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Abstract: The article describes the results of research aimed at identifying the parameters of the
equivalent circuit of a lithium-ion battery cell, based on the results of HPPC (hybrid pulse power
characterization) tests. The OCV (open circuit voltage) characteristic was determined, which was ap-
proximated using functions of various types, while making their comparison. The internal impedance
of the cell was also identified in the form of a Thevenin RC circuit with one or two time constants.
For this purpose, the HPPC pulse transients were approximated with a multi-exponential function.
All of the mentioned approximations were carried out using an original method developed for this
purpose, based on the PSO (particle swarm optimization) algorithm. As a result of the optimization
experiments, the optimal configuration of the PSO algorithm was found. Three different cognition
methods have been analyzed here: GB (global best), LB (local best), and FIPS (fully informed particle
swarm). Three different swarm topologies were used: ring lattice, von Neumann, and FDR (fitness
distance ratio). The choice of the cognition factor value was also analyzed, in order to provide a
proper PSO convergence. The identified parameters of the cell model were used to build simulation
models. Finally, the simulation results were compared with the results of the laboratory CDC (charge
depleting cycle) test.

Keywords: lithium-ion nickel manganese cobalt (NMC) battery; particle swarm optimization (PSO);
hybrid pulse power characterization (HPPC)

1. Introduction

Battery modeling is a broad and complex field of study, covering many issues in
the fields of chemistry, physics, and electrical engineering. The electrical, chemical, and
thermodynamic phenomena taking place in a battery cell are interconnected and have
a strongly non-linear character. Among various battery models, equivalent circuits are
extensively applied because of simple structure, high precision, and the ability to charac-
terize properties of batteries such as open circuit voltage, ohmic internal resistance, and
battery polarization effects [1]. The models typically consist of a voltage source, resistors,
capacitors in parallel to form RC pairs [1], and sometimes, inductance [2].

For the calculation of energy consumption, simplified circuit models [3–6] are used,
which represent the battery as a charge-dependent voltage source with internal impedance
modeled as a single resistor (Rint model) [7–11]. In the case of more complex models,
representing dynamic properties of the cell, the structure of the model is related to the
identification method of its parameters. In the research presented here, the identification
was made on the basis of the HPPC test [12], which allows for the identification of the
parameters of the model in the form of a Thevenin RC circuit [9,13–16].

The voltage source in the Thevenin model, representing the OCV of the cell, has a
value that is a non-linear function of the battery SOC (state of charge). Three zones [3,10,17]
can be distinguished in its characteristics. In the first zone, starting from full charge, there is
an initial rapid voltage drop [18]. Then, in the second zone, the voltage stabilizes, dropping
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slowly—and almost, linearly. Finally, in zone three, for a heavily discharged battery, the
voltage drop accelerates again [18].

In practice, the OCV characteristic is identified by measurement. The charging and
discharging characteristics measured at a constant current and then averaged are most often
used here [19–21]. However, this method has some disadvantages. Firstly, the measured cell
voltage, in addition to the OCV, also includes the voltage drop at the internal impedance,
which is strongly non-linear and may change differently during charging than during
discharging. Secondly, the cell capacitance measured during charging is different from
that during discharge, due to the presence of power loss. It makes it difficult to reconcile
the two characteristics before the required averaging. To avoid these problems, this article
proposes a method for determining the OCV characteristics based on the results of HPPC
tests, consisting in averaging the voltage recorded in the no-current state before each pulse.

Independently to the method of how they have been acquired, OCV values obtained
directly from measurements contain irregularities, which makes them not suitable for
creating simulation models directly, so these require approximation. The approximation
can be carried out using functions of various forms [3,22–27]. Some of them are reviewed
and compared in this article. The function parameters can be identified analytically, usu-
ally based on manually selected points corresponding to the three OCV characteristic
zones mentioned above [3]. The disadvantage of this method is that it is often difficult to
define the boundaries between the three characteristic zones. Another method is to use
optimization [9,15,27,28].

Another problem is the identification of time constants and RC parameters of the
Thevenin model. It is most often carried out based on HPPC [21,29–31] test results, as it is
done here. Another method is an application of the pulse charge or discharge test [6,32,33].
In both cases it is also necessary to approximate the measurement waveforms using a
function, in this case a multi-exponential one. The number of exponential terms in the
function equals the number of RC pairs in the Thevenin circuit. In many cases, it is a single
pair [19,20,32,34], and only one corresponding time constant is identified. In this case RC
parameters may be simply calculated, based on identified characteristic points of voltage
transient corresponding to current test pulse [32]. Two-time-constant case is more complex
and difficult to identify [18,19,31] because it requires application of curve-fitting techniques
discussed below.

The above-mentioned approximation tasks, both for OCV and RC pairs of the Thevenin
model, can be performed by optimization. In practice, deterministic optimization methods
may be used [21,35,36]. Deterministic methods, however, have one major disadvantage:
the optimization result depends on the starting point of the algorithm, which is not always
easy to choose. This problem does not occur in population-based various metaheuristic
algorithms such as genetic algorithm, PSO, and others [9,28,35–41]. These algorithms pro-
cess multiple points distributed over the entire search space simultaneously [42], therefore
they are characterized by high efficiency in finding the global extremum. However, the
quality of the obtained optimization result depends on the one hand on the complexity
of the problem, i.e., on the number of optimized variables, and on the other hand, on
the algorithm structure used, the appropriate selection of which remains an important
practical problem [43]. In the first place, the appropriate cognition method should be se-
lected, among which the most popular are GB (global best), LB (local best), and FIPS (fully
informed particle swarm) [37,43,44]. A swarm topology should also be selected according
to the optimization task being analyzed. Static topologies, ring lattice and von Neumann
grid [45,46], and dynamic topology FDR (fitness distance ratio) [45,47] are most commonly
used. Equally important is the choice of numerical values of parameters controlling the
learning process, such as cognition factor, constriction coefficient, and inertia weight, whose
values must be adapted to the selected learning method, to the swarm topology, and to the
complexity of the optimization problem [43,45,48].
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The mentioned specificity of PSO makes the selection of an algorithm configuration
suitable for the considered problem of approximation of battery cell characteristics one of
the main goals of the research presented here.

The motivation for the research described here is the energy storage design project for
the fully electrical load-hull-dump (LHD) vehicle. The methods developed here will be
used to identify different types of cell models. Then, the created cell simulation models
will be used in the process of designing the traction battery of the vehicle, in accordance
with MBD (model-based design) methodology.

Numerical models of batteries and other components of electrical systems are inten-
sively used in the design of power supply systems using the MBD method [49,50], creating
a more or less complete numerical model of a part or the whole of the vehicle. These
models are especially used in the design of vehicles in the aviation industry for the design
and analysis of aircrafts [51], UAV (unmanned aerial vehicles) [52,53], in the automotive
industry and mobile robotics [54].

Novelties:

• Proposed method for OCV characteristic determination based on HPPC tests.
• Developed universal, PSO-based optimization method, suitable both for OCV charac-

teristic and HPPC pulses approximation.

Other contribution:

• Comparison and evaluation of various OCV approximation functions.
• Comparison and evaluation of a one-time-constant and a two-time-constant Thevenin

model of the same battery cell.

2. Methods

Data acquisition was initiated with laboratory tests of a lithium-ion battery cell with
the nominal parameters given in Table 1.

Table 1. Nominal parameters of the cell used in tests.

Type KOKAM SLPB78205130H
Chemistry Nickel Manganese Cobalt (NMC)

Rated capacity Qn 16 Ah
Energy density 146 Wh/kg

Dimensions (width/length/thickness) 220 mm/132 mm/7.8 mm
Voltage (min./average/max.) 2.7 V/3.7 V/4.2 V

Continues current (charge/discharge) 48 A (3C *)/128 A (8C *)
Peak discharge current

(max. 10 s at SOC > 50%) 240 A (15C *)

* Battery cell C rating: 1C = 16 A.

Acquired data were analyzed using a PSO to determine the parameters of the cell
equivalent circuit. This circuit then became the basis for the created simulation model.
Finally, the simulation results were compared with the measurement results. The research
methodology is outlined in Figure 1.

A series of HPPC tests and a charge depleting cycle (CDC) test were performed. The
tests were performed with a test setup shown in Figure 2. The cell is fed with an active
power supply with load function, operating in constant current (CC) and constant voltage
(CV) modes. The ITECH IT6522C power supply was used, equipped with an additional
active load module IT-E502 with a maximum dissipated power of 3000 W.
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Figure 2. Laboratory setup and simulation model circuit diagram (a), detailed connection diagram of
applied devices (b).

The measurement feedback of the power supply is connected directly to the cell
terminals in order to avoid voltage drops on the power cables (marked in bold in Figure 2b).
The measurement of the cell current was carried out using a shunt with a rated current of
60 A and a voltage of 60 mV. The voltage at the cell terminals and at the shunt was recorded
using a National Instruments NI 6251 M Series data acquisition device equipped with a
16-bit analog-to-digital converter. The sampling rate was 135 Hz during HPPC tests and
100 Hz during CDC test.
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The battery cell was operated in constant current (CC) mode in accordance with
the given reference current Iref test profile. When the cell voltage reached the allowable
minimum or maximum value, the power supply was switched into constant voltage (CV)
mode, limiting the current to keep the voltage within the allowable range.

HPPC tests were started after the cell was fully charged (up to maximum voltage).
Subsequently, 15 tests were performed with an exemplary profile shown in Figure 3.
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Figure 3. Applied HPPC test profile.

The profile consists of a series of eight 60 s test pulses of different values [2], alter-
nately discharging (positive current) and charging (negative current). Then, the cell was
discharged by 0.05 Qn, or 0.1 Qn in the middle, flat part of the characteristic (SOC ≈ 0.5).
The next test was performed after several hours of resting the battery.

The CDC test simulates cell operating conditions like those in a real electric vehicle. It
consists of a series of discharge pulses of relatively small value and long duration (driving
at a fixed speed), short discharge pulses of high value (acceleration) and charging pulses
(braking with energy recovery). The profile used was developed based on the test profile
for plug-in hybrid electric vehicles, given in the manual [55]. Compared to the original
profile given in [55], the applied profile current values have been reduced. This is due to
the fact that in a fully electric vehicle the relative battery current values are lower than in a
hybrid one. The applied CDC profile is shown in Figure 4.
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A single cycle reduces the battery charge by 0.033 Qn; therefore, a full discharge requires
about 30 cycles. Other similar cycle-based test profiles used for battery model verification
are DST (dynamic stress test) [1,30,34,56], ARTEMIS [38,40], and others [2,9,26,39,57–59].

Laboratory HPPC tests provided data for the next step, which was the identification of
battery cell model parameters. Two sets of data were extracted from these test results. The
first 1 contained cell OCV UOC values (the voltage at current Ibatt = 0) and the corresponding
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state of charge (SOC) values. OCV was calculated as a mean value of recorded Ubatt voltage
over 10 s. period before each HPPC impulse. A similar strategy of OCV measurement, but
based on pulse charge and discharge tests, is presented in [15,26]. This set of data was used
for OCV vs. SOC characteristic approximation function parameter identification.

The second data set contained HPPC impulse voltage transients and the correspond-
ing initial SOC values. Every impulse was approximated with an exponential function
that determined resistances and capacitances that comprised the SOC-dependent internal
impedance of the cell.

OCV characteristic function and impulse exponential function parameters were opti-
mized with a particle swarm (PSO) algorithm developed by the authors.

Finally, a Matlab–Simulink model was created based on the identified parameters of
the battery cell mathematical model, and a CDC cycle test was simulated, identical to the
one recorded in the laboratory.

3. Results

The battery cell mathematical model is represented by the Thevenin (series) equivalent
circuit (Figure 5) consisting of a voltage source UOC(SOC), representing the open-circuit volt-
age OCV, depending on the state of charge SOC of the battery. The internal impedance of the
cell is represented by a series resistor R0 related to the ohmic effects of the materials, while
the time-dependent overvoltages are modeled by the RC circuits [15,16,30,36,56,57,60].
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The number of RC circuits determines the number of mathematical model time con-
stants [1,56,57]:

τk = Rk·Ck, (1)

where k ∈ [1, 2]. All the resistances and capacities depend on the SOC of the cell, which is
estimated based on the cell current [1,15,25,34,40,60]:

SOC = SOC0 −
1

Qbatt

t∫
0

Ibattdτ. (2)

where SOC0 is the initial SOC of the cell and Qbatt is the cell capacity. Real cell capacity
usually differs from the nominal one Qn and depends on ambient temperature, the state of
health (SOH) of the cell, etc. Here it was estimated as a total charge given off by the cell in
all 15 HPPC tests:

Qbatt = ∑
15

t∫
0

Ibattdτ. (3)

The resulting value was Qbatt = 17.103 Ah and was greater than the nominal one given
in Table 1. The number of 15 HPPC tests comes from the fact that subsequent tests were
carried out until the cell voltage reached the minimum value (Table 1), and the discharging
current pulses were cut off by the CC/CV mechanism.

It should be mentioned that the cell model used does not take into account the phe-
nomenon of self-discharge. Taking this phenomenon into account would require adding
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an additional resistor to the equivalent circuit in parallel with the UOC voltage source [61].
The value of this resistor, however, is not identifiable from the HPPC tests underlying the
analysis performed here. Moreover, the self-discharge process is usually not taken into
account when designing a vehicle traction battery using the MBD method, which will be
the main application of the methods developed here. Therefore, the self-discharge process
was omitted.

3.1. Battery Cell OCV Characteristic

The voltage characteristic UOC(SOC) can be approximated by a continuous function,
various forms of which can be found in the literature. The first of the analyzed functions
was used in the simulation model available in the Matlab–Simulink environment (Toolbox
Simscape Electrical):

UOC(SOC) = a
SOC

1− b·(1− SOC)
. (4)

For simplicity, this function will hereinafter be referred to as the “Beta function”, after
the coefficient marking found in its original form in the Matlab program. This function
requires the identification of only two parameters describing its shape, a and b. The
simplicity of the model, however, made it impossible to match it satisfactorily to the actual
voltage characteristics of the cell. In particular, the Beta function is not able to depict the cell
voltage rise near SOC = 1. Significant discrepancies also occurred near SOC = 0, because the
function (4) has a value of 0 at this point, while in practice, the actual cell voltage cannot
drop below the minimal one, and for a fully discharged cell is still greater than 0.

A better representation of the shape of the characteristic is provided by the Tremblay
function [3,62], named after the originator [5]. A similar function was used in [17,63]. This
function included an exponential term to represent the voltage rise near SOC = 1:

UOC(SOC) = a + b·e−c·(1−SOC) − d
SOC

. (5)

The curve of the characteristic at low SOC values is mapped using the inverse function,
which is a problem—this component has an asymptote for SOC = 0, which prevents a good
fit of the function to the shape of the measurement characteristic. The Tremblay function
has four parameters, a, b, c, and d.

To improve the mapping of the characteristics in the range of low SOC values, an
additional fifth e parameter has been added to the Tremblay function:

UOC(SOC) = a + b·e−c·(1−SOC) − d
SOC + e

. (6)

When e > 0, then the asymptote of the function (6) is in the range of negative SOC
values, i.e., outside the operating area 0 < SOC < 1, and the value UOC(SOC = 0) is greater
than zero, as in the real characteristic. The function described by the Equation (6) will
hereinafter be called Tremblay2.

Another function analyzed is the log-linear-exponential (LLE) model [3,26]:

UOC(SOC) = a + b·ln(SOC + c) + d·SOC + ee·(SOC− f ). (7)

This is a complex function, and its shape is determined by six parameters, a–f. It
contains 3 SOC dependent terms, logarithmic (coefficients b, c), mapping the shape of
the characteristic for SOC ≈ 0, linear (d) defining the slope of the middle part of the
characteristic and exponential (e, f ), describing its shape for SOC ≈ 1.

In the original version described in [3], the function (7) contains one more parameter
in the exponential term. From a mathematical point of view, it is redundant, and its value
depends on the parameters e and f. In this study, it has been omitted to simplify the
optimization process. However, the presence of this parameter in the original function de-
scribed in [3] is justified and results from the analytical parameter identification procedure.
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In addition to the functions listed above, there are also other variations in the literature
combining linear, exponential, and logarithmic terms in various ways [18,22,26,34,38].

The literature [1,3,11,23–25] also mentions the approximation of the OCV characteristic
of the cell with a polynomial (even of the 17th order [15]), or a polynomial extended with
an exponential term [64]:

UOC(SOC) = a + b·e−c·(1−SOC) + d·SOC + e·SOC2 + f ·SOC3 + · · · (8)

This function will be referred to as PolyEXP. In [3,23–25], it is noted that the polynomial
function does not bring good results. For a polynomial 3 degrees and smaller, the fit is not
very accurate [20]. For higher degrees of these polynomial, the function oscillates around
the reference characteristic [11,65], which is typical for polynomial approximation, but
significantly worsens the properties of the obtained battery cell model, especially in the
middle, flat part of the characteristic UOC(SOC). Regardless, the authors decided to include
function (8) in the program of the research presented here.

In [17,27], a possibility to use a rational function can also be found. However, the au-
thors rejected this due to a large number of coefficients, the problem of function oscillations
around the reference characteristic (similar to the polynomial function), and the difficulty
avoiding the possible occurrence of asymptotes in the operating range 0 < SOC < 1.

It should be noted that the functions described here describe the OCV characteristics
in the full SOC range from 0 to 1. In [22], a different approach was proposed, consisting in
the division of the characteristics into three partially overlapping intervals, approximation
of the OCV characteristics in each interval separately (with different function), and finally,
combining the three obtained functions with appropriate weighting functions.

3.2. Battery Cell Thevenin Impedance

Transient cell voltage during the course of an HPPC impulse may be described with a
multi-exponential function:

Ubatt(t) = UOC ± a± b·
(

1− e−
t
c

)
± d·

(
1− e−

t
e

)
, (9)

where positive signs (+) are for charging impulses, while negative (−) are for discharging
ones. UOC is a measured OCV (for battery cell current I = 0), in the time instant proceeding
the impulse. Coefficients a–e define the impulse shape (Figure 6). Equation (9) corresponds
to the Thevenin circuit with 2 time constants τ1 and τ2 in (9) denoted as c and e, corre-
spondingly. When only one time constant is taken into consideration, then the last term (d
and e) is omitted [9,19]. Based on a parameter Thevenin resistance R0 may be calculated.
Resistances R1 and R2 may be calculated based on b and d, correspondingly, and finally,
capacitances C1 and C2 based on b, c and d, e pairs and Equation (1).
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3.3. Particle Swarm Optimization

The a, b, c . . . parameters of the approximating functions (4)–(9) were optimized to fit
the measured data. For the purposes of optimization, a fitness function was proposed in
the form of the square root of the variance, i.e., the mean of the sum of squared deviations
from the measured characteristic UOC(SOC) or HPPC impulse voltage transient Ubatt(t):

F =

√√√√ 1
K

K

∑
k=1

(Uref(SOCk)−UOC(SOCk))
2, (10)

F =

√√√√ 1
K

K

∑
k=1

(Uref(tk)−Ubatt(tk))
2, (11)

where k is numerical input from the measured or recorded data samples. In the optimization
process, the minimum of the function F is sought. The function has the value of the square
root of the variance, the value of which is a standard statistical tool used, among others, to
assess goodness of fit. The same method, referred to as root mean square error (RMSE), was
used, among others, in [1,20,24,56], and in a similar form in [40,42] (variance without root).

The particle swarm optimization (PSO) algorithm was used for optimization. This
algorithm was chosen due to its high efficiency in finding the global extreme and wide
configuration options, enabling the optimization process to be easily adapted. For the
needs of this research, the original software was created implementing the chosen PSO
techniques known from the literature. Possible PSO configurations are shown in Figure 7.
PSO was used to identify the battery model parameters also in [42].
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3.3.1. Particle Swarm Dynamics

Let us consider a swarm of N particles randomly distributed in the search space. Each
particle is described by two vectors, the position vector x and the speed vector v. The
number of search space dimensions M (element number of v and x) equals the number
of optimized coefficients a, b, c . . . , and varies from 2 for the function (4) to (6) for the
function (7). In each i-th step of the algorithm, the position x of each particle is updated
based on its position in the previous step and the speed vector whose value corresponds to
the displacement of the particle [42]:

x← x + v. (12)

The particle speed v is determined in the cognition process.
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3.3.2. Cognition Process

The particle speed v is calculated in each iteration of the algorithm, based on informa-
tion about the values of the fitness function of other particles and remembered the best of
its own previous positions. There are three main cognition methods [43]: global best (GB),
local best (LB) and fully informed particle swarm (FIPS).

The GB method, historically the first and simplest one [37,43,44], is described by the
equation:

v← χ·
[
v +

ϕ

2
·rnd·

(
xpb − x

)
+

ϕ

2
·rnd·

(
xgb − x

)]
. (13)

The course of the cognition process described by the Equation (13) is affected by
two coefficients, the cognition factor ϕ and the constriction coefficient χ. The constriction
coefficient is also the inertia weight [45,48]. This is because the new value of the speed
v (on the left side of the equation) depends on the product χ·v (on the right side of the
equation). In turn, the cognition factor determines how much the speed of a given particle
is influenced by other particles in the swarm with better values of the fitness function
and the remembered previous best position of this particle. The relationship between the
cognition factor and the constriction coefficient determines, among others, the stability of
the algorithm and the number of iterations required to achieve convergence. The values
of the coefficients ϕ and χ can be set independently of each other. However, it may cause
problems, because with an inappropriate combination of their values, the algorithm may
lose stability [45]. In the algorithm described here, the method proposed in [43,48] was
used, consisting of interconnecting both coefficients according to the relation:

χ =
2

ϕ− 2 +
√

ϕ2 − 4ϕ
. (14)

In Equation (13), rnd denotes a diagonal matrix of M-th order with random element
values, additionally dependent on the comparison of the values of the objective function:

rnd =

{
diag(ρ1, ρ2, . . . , ρM) if F(xref) < F(x)

0M×M if F(xref) ≥ F(x)
. (15)

When the value of the objective function corresponding to the position x of the con-
sidered particle is better than the value of the objective function corresponding to the
reference position xref, then rnd is a diagonal matrix with random values ρ in the range
from 0 to 1. When the value of the objective function for the reference position is worse,
then rnd is a zero matrix. This means that the components of equation (13) containing the
rnd matrix affect the calculated speed of the particle only when the value of the objective
function corresponding to the current position x is worse than for the best remembered or,
respectively, worse than the value of the fitness function for the best particle in the swarm.
The xref in (14) corresponds in (13) to xpb (previous best), the best remembered position of
the particle from all previous positions, and xgb (global best), the position of the particle
with the best value of the fitness function in the entire swarm.

Studies have shown [43] that the algorithm based on the GB cognition method has a
tendency toward premature convergence, and thus, a relatively low efficiency of finding
the extremum of the fitness function. Better properties in this respect are demonstrated by
the LB method, described by the equation:

v← χ·
[
v +

ϕ

2
·rnd·

(
xpb − x

)
+

ϕ

2
·rnd·(xlb − x)

]
. (16)

The only difference in comparison to equation (13) is the reference used in the second
random term, xlb (local best) instead of xgb (global best). It is the position of the particle with
the best value of the fitness function, not in the entire swarm but in its specific fragment,
called the neighborhood S of the considered particle. How the neighborhood is defined, and
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what its order R is, i.e., the number of particles it contains, is determined by the topology of
the swarm, described in Section 3.3.3.

Another development of the cognition method is the fully informed particle swarm
(FIPS) method described by the formula [43]:

v← χ·
[

v +
ϕ

R + 1
·rnd·

(
xpb − x

)
+

ϕ

R + 1
·rnd·∑

r∈S
(xr − x)

]
. (17)

As in the case of LB, the learning process is based not on the entire swarm but on the
neighborhood S of a given particle. The difference is that in the case of FIPS, all R particles
in the neighborhood are used in the learning process, not just the one with the best value
for the fitness function.

3.3.3. Swarm Topology

The swarm topology determines the interconnections between the particles, i.e., how
the neighborhood is defined. In the historical first versions of PSO algorithms, the dis-
tance between particles in the search space was decisive for belonging to a neighborhood.
However, this approach turned out to be ineffective [43] and, at the same time, costly in
terms of calculation effort, so it is no longer used. There are currently two basic types of
neighborhoods, static and dynamic.

A static neighborhood is defined once, before starting the algorithm. For each particle
in the swarm, we define a set S containing R other particles, and during the operation of the
algorithm this set does not change. In the considered algorithm, static neighborhoods with
a ring lattice topology of various orders and a two-dimensional von Neumann grid were
used (Figure 8) [45,46]. It should be noted that only arbitrarily assigned particle numbers
determine inclusion in the neighborhood. Therefore, particles located at opposite ends of
the search space may be neighbors, while two other particles located close to each other
will not be neighbors.
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Unlike a static neighborhood, a dynamic neighborhood is re-established with each
iteration of the algorithm. Algorithms based on this type of neighborhood require more
computational effort. Currently, the most common type of dynamic neighborhood is the
fitness distance ratio (FDR) [45,47]. When selecting the neighborhood of a given particle
with position x, it is necessary first to determine the value of the coefficient w for all
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other particles in the swarm (with positions xn), separately for each m-th dimension of the
search space:

w(m)
n =

F
(

x(m)
)
− F

(
x(m)

n

)
∣∣∣x(m) − x(m)

n

∣∣∣ . (18)

where x(m) is the m-th element of the vector x, and n is the number of the particle in the
swarm, different from the number of the particle for which the neighborhood is determined.
Then, R particles with the greatest values of the coefficient w should be included in the
neighborhood. The neighborhood is determined for each dimension of the search space
separately, so if the neighborhood dimension R equals, for example, 4 and 3 variables are
optimized, then each particle has 12 neighbors. Therefore, if the FIPS learning method is
used, the R value in the Equation (17) should be additionally multiplied by the number of
dimensions of the search space.

3.3.4. Initial Conditions and Constraints

For each of the optimized coefficients a, b, c . . . , an individual range of values is
set within in which a solution is sought. This range is then normalized from 0 to 1, so
the search space is a multi-dimensional hypercube with side length 1. The initial swarm
of particles, for iteration of the algorithm i = 0, is randomly generated inside this cube.
During subsequent iterations of the algorithm, when the particle positions are updated in
accordance with the Equation (12), it may happen that some particles leave the assumed
search space, i.e., that one or more elements of the vector x reach a value less than 0 or
greater than 1. In the considered algorithm this can be avoided by including a rigid position
constraint in the search space. Similarly, the maximum speed can be limited by setting the
maximum value of the speed vector modulus v. In the case of the initial swarm (for i = 0),
it is possible to choose whether the initial speed is to be zero (v = 04×1) or random.

3.3.5. Convergence and Stability

Each particle has a position and velocity that are dependent on each other. Accordingly,
each particle is a dynamic system. Thus, a swarm composed of interrelated particles is also
a dynamic system. Thus, the problem of stability arises [43,45]. The dynamic properties of
the particle, and indirectly of the swarm, are determined by the value of the cognition factor
ϕ and the constriction coefficient χ. In [43], it is stated that for the constriction coefficient
χ associated with the cognition factor ϕ with Equation (14), the swarm loses stability for
ϕ less than about 4, and the exact stability limit value depends on the applied cognition
method, swarm topology and applied speed and position constraints. When the swarm is
unstable, then with subsequent iterations of the algorithm, its particles move away from
each other at an exponential rate, and their speeds increase in a similar way. Therefore, the
algorithm is not able to converge. When the algorithm converges, then with subsequent
iterations, the particle speeds, and the distances between them asymptotically decrease
to zero.

3.4. Optimization and Simulation Results

During the research, many numerical and laboratory experiments were carried out,
selected results of which are presented below.

3.4.1. OCV Characteristic Approximation

PSO optimization was performed for 7 OCV approximation functions, Beta func-
tion (4), Tremblay function (5), Tremblay2 function (6), LEE function (7) and PolyEXP
function (8), and for 3 different polynomial degrees: 3, 5, and 7.

For each function, the optimization was carried out many times, in search of the
optimal settings of the PSO algorithm. The best results obtained are shown in Figure 9
and Table 2.
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The values of the optimized fitness function (10) given in Table 2 and repeated in
Figure 9 are also a measure of the quality of the approximation of the OCV characteristic.
The smallest (best) F value was obtained for the Tremblay2 function. Important information
from a practical point of view are the limits of the search space given in Table 2 for each
of the optimized parameters a, b, c... By carrying out many optimization attempts, these
limits were selected so that they were wide enough that the optimal solution always fell
within their scope. On the other hand, they are narrow enough so that the search space
is not excessively vast, which would hinder the operation of the algorithm, causing that
finding the minimum of the objective function and obtaining convergence would require
more iterations. The complexity of the optimization task can be assessed on the basis of the
calculation duration given in Table 2. The time is given as a relative value, in relation to the
smallest one obtained. For example, Table 2 shows that the LEE function took about five
times longer to obtain than the Beta function.

The given time values should be treated as approximate because the calculation time,
apart from the PSO algorithm itself, is also affected by other tasks performed by the
computer’s operating system.
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Table 2. Summarized optimization results for OCV characteristic functions.

OCV Characteristic Approximating Functions

Beta Tremblay Tremblay2 LLE PolyEXP3 PolyEXP5 PolyEXP7

O
pt

im
iz

at
io

n
re

su
lt

s—
fu

nc
ti

on
pa

ra
m

et
er

s
an

d
fit

ne
ss

fu
nc

ti
on

a
[limits]

3.775
[2.5, 4]

3.302
[2.5, 4]

3.563
[2.5, 4]

3.760
[2.5, 4]

3.271
[2.5, 5]

3.261
[2.5, 5]

3.250
[2.5, 5]

b
[limits]

0.9962
[0.9, 1]

0.8931
[0.1, 4]

0.6842
[0.1, 5]

0.1474
[0, 2]

3.564 × 10−3

[0, 5]
0

[0, 5]
1.219
[0, 5]

c
[limits] – 1.564

[0.1, 5]
2.773

[2, 100]
1.583 × 10−7

[0, 0.3]
2.783
[0, 5]

2.990
[0, 5]

3.574
[0, 5]

d
[limits] – 0.004545

[0, 0.1]
0.01618

[0, 1]
−0.3078

[−0.5, 0.5]
1.768

[−3, 3]
1.823

[−3, 3]
1.170

[−3, 3]

e
[limits] – – 0.02028

[0, 0.1]
2.618

[0.1, 10]
−2.581
[−3, 3]

−2.475
[−3, 3]

−0.8740
[−3, 3]

f
[limits] – – – 1.102

[0.85, 1.5]
1.749

[−3, 3]
0.8092
[−3, 3]

−1.844
[−3, 3]

g
[limits] – – – – – 1.366

[−3, 3]
2.736

[−3, 3]

h
[limits] – – – – – −0.5519

[−3, 3]
−1.397
[−3, 3]

i
[limits] – – – – – – 0.3985

[−3, 3]

j
[limits] – – – – – – −0.4576

[−3, 3]

F 0.180 1 0.0243 0.0138 1 0.0213 0.0514 0.0506 0.0571

PSO total time
(relative) 1 58.7 3.89 5.06 5.08 5.04 5.10

PS
O

se
tt

in
gs

I 120 120 120 120 120 120 120

N 36 64 64 64 100 100 100

Topology (R) – FDR (4) VN (4) RL (6) VN (4) VN (4) VN (4)

Cognition (ϕ) GB (4.1) LB (4.15) FIPS (4.1) FIPS (4.15) LB (4.25) LB (4.25) LB (4.25)

Constraints v and x only x v and x v and x v and x v and x v and x

1 The best value is marked in green, the worst in red.

The evaluation of the optimization results presented in Table 2 and Figure 9, carried
out from the point of view of the cell model, are included in Section 4.

3.4.2. HPPC Pulses Approximation

Optimization of the coefficients of the function (9), describing the transient of the
HPPC pulse voltage, was carried out in 2 stages. First, for a few selected impulses, initial
optimizations were carried out in search of the best settings of the PSO algorithm. Sub-
sequently, two series of optimizations were performed for all pulses, the first series for
one time constant in the Thevenin model and the second series for two time constants.
The PSO algorithm settings were the same within each series, except for the search space
limits, which were adjusted to the internal impedance of the cell that changes with the
SOC. A total number of 96 pulses were optimized in each series. Although 15 HPPC tests
with 8 pulses each were performed—giving a total of 120—for some pulses (charging for
SOC ≈ 1 and discharging for SOC ≈ 0) these were rejected due to distortion by the CC/CV
mechanism. Sample optimization results for pulse no. 6 from the HPPC test no. 3 are
shown in Figure 10.
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Figure 10 also shows graphs illustrating the course of the optimization process. There
are maximum, average, and minimum values of the speeds v of the particles in the swarm,
the distance between the particles in the swarm, and the values of the fitness function F.
These values show when the PSO algorithm converges. Convergence is reached when the
speed of the particles drops to zero, which means that the particles stop traversing the
search space. When the distances between them also drop to zero, it means that all the
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particles have gathered at one point in space, corresponding to the minimum found. PSO
statistics for both optimization series are summarized in Table 3.

Table 3. PSO settings and statistics for HPPC impulses approximation.

Thevenin Time Constants Number 1 2

PS
O

se
tt

in
gs I 180 180

N 36 64
Topology (R) VN (4) RL (8)
Cognition (ϕ) FIPS (4.1) FIPS (4.1)
Constraints v and x v and x

Fi
tn

es
s

fu
nc

ti
on

st
at

is
ti

cs min(F) * 3.07 × 10−4 1.73 × 10−4

max(F) * 3.84 × 10−3 2.80 × 10−3

mean(F) * 9.87 × 10−4 4.73 × 10−4

median(F) * 7.91 × 10−4 3.95 × 10−4

* Calculated based on final F values of 96 optimizations.

The data presented in Table 3 show that for the approximation of the HPPC pulse
with the two-exponential function, smaller (better) values of the objective function F were
obtained. This means that the two-time-constant Thevenin model reflects the dynamic
properties of the real cell much better. In particular, the median and mean values of the
fitness function over the entire series are two times lower for two-time-constant case.

3.4.3. Simulations Compared to Measurements

Optimization results, OCV function and parameters of Thevenin’s model were intro-
duced to a simulation model simulating the operating conditions of the cell during the
CDC laboratory test. A series of 14 simulations were carried out for seven OCV functions
and two versions of the Thevenin model, with one and two time constants. Waveforms
obtained for two chosen simulations are shown in Figures 11 and 12. All 14 simulation are
summarized in Table 4.

The voltage relative error δUbatt is a simulation voltage error calculated in reference
to the measured one. Table 4 and Figures 11 and 12 show the average and maximum
error values calculated over the entire simulation time, as well as those calculated for
the time period from 30 to 210 min. Values limited to this time interval better reflect the
practical usefulness of the simulation model because they ignore the interval in which the
battery is fully charged and fully discharged. In practice, the battery operates in these
states relatively rarely, and the identified characteristics of the model are burdened with
the greatest deviations for these states, overestimating the simulation errors.
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Table 4. Simulation results summary.

OCV Function Thevenin Time
Constants

max(|δUbatt|)
[%]

mean(|δUbatt|)
[%]

max(|δUbatt|)30–210 min
[%]

mean(|δUbatt|)30–210 min
[%]

Beta 1
2

23.3 1

23.3 1
4.19 1

4.15
9.72 1

9.42
3.36 1

3.30

Tremblay 1
2

19.4
19.3

0.758
0.684 1

6.14
5.77 1

0.359
0.284 1

Tremblay2 1
2

17.0
16.9 1

0.771
0.684 1

6.45
6.08

0.466
0.377

LEE 1
2

17.0
16.9 1

0.800
0.722

6.69
6.32

0.505
0.420

PolyEXP3 1
2

18.5
18.2

1.53
1.46

7.22
6.85

0.716
0.671

PolyEXP5 1
2

17.9
17.6

1.42
1.37

7.08
6.71

0.645
0.620

PolyEXP7 1
2

19.0
18.6

1.54
1.46

6.72
6.35

0.688
0.635

1 The best values is marked in green, the worst in red.
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4. Discussion

In the tests carried out, the PSO algorithm showed high flexibility and quality of
operation sufficient to create a simulation model that accurately reflects the real working
conditions of the battery cell.

The optimization task for the algorithm more difficult the more variables are optimized,
which requires the use of more advanced cognition methods, topologies, and increasing
both the number of particles in the swarm and the number of steps in the algorithm. This
can be seen in the results presented in Table 2. For the Beta function, which has only two
parameters, the best results were obtained using the simplest GB cognition method and a
relatively small number of particles in the swarm (36). The use of more advanced methods
and a larger number of particles did not improve the quality of the obtained results. In
general, the research conducted showed that the Beta function, although the easiest to
parameterize, reflects the shape of the OCV characteristic of the cell the worst. The best
optimization results were obtained for the Tremblay2 function, which, despite having
five parameters, turned out to be relatively easy to parameterize. Achieving a reasonably
good effect for its original version (Tremblay) required the use of the most complex FDR
swarm topology, which results in the longest computation time. Experiments with the
optimization of the PolyEXP function confirmed its main disadvantage described in the
literature, i.e., the tendency to oscillate around the measurement characteristic. Increasing
the degree of the polynomial did not improve the situation here, additionally making the
optimization more difficult by increasing the number of optimized variables.

Optimization identification of time constants of the Thevenin model (9) required
increasing the number of algorithm steps to 180, compared to 120 for OCV characteristics
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(Table 3). The case in which two time constants are identified required increasing the
number of particles in the swarm from 36 (for 1 time constant) to 64, and the topology order
from 4 to 8, forcing closer cooperation of particles in the swarm. The identified model with
two time constants better reflects the real properties of the cell, which comes from smaller
errors obtained in all simulations for this model, compared to the simulations carried out
for one time constant (Table 4).

The best simulation results were obtained for the OCV functions Tremblay, Tremblay2
and LLE, and the Thevenin model with two time constants. Table 4 shows that the smallest
maximum value of the voltage mean square error was obtained for the Tremblay2 and LLE
functions. However, in the limited working interval (30–210 min), in which the working
area of the cell with the smallest and largest SOC values was omitted, the Tremblay
function turned out to be the best. Table 4 also shows that from the point of view of the
precision of the simulation model, the most important is a good representation of the OCV
characteristics, and the choice between a model with one or two time constants has a lesser
impact on the simulation results. Indeed, this comes from the fact that in Table 4, the results
obtained for different OCV functions differ more than the results obtained for the same
function but with a different number of time constants of the model.

5. Conclusions

Among the examined functions approximating the OCV characteristics of the cell,
the best representation is provided by the Tremblay2 function, slightly ahead of the LLE
function in this respect. The parameters of both functions are relatively easy to select with
the proposed method based on PSO, with the settings given in Table 2. Therefore, the
authors can recommend their use. The proposed optimization method turned out to be
ineffective when selecting the polynomial approximation parameters with the PolyEXP
function. Therefore, the possible use of this function in practice requires the development
of better methods for its parameterization.

Thevenin’s model with two RC pairs turned out to be more accurate than the one-pair
model. On the other hand, the number of time constants included has less influence on
the accuracy of the cell model than the precise representation of the OCV characteristic.
Therefore, the use of a model with one time constant is a good compromise between
the quality and complexity of the model, especially since the identification of two time
constants is more difficult and requires higher settings of the optimization algorithm.

The applied PSO method enabled obtaining good quality results, but its disadvantage,
and thus the factor limiting its application, is the time-consuming calculations. A full series
of optimizations for 96 HPPC pulses took a total of several hours. However, it should be
noted that this is significantly less than the time required to perform this series of tests in
the laboratory.
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