energy consumption as the only input.

Table 3. Results summary of model reliance on input features (in the case of LSTM, NARX, GRU,
decision tree, and XGboost models).

Model Reliance Score

Models Algorithm Time Lags Energy
Consumption VOC CO2 Occupancy

1. ECTL

LSTM 10 4.95 --- --- ---
NARX 4 6.50 --- --- ---
GRU 3 4.92 --- --- ---

Decision tree 7 6.88 --- --- ---
XGboost 8 6.92 --- --- ---

2. ETL

LSTM 4 --- 1.11 1.35 1.98
NARX 15 --- 1.064 1.14 2.81
GRU 5 --- 1.083 1.24 1.99

Decision tree 12 --- 1.11 1.23 2.83
XGboost 18 --- 1.25 1.57 2.73

3. ECETL

LSTM 3 4.68 1.018 1.005 1.10
NARX 3 6.15 1.007 1.03 1.22
GRU 3 4.71 1.011 1.003 1.11

Decision tree 2 6.58 1.001 1.004 1.41
XGboost 10 6.78 1.003 1.012 1.17

In the next step of the analysis, as promised, MR is applied to time delay slices for the
most important features that have the higher scores. Figure 15 presents MR scores versus
time delays of the most important features, according to Table 3 (features with the highest
MR scores). They are energy consumption for the first and third case, and occupancy for
the second case. In all situations, despite a slight fluctuation, a declining orientation is
observed from d1 (which is one time step before the predicted output) to further time steps.
Indeed, delayed d1 is the most correlated to the output of the model (as is also illustrated
in Figure 11). It is interesting to note that all MR scores of time delays are higher than
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1, which shows the effectiveness of the approach to choose the optimum time delays in
the last section of the investigation. By considering Figures 11 and 13, it is important to
stress that delay number one has a high score, based on Figure 13. However, modeling by
considering only the delay number one is the worst approach, based on the RMSE results
in Figure 13. It denotes that, despite the high score of delay one and the low score of other
delays in Figure 14, the other delays play a crucial role in augmenting the performance of
the models.
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The comparison of the MR scores between the algorithms illustrates that the absolute
slope values between d1 and d2 in the case of NARX and XGboost, and decision tree in all
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cases, is higher than LSTM and GRU. It indicates that NARX, XGboost, GRU rely more on
d1 for the construction of the model than LSTM and GRU.

While other techniques such as autocorrelation are useful for selecting appropriate
features before modeling, the model reliance method, as a complementary approach after
modeling, should be used. It not only confirms or disconfirms the result of other methods,
but also indicates, with higher reliability, the role of features in modeling and analysis,
and if the model is optimized and performs well in the context of computational cost
and accuracy.

Ultimately, based on the obtained results, ECTL and ECETL show their higher perfor-
mance compared to ETL, due to energy consumption as a key feature in the input data. MR
also confirmed that it has a higher score and is associated with the learning phase more
than the other features. The metrics and DM results also show that the differences between
ECTL and ECETL are not high. However, except XGboost, other algorithms with lower
time lags achieved high performance regarding ECETL. This indicates that providing more
features to the model leads to a decreased number of delays, while the models perform
almost the same. Based on the type of problem to be solved, one of these two models can be
considered. While the RMSE, MAE, and R2 metrics illustrate comparable results between
different algorithms for each case of modeling, DM more clearly shows the advantage of
each model to the other one; as an example, for the case of ECTL, NARX performs better
than GRU and decision tree. Regarding ECETL and ECTL, due to fewer time lags for
NARX compared to LSTM and GRU, and a lower complexity of the algorithm, NARX is a
better choice. The result of DM also confirms that NARX forecasts better than decision tree
and XGboost. However, considering ETL, LSTM shows its advantages for finding better
models with lower time lags, according to DM analysis. It seems that LSTM and GRU
can achieve better results for modeling from time sequences, while there are fewer input
features correlated to the output, and lower MR scores. It shows the capability of LSTM and
GRU when the problem is more complex and nonlinear. In other cases, where correlation is
high between the input and output, and there is a high MR score in the features, NARX can
capture the dependencies efficiently and construct a model with better performance.

While the RMSE, MAE, and R2 are perfect metrics for finding models with the desired
performance, the DM test, as an important complementary analysis method, reveals its
usefulness for selecting a model when the other metrics show comparable results.

5. Conclusions

In this article, an approach for modeling a well-performing energy consumption
forecasting model is proposed and analyzed. This article has three stages for modeling
and analyzing. In the first stage, the inputs that are most correlated to the outputs are
selected, and, according to defined protocols, three different types of models based on
different inputs are constructed by two well-known algorithms in this domain, which
are LSTM, NARX by MLP, GRU, decision tree, and XGboost. In the second stage of this
article, an efficient approach is utilized to obtain the best time delays for each proposed
model. The goal is to optimize the number of time delays parameter to achieve a less
complex model that has the highest performance. The highest performance is achieved
with ECTL and ECETL, where they perform with almost 0.07 as the minimum MAE. The
lowest performance is exhibited by the models where the input features are solely ambient
data (ETL). The MAE of these models for LSTM, NARX, GRU, decision tree, and XGboost
are 0.22, 0.21, 0.2, 0.22, and 0.22, respectively. The DM test is also clarified, statistically,
the accuracy of the models’ predictions. In most cases, it confirms that there is not much
difference between the models, as illustrated by the resulting metrics. In the last stage,
the model reliance method is applied in order to quantify the contribution of features and
time delays in the constructed models. The results show that, in the case of modeling
just with ambient data, occupancy participates the most; in the other two cases, it is the
energy consumption with time lags. Regarding the time delay MR score, the highest model
reliance score is achieved by the first time lag. As the time step increases, the score falls.
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The results of the model reliance analysis also confirm the proposed method regarding
obtaining an optimized number of delays as, in all cases, the scores are higher than 1. In
the end, among utilized algorithms for modeling of ECETL and ECTL, NARX, with less
complex architecture and computation, appears to be a better choice for this case study.
Where the input and output features are not highly correlated, and the model’s MR score is
low, which is the ETL case, LSTM appears to be the better choice.

The present approach can apply to any time series problem, especially in the sector
of energy and buildings, where the researchers are facing highly dynamic parameters
that affect the modeling performance. It can quantify the selection of different models by
different metrics and statistical tests according to different settings of time lags to optimize
their number. In future work, the proposed approach serves to construct a predictive
application to plan energy management systems in buildings or microgrids.
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