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Abstract: In this paper, a competing risks model with dependent causes of failure is considered
under left-truncated and right-censoring scenario. When the dependent failure causes follow a
Marshall–Olkin bivariate exponential distribution, estimation of model parameters and reliability
indices are proposed from classic and Bayesian approaches, respectively. Maximum likelihood
estimators and approximate confidence intervals are constructed, and conventional Bayesian point
and interval estimations are discussed as well. In addition, E-Bayesian estimators are proposed and
their asymptotic behaviors have been investigated. Further, another objective-Bayesian analysis
is also proposed when a noninformative probability matching prior is used. Finally, extensive
simulation studies are carried out to investigate the performance of different methods. Two real data
examples are presented to illustrate the applicability.

Keywords: dependence competing risks; left-truncated and right-censored data; bivariate exponential
distribution; E-Bayesian estimation; objective Bayesian analysis; posterior analysis

1. Introduction

In practice, failure of products often occurs due to multiple causes. Such causes of
failure are referred as competing risks in the literature and appear in various application
fields such as industrial engineering, reliability analysis, lifetime studies, among others. For
competing risks data, they commonly consist of failure time and cause indicator under a
standard scenario. Inference for competing risks data has attracted wide attention and been
discussed by many authors. See, some recent works of Rafiee et al. [1], Balakrishnan et al. [2],
Varghese and Vaidyanatha [3], Koley et al. [4], among others. In traditional analysis, failure
causes are commonly treated as independent, but such assumption sometimes may be
improper due to practical complexity. Therefore, considering dependent models seems
more proper to describe competing failure causes which have been a hot topic of recent
discussion. Under this point, various ways are proposed for modeling dependent failure
causes, and commonly used approaches include bivariate and multivariate distributions
(e.g., [5–7]), shock method (e.g., [8–11]), and copula method (e.g., [12–16]). It is worth
mentioning that the aforementioned shock model plays an important role for analysis
of competing risks in reliability theory and lifetime studies, and that copula method
provides another popular and flexible way for modeling dependent variables due to their
advantage of separating the marginal distribution and the dependent structure. Specifically,
besides traditional copula functions as mentioned in the above reference, the vine copula
method has received much attention recently in the uncertainty analysis fields due to
the associated novel structural inferential analysis approach, and simultaneously greatly
expands the application scope of the copula methods. For example, Amini et al. [17]
proposed a novel way via vine-copula function in uncertainty quantification of aging dams
using meta-models to fully capture nonlinear dependencies. Zhang et al. [18] proposed a
vine-copula-based partially accelerated competing risks model using a tampered random
variable transformation.
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In practical data analysis, failure times usually appear as incomplete data due to exper-
imental limitation such as cost and time constraints. Among various features of incomplete
data, truncation and censoring are two most important characteristics frequently appearing
in practice. Especially, when units enter the study at a known time point after the time
origin, one could obtain data suffering left truncation, whereas for right censoring, it means
that the failure times are only known to exceed the prefixed censoring point. Therefore, it is
seen that truncation and censoring are classical topics in survival and medical analysis and
also widely recognized in both biostatistics and reliability engineering, among other various
fields, and that due to complex life-cycle environment and testing conditions, left-truncated
and right-censored (LTRC) data as a more widespread phenomenon for failure times are
more general in practical situations. For a famous example in engineering, Hong et al. [19]
reported an example of LTRC data for voltage power transformers. In this example, there
are approximately 150,000 high-voltage power transmission transformers in service in
the US. Transformers were installed before or after the year 1980, and the data collection
period of failure was conducted by corresponding energy companies between 1980 and
2008. In this case, only complete information for the transformers installed after 1980 and
for the transformers installed before 1980 but failed after 1980 is still available, and the
transformer information still surviving till 2008 is right-censored in consequence. Thus,
the observed transformers failure times appear as LTRC data. Similar real life examples
also widely appear in various fields of medical treatment, survival analysis, iostatistics,
among others. Therefore, it is meaningful to discuss LTRC data that provides potential
theoretical investigation and practical applications in real life analysis and decision-making
situations. In literature, inference of LTRC data has been extensively discussed by many
authors from various perspectives. To name a few, Hong et al. [19], Balakrishnan and
Mitra [20–22], Mitra and Balakrishnan [23], Kundu and Mitra [24] with the aid of EM algo-
rithms. Emura et al. [25] compared between the Newton–Raphson (NR) and EM algorithms.
The Bayesian analysis of LTRC data from lognormal, Weibull, and gamma distributions
was also developed by Mitra et al. [26], Ranjan et al. [27], Wang et al. [28]. Analysis of LTRC
data via regression approach along with semiparametric and covariate factors was also
discussed by McGough [29], Zhang et al. [30], Park [31], Frumento and Bottai [32], Huang
and Qin [33], among others. In addition, when there are multiple failure causes involved,
associated LTRC competing risks data were studied by Wang et al. [13], Kundu et al. [34],
Wang et al. [35], Una-Alvarez and Veraverbeke [36], Shih and Emura [37], among others.
Interested readers may refer to Emura and Michimae [38] for a review. For clarity, Figure 1
is presented to show associated analysis strategies about LTRC data.

Due to the potential theoretical and practical importance of LTRC data, this paper
considers inference for dependent LTRC competing risks data. When the failure causes
of LTRC failure time follows a simple shock model, namely the Marshall–Olkin bivariate
exponential (MOBE) distribution proposed by Marshall and Olkin [11], estimation for the
unknown parameters and the reliability indices are developed under classical and various
Bayesian procedures, respectively. The potential novelties and contributions of this paper
are as follows. On the one hand, due to the existing literature focusing on independent
LTRC competing risks data, this paper considers dependent competing risks data under
the LTRC scheme. Although the lifetime of failure causes are modeled by a simpler MOBE
distribution, similar results could be obtained when other relatively complex baseline
models are used in a Marshall–Olkin-type distributional structure. On the other hand,
various Bayesian inferential approaches including traditional, E-Bayesian, and objective-
Bayesian estimations are proposed in this paper, and associated risk criterion quantities and
asymptotic properties are obtained in different cases. Specifically, it is worth mentioning
that in one of our authors’ previous paper [35], inference of dependent LTRC competing
risks data is still established, and the common point and difference between these two
papers are presented as follows. Firstly, the common point is that the dependent LTRC
competing risks data are all modeled by Marshall–Olkin-type distributions in both papers.
In paper [35], the lifetime of the causes of risks are discussed based on a Marshall–Olkin-
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type distribution with Weibull baseline, whereas the exponential-based Marshall–Olkin
bivariate distribution is considered in the current paper. Secondly, one main difference is
that prior distributions are different between these two papers; a general dependent prior
is implemented for model parameters in [35] and the associated results are obtained via
Monte Carlo sampling, whereas in the current paper, the independent gamma priors are
adopted for incorporating extra prior information under a Bayesian perspective and exact
estimators are established subsequently. Finally, comparing with the traditional standard
Bayesian estimation in [35], another main difference between two papers is that E-Bayesian
and objective Bayesian methods are further proposed in the current paper, where associated
estimated risks and E-posterior risks are established and the corresponding asymptotic
equivalence is also investigated, and that relatively robust estimates are provided under
such scenarios. For illustration, a flowchart about the main contents of the paper is
presented in Figure 2. To the best of our knowledge, this problem has not been discussed
before in the literature.

Figure 1. Research strategies of LTRC data [19–38].

The article is organized as follows. In Section 2, the MOBE model and the LTRC data
description are introduced. Section 3 establishes the maximum likelihood estimators (MLEs)
and the associated approximate confidence intervals (ACIs) for parameters of interest.
Conventional Bayesian, E-Bayesian, and objective Bayesian estimations are proposed in
Section 4. Simulation studies and two real-life examples are conducted in Section 5. Finally,
some brief concluding remarks are presented in Section 6.
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Figure 2. Flowchart of the main contents in this paper.

2. Model and Data Description
2.1. Marshall–Olkin Bivariate Exponential Distribution

A random variable U follows an exponential distribution with hazard rate λ when
the probability density function (PDF), cumulative distribution function (CDF), and the
survival function (SF) of U are respectively given by

f (u; λ) = λe−λu, F(u; λ) = 1− e−λu, S(u; λ) = e−λu, u > 0. (1)

This is denoted by U ∼ Exp(λ).
Let U1, U2, and U3 be independent exponential random variables satisfying Ui ∼

Exp(λi), i = 1, 2, 3. Define T1 = min(U1, U3) and T2 = min(U2, U3), then the ran-
dom vector (T1, T2) has the MOBE distribution with parameters (λ1, λ2, λ3), denoted
by (T1, T2) ∼ MOBE(λ1, λ2, λ3).

For the sake of simplicity, denote λij = λi + λj, i, j = 1, 2, 3, i 6= j and λ123 = λ1 + λ2 +
λ3. Some results of the MOBE model are provided below and the associated proofs are
omitted for saving space.

Theorem 1. Suppose the random vector (T1, T2) follows the MOBE distribution with parameters
λ1, λ2, λ3, the joint SF of (T1, T2) is given by

S(T1,T2)
(t1, t2) =


S(t1; λ1)S(t2; λ23), if t1 < t2;
S(t1; λ13)S(t2; λ2), if t1 > t2;
S(t; λ123), if t1 = t2 = t;

(2)
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Corollary 1. Suppose the random vector (T1, T2) follows the MOBE distribution with parameters
λ1, λ2, λ3, the joint PDF of (T1, T2) can be expressed as

f(T1,T2)
(t1, t2) =


f (t1; λ1) f (t2; λ23), t1 < t2;
f (t1; λ13) f (t2; λ2), t1 > t2;
λ3

λ123
f (t; λ123), t1 = t2 = t.

(3)

Corollary 2. Suppose the random vector (T1, T2) follows the MOBE distribution with parameters
λ1, λ2, λ3, then variable T = min{T1, T2} ∼ Exp(λ123) with SF and hazard rate function (HRF)
at mission time t0 are given as

S(t0) = exp{−λ123t0} and h(t0) = λ123.

It is noted from Theorem 1 that, when λ3 = 0, variables T1 and T2 are independent.
Therefore, parameter λ3 can be regarded as the dependent structure between T1 and T2.
Moreover, it is also noted from Corollary 1 that the probability contributions for events
{T1 < T2}, {T1 > T2}, and {T1 = T2} are λ1

λ123
, λ2

λ123
, and λ3

λ123
, respectively. In addition, it

is also seen from Corollary 2 that for units with dependent failure causes following the
MOBE model, the associated failure time of the units can be described by the variable
T = min{T1, T2}.

2.2. Data Description and Notation

Without loss of generality, consider a lifetime experiment with n ∈ N identical units,
and their lifetimes are described by independent and identically distributed (i.i.d.) random
variables T1, T2, . . . , Tn. Corresponding to i-th unit (i = 1, 2, . . . , n), it is assumed that there
is a prefixed left truncation point, say τL

i ; each unit can be placed on the test before or after
the corresponding left truncation point τL

i , and the failure time could be observed only if
Ti > τL

i , otherwise no information is available for the units. In addition, for i-th unit if it
survives after τL

i , it may be censored after another determining point τR
i (> τL

i ). In this
manner, the obtained observations are referred as LTRC data. Further, for the sake of clarity,
the notations used in this paper for the dependent LTRC competing risk data are presented
as follows.

Tij failure time of i-th unit under cause j = 1, 2;

τL
i left-truncated time for the i-th unit;

τR
i right-censored time for the i-th unit;

Ti observed lifetime of the i-th unit, i.e., Ti = (Ti1, Ti2);

δi indicator variable for the i-th unit with

δi =


1, unit fails due to cause 1;
2, unit fails due to cause 2.
3, unit fails due to both causes.
0, unit censored at detecting time point.

νi truncated indicator variable for the i-th unit with

νi =

{
1, unit is not truncated;
0, unit is truncated.

I0 set of indices of censored observations;

Ij set of indices of failures due to cause j = 1, 2 and 3;

|Ij| cardinality of Ij. It is assumed that |Ij| = nj, j = 1, 2, 3.
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In this paper, we suppose that there are n LTRC observations with two causes of failure
in experiment, and the associated variables of competing risks are (Ti1, Ti2) satisfying
(Ti1, Ti2) ∼ MOBE(λ1, λ2, λ3). Therefore, observed data follow Ti = min(Ti1, Ti2) ∼
Exp(λ123). In such manner, the following dependent LTRC competing risks data are
obtained as

{(t1, δ1, ν1), (t2, δ2, ν2), . . . , (tn, δn, νn)}. (4)

Theorem 2. Suppose the LTRC observation (4) comes from the MOBE model (2); then, the
likelihood contribution of a testing unit can be obtained as follows

L(ti, δi, νi) =



λ1e−λ123ti , when δi = 1, νi = 1
λ2e−λ123ti , when δi = 2, νi = 1
λ3e−λ123ti , when δi = 3, νi = 1
e−λ123ti , when δi = 0, νi = 1
λ1

e−λ123ti

e−λ123τi
L

, when δi = 1, νi = 0

λ2
e−λ123ti

e−λ123τi
L

, when δi = 2, νi = 0

λ3
e−λ123ti

e−λ123τi
L

, when δi = 3, νi = 0

e−λ123ti

e−λ123τi
L

, when δi = 0, νi = 0

(5)

Proof. See Appendix A.

From Theorem 2, the likelihood function of parameters λ1, λ2, and λ3 is

L(λ1, λ2, λ3) = ∏
i∈I1

{
λ1e−λ123ti

}νi
{

λ1
e−λ123ti

e−λ123τi
L

}1−νi

×∏
i∈I2

{
λ2e−λ123ti

}νi
{

λ2
e−λ123ti

e−λ123τi
L

}1−νi

×∏
i∈I3

{
λ3e−λ123ti

}νi
{

λ3
e−λ123ti

e−λ123τi
L

}1−νi

×∏
i∈I0

{
e−λ123ti

}νi
{

e−λ123ti

e−λ123τi
L

}1−νi

= λn1
1 λn2

2 λn3
3 exp{−λ123ω(t)}, (6)

with ω(t) = ∑n
i=1 ti −∑n

i=1(1− νi)τ
i
L.

3. Method of Classical Estimation

In this section, MLEs and ACIs are conducted for unknown parameters and reliability
indices, respectively.

3.1. Maximum Likelihood Estimation

From (6), the log-likelihood function can be written as

`(λ1, λ2, λ3) = n1 ln λ1 + n2 ln λ2 + n3 ln λ3 − λ123ω(t), (7)

In the following theorem, the MLEs of parameters λ1, λ2, λ3 are established.

Theorem 3. Suppose the LTRC observation (4) follows the MOBE model (2). For nj > 0, j =
1, 2, 3, the MLE of λj can be expressed as

λ̂j =
nj

ω(t)
, j = 1, 2, 3. (8)

Proof. See Appendix B.
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In addition, based on Theorem 3 and using the invariance principle of maximum
likelihood estimation, the MLEs of the SF and HRF can be constructed as

Ŝ(t0) = e−λ̂123t0 and ĥ(t0) = λ̂123, (9)

with λ̂123 = λ̂1 + λ̂2 + λ̂3.

3.2. Approximate Confidence Intervals

The Fisher information matrix of parameter vector θ = (λ1, λ2, λ3)
′ with θk = λk, k =

1, 2, 3 is given by

I(θ) = [Iij]i,j=1,2,3 = E

[
−∂`(λ1, λ2, λ3)

∂λi∂λj

]
i,j=1,2,3

, (10)

where the elements for I(θ) are provided as

Ikk = E

[
−∂2`(λ1, λ2, λ3)

∂λ2
k

]
=

nk

λ2
k

, k = 1, 2, 3,

Iij = E

[
−∂2`(λ1, λ2, λ3)

∂λi∂λj

]
= 0, i, j = 1, 2, 3 and i 6= j.

Under mild regularity conditions, the asymptotic distribution of the MLE θ̂ is θ̂ − θ →
N(0, I−1(θ̂)), where I−1(θ̂) is the inverse of the expected Fisher information matrix given by

I−1(θ̂) =

 Var(λ̂1) Cov(λ̂1, λ̂2) Cov(λ̂1, λ̂3)
Cov(λ̂1, λ̂2) Var(λ̂2) Cov(λ̂2, λ̂3)
Cov(λ̂1, λ̂3) Cov(λ̂2, λ̂3) Var(λ̂3)

. (11)

For arbitrary 0 < γ < 1, a 100(1− γ)% ACI of λk, k = 1, 2, 3 is given by(
λ̂k − zγ/2

√
Var(λ̂k), λ̂k + zγ/2

√
Var(λ̂k)

)
, k = 1, 2, 3, (12)

where zγ is the upper γ-th quantile of the standard normal distribution.
Further, let g(θ) be an arbitrary function of parameter θ; then, the asymptotic distribu-

tion of g(θ) can be constructed as

ĝ(θ)− g(θ) d−→ N(0, V(θ̂)),

by using the delta method, where the following notations are used: ĝ(θ) = g(θ̂) is the

MLE of g(θ) and V(θ̂) = [OgT(θ̂)]I−1(θ̂)[Og(θ̂)] and Og(θ̂) =
(

∂g(θ)
∂λ1

, ∂g(θ)
∂λ2

, ∂g(θ)
∂λ3

)T
∣∣∣∣
θ=θ̂

.

Therefore, the 100(1− γ)% confidence interval of g(θ) can be constructed subsequently. In
this manner, ACIs of the SF S(t) and the HRF h(t) can be obtained directly and detailed
expressions are omitted here for saving space.

4. Method of Bayesian Estimation

In this section, traditional Bayesian, E-Bayesian, and objective Bayesian methods are
proposed for parameter and reliability indices estimation, respectively.

4.1. Prior Information and Posterior Analysis

For Bayesian estimation, it is noted that prior information should be incorporated into
the inferential procedure. In this section, we adopted the independent gamma distributions
to describe the prior information about the model parameters. In statistical inference,
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the gamma distribution is a flexible distribution that can be used to model different prior
information based on proper choice of hyperparameters, it also becomes inversely propor-
tional to its argument when hyperparameters are set to zeros, and some other models such
as the Erlang, exponential, and chi-square distributions are special cases of the gamma
distribution. In addition, the gamma distribution is also the maximum entropy probability
distribution, which also makes this feature an appealing fitting property in different fields
such as business, science, and engineering. Therefore, it is assumed that parameters λ1, λ2,
and λ3 are statistically independent, and the gamma conjugate prior for λk, k = 1, 2, 3 is
assumed with hyperparameters ak and bk as

π0(λk|ak, bk) =
bak

k
Γ(ak)

λ
ak−1
k e−bkλk , ak > 0, bk > 0, λk > 0. (13)

Therefore, the joint prior of (λ1, λ2, λ3) is given by

π(λ1, λ2, λ3) =
ab1

1 ab2
2 ab3

3
Γ(a1)Γ(a2)Γ(a3)

λa1−1
1 e−b1λ1 λa2−1

2 e−b2λ2 λa3−1
3 e−b3λ3 , (14)

and the joint posterior density of λ1, λ2, λ3 can be obtained from (6) and (14) as

π(λ1, λ2, λ3|data) ∝
3

∏
k=1

λ
ak+nk−1
k exp{−[bk + ω(t)]λk}, (15)

implying that the marginal posterior function of the parameter λk, k = 1, 2, 3 is

π(λk|data) =
[bk + ω(t)]ak+nk

Γ(ak + nk)
λ

ak+nk−1
k exp{−[bk + ω(t)]λk}, (16)

which is also the gamma distribution.
Under squared error loss, since the Bayesian estimator is a posterior expectation, the

following results are directly obtained and details are omitted for concision.

Theorem 4. Under squared error loss, one has:

• The Bayesian estimator of the parameter λk is given by

λ̂Bk(ak, bk) =
ak + nk

bk + ω(t)
, k = 1, 2, 3. (17)

• The Bayesian estimators of the SF and HRF can be expressed as

ŜB(t0) =
3

∏
k=1

[
bk + ω(t)

bk + ω(t) + t0

]ak+nk

and ĥB(t) =
3

∑
k=1

ak + nk
bk + ω(t)

. (18)

It is noted that, sometimes, there are rare prior information collected from historical
information or past data; then, flat or non-informative priors may be more proper in this
situation. Although gamma priors are adopted in our illustration, the Bayesian results could
be also established as a special case under rare or non-information situations by setting all
hyperparameters as zero that consequently reduce to non-informative priors. In addition,
for an arbitrary significance level 0 < γ < 1, 100(1− γ)% Bayesian highest posterior
density (HPD) credible intervals for parameters λk = 1, 2, 3 could be also constructed, and a
simple approach namely Algorithm 1 is provided as follows.
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Algorithm 1: Bayesian HPD credible interval estimation

Step 1 For arbitrary chosen p > 0, obtain the solutions λl
k(p) and λr

k(p) from
equation π(λk|data) = p, and construct an interval C(λk; p) as

C(p) = [λl
k(p), λr

k(p)] = {λk : π(λk|data) ≥ p}.

Step 2 Calculate the posterior probability

P(λk ∈ C(p)|data) =
∫

C(p)
π(λk|data)dλk.

Step 3 The HPD credible interval of λk could be obtained from following three
cases as:

• For given k in Step 1, if P(λk ∈ C(p)|data) ≈ 1− γ with prefixed accuracy
level, then C(p) is the targeted HPD credible interval estimate;

• If P(λk ∈ C(p)|data) > 1− γ, then increase p and turn to Steps 1 and 2;
• If P(λk ∈ C(p)|data) < 1− γ, then decrease p and turn to Steps 1 and 2.

4.2. E-Bayesian Estimation

The expected-Bayesian (E-Bayesian) estimation was firstly proposed by Han [39],
and has attracted wide attention and been discussed by many authors. See, for example,
some recent works of Basheer et al. [40], Okasha and Wang [41], among others.

Following the idea of Han [39], hyperparameters ak and bk should be selected to
guarantee that the prior density function π0(λk|ak, bk) decreases in λk, which implies that
0 < ak < 1 and bk > 0. Under such requirements, the following three independent priors
for hyperparameters ak and bk are chosen as

π1
k(ak, bk) =

1
ck

, 0 < ak < 1, 0 < bk < ck, k = 1, 2, 3,

π2
k(ak, bk) =

2bk

c2
k

, 0 < ak < 1, 0 < bk < ck, k = 1, 2, 3,

π3
k(ak, bk) =

2(ck − bk)

c2
k

, 0 < ak < 1, 0 < bk < ck, k = 1, 2, 3.

(19)

Note that since there are no closed forms of the E-Bayesian estimators for reliabil-
ity indices R(t0) and h(t0), the results are just reported for parameters λ1, λ2, and λ3
for concision.

Theorem 5. Under squared error loss and priors π1
k(ak, bk), π2

k(ak, bk), and π3
k(ak, bk), the E-

Bayesian estimator of λk, k = 1, 2, 3 can be written respectively as

λ̂
π1

k
Ek =

2nk + 1
2ck

ln
(

1 +
ck

ω(t)

)
, (20)

λ̂
π2

k
Ek =

2nk + 1
c2

k

[
ck − w(t) ln

(
1 +

ck
ω(t)

)]
(21)

and

λ̂
π3

k
Ek =

2nk + 1
c2

k

[
(ck + w(t)) ln

(
1 +

ck
ω(t)

)
− ck

]
. (22)

Proof. See Appendix C.
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Further, using (16) and (19), the posterior densities of parameter λk, k = 1, 2, 3 with
respect to π1

k(ak, bk), π2
k(ak, bk), and π3

k(ak, bk) can be expressed respectively as

π
π1

k
EB(λk|data) =

∫ 1

0

∫ ck

0
π1

k(ak, bk)π(λk|data)dakdbk

=
∫ 1

0

∫ ck

0

[bk + ω(t)]ak+nk

ckΓ(ak + nk)
λ

ak+nk−1
k e−[bk+ω(t)]λk dakdbk, (23)

π
π2

k
EB(λk|data) =

∫ 1

0

∫ ck

0

2bk[bk + ω(t)]ak+nk

c2
kΓ(ak + nk)

λ
ak+nk−1
k e−[bk+ω(t)]λk dakdbk, (24)

π
π3

k
EB(λk|data) =

∫ 1

0

∫ ck

0

2(ck − bk)[bk + ω(t)]ak+nk

c2
kΓ(ak + nk)

λ
ak+nk−1
k e−[bk+ω(t)]λk dakdbk. (25)

It is seen from (23)–(25) that there are no closed forms of posterior densities for λ1, λ2,
and λ3 under π1

k(ak, bk), π2
k(ak, bk), and π3

k(ak, bk). In order to construct E-Bayesian HPD
credible intervals, a constrained optimization problem is proposed as follows.

For arbitrary 0 < p < 1, let

C
π

j
k

EB(p) = [λl
k(p), λr

k(p)], k = 1, 2, 3, j = 1, 2, 3, (26)

be the 100(1− p)% Bayesian interval for λk under prior π
j
k satisfying that

∫ λr
k(p)

λl
k(p)

π
π

j
k

EB(λk|data) =
∫ λl

k(p)

λl
k(p)

∫ 1

0

∫ ck

0
π

j
k(ak, bk)π(λk|data)dakdbkdλk = 1− p. (27)

Thus, the shortest-length 100(1− p)% credible interval C
π

j
k∗

EB (p) = [λl∗
k (p), λr∗

k (p)] for
λk can be obtained by solving following optimization problem as

Minimize λr
k(p)− λl

k(p)

Subject to
∫ λl

k(p)

λl
k(p)

π
π

j
k

EB(λk|data)dλk = 1− p,

0 < λl
k(p) < λr

k(p).

This can be further obtained by minimizing the Lagrangian function as

hj
k = λr

k(p)− λl
k(p) + τk

[∫ λr
k(p)

λl
k(p)

π
π

j
k

EB(λk|data)dλk − 1 + p

]
, (28)

where τk is the Lagrangian multiplier. Therefore, by using the Lagrangian multiplier

method, the 100(1− p)% Bayesian HPD credible interval C
π

j
k∗

EB (p) for λk with respect to π
j
k

can be obtained numerically, where λl∗
k (p) and λr∗

k (p) are the solutions of the following
nonlinear equations:  π

π
j
k

EB(λ
l
k(p)|data) = π

π
j
k

EB(λ
r
k(p)|data),∫ λl

k(p)
λl

k(p)
π

π
j
k

EB(λk|data)dλk = 1− p.
(29)

4.3. Some Results of Bayesian and E-Bayesian Estimation

In following, the posterior risk (PR) of Bayesian estimators are presented under
squared error loss, which generally are used to measure the associated estimated risk
of Bayesian estimators.



Energies 2023, 16, 62 11 of 25

Theorem 6. The PR of Bayesian estimators under squared error are obtained as

PR(λ̂Bk) =
ak + nk

[bk + ω(t)]2
, k = 1, 2, 3. (30)

Proof. See Appendix D.

Similarly, another criterion quantity called the E-posterior risk (EPR) is proposed by
Han [42] which is an effective measurement for the E-Bayesian estimators.

Theorem 7. Under square error loss, the EPR of λ̂
π1

k
Ek , λ̂

π2
k

Ek , λ̂
π3

k
Ek with respect to priors π1

k , π2
k , π3

k
can be expressed respectively as

EPR(λ̂
π1

k
Ek ) =

2nk + 1
2ck

(
1

ω(t)
− 1

bk + ω(t)

)
, (31)

EPR(λ̂
π2

k
Ek ) =

2nk + 1
c2

k

{
ln
(

1 +
ck

ω(t)

)
+ ω(t)

(
1

ck + ω(t)
− 1

ω(t)

)}
, (32)

EPR(λ̂
π3

k
Ek ) =

2nk + 1
c2

k

{
[ck + ω(t)]

(
1

ω(t)
− 1

bk + ω(t)

)
− ln

(
1 +

ck
ω(t)

)}
. (33)

Proof. See Appendix E.

Some relations among various E-Bayesian estimators are also presented as follows.

Theorem 8. Let 0 < ck
w(t) < 1, for the E-Bayesian estimators with respect to squared error loss, it

is seen that

• λ̂
π2

k
Ek < λ̂

π1
k

Ek < λ̂
π3

k
Ek ;

• limw(t)→∞ λ̂
π1

k
Ek = limw(t)→∞ λ̂

π2
k

Ek = limw(t)→∞ λ̂
π3

k
Ek .

Proof. See Appendix F.

We note that with respect to priors π1
k(ak, bk), π2

k(ak, bk), and π3
k(ak, bk), although E-

Bayesian estimators in Theorem 5 are different order relations, they are asymptotically
equivalent to each other under the given conditions.

4.4. Objective Bayesian Estimation

Sometimes, prior information is difficult to collect especially when there are rare
historical data or a practitioner is not familiar with targeted problems. Therefore, to give
a fair inference under the Bayesian approach, objective-Bayesian (O-B) is proposed for
eliminating the personal subject effect in priors. Here, objective-Bayesian estimation is
proposed in this subsection.

Following Guan et al. [43], a probability matching prior for (λ1, λ2, λ3) is given by

π(λ1, λ2, λ3) ∝

√
1

λ1λ2λ3λ123
. (34)

Therefore, from (6) and (34), the posterior density of (λ1, λ2, λ3) can be written as

πOB(λ1, λ2, λ3|data) ∝ λn1−0.5
1 λn2−0.5

2 λn3−0.5
3 λ−0.5

123 e−λ123ω(t). (35)

Theorem 9. With respect to prior (34), the posterior density (35) of (λ1, λ2, λ3) is proper.

Proof. See Appendix G.
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Therefore, under squared error loss, the O-B estimator of λi, i = 1, 2, 3 can be expressed as

λ̂OB
1 =

∫ ∞
0

∫ ∞
0

∫ ∞
0 λ1λn1−0.5

1 λn2−0.5
2 λn3−0.5

3 λ−0.5
123 e−λ123ω(t)dλ1dλ2dλ3

Γ(n123+1)
[ω(t)]n123+1 B(n1 + 0.5, n23 + 1)B(n2 + 0.5, n3 + 0.5)

=
n123 + 1

ω(t)
B(n1 + 1.5, n23 + 1)
B(n1 + 0.5, n23 + 1)

, (36)

λ̂OB
2 =

n123 + 1
ω(t)

B(n1 + 0.5, n23 + 2)B(n2 + 1.5, n3 + 0.5)
B(n1 + 0.5, n23 + 1)B(n2 + 0.5, n2 + 0.5)

, (37)

λ̂OB
3 =

n123 + 1
ω(t)

B(n1 + 0.5, n23 + 2)B(n2 + 0.5, n3 + 1.5)
B(n1 + 0.5, n23 + 1)B(n2 + 0.5, n3 + 0.5)

. (38)

It is noted that the Bayesian credible intervals cannot be found directly for model
parameters from a posterior distribution (35). Alternatively, an important sampling ap-
proach namely Algrithm 2 is presented for constructing the Bayesian HPD credible intervals
as follows.

Algorithm 2: Objective Bayesian HPD credible interval estimation

Step 1 Generate

λ1|data ∼ Gamma(n1 + 0.5, ω(t)),

λ2|data ∼ Gamma(n2 + 0.5, ω(t)),

λ3|data ∼ Gamma(n3 + 0.5, ω(t)).

Step 2 Repeat Step 1 N times, and obtain {(λ1, λ2, λ3), i = 1, 2, . . . , N}.
Step 3 To construct a HPD credible interval of η(θ), any function of θ = (λ1, λ2, λ3)

can be used. Suppose ηp is a quantity satisfying P(η < ηp|x) = p for 0 < p < 1.

Denote ωs =
h(θ(s))

∑N
s=1(θ

(s))
and ηs = η(λ

(s)
1 , λ

(s)
2 , λ

(s)
3 ), s = 1, 2, . . . , N with

h(θ) = (λ1 + λ2 + λ3)
−0.5. Arrange (η1, ω1), (η2, ω2), . . . , (ηN , ωN) with respect

to ηs in an ascending order as (η(1), ω1), (η(2), ω2), . . . , (η(N), ωN) with η(1) <
η(2) < · · · < η(N), where ω[1], ω[2], . . . , ω[N] are not ordered and associated with
η(s). A simulation-consistent Bayes estimate of ηp can be obtained as η̂p = η(Np),
where

Np

∑
s=1

ω[s] < p <
Np+1

∑
s=1

ω[s].

Using the above approach, a 100(1− γ)% credible interval can be constructed as

(
η̂δ, η̂δ+1−γ

)
for δ = ω[1], ω[1] + ω[2], . . . ,

N1−γ

∑
s=1

ω[s].

Therefore, a 100(1− γ)% HPD credible interval of η could be constructed as(
η̂δ∗ , η̂δ∗+1−γ

)
satisfying

η̂δ∗+1−γ − η̂δ∗ ≤ η̂δ+1−γ − η̂δ.
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5. Numerical Results and Method Performance
5.1. Simulation Studies

Simulation experiments are conducted for investigating the performance of the pro-
posed methods when dependent LTRC competing risks data are available. The associated
point estimates for parameters λ1, λ2, and λ3 are evaluated in terms of absolute bias (AB)
and mean squared error (MSE), and the interval estimates are investigated by the average
length (AL) and coverage probability (CP), respectively.

In these simulation studies, values of the hyperparameters are randomly chosen as
(c1, c2, c3) = (2, 2.5, 1.5) and (c1, c2, c3) = (3, 2.5, 1), left-truncated proportion p = 0.05, 0.10,
sample sizes n = 20, 30, 50, respectively. The simulation procedure is repeated 10, 000
times for the above-designed scenarios, criteria quantities ABs, MSEs, CPs, and ALs are
calculated and tabulated in Tables 1–4, where the significance level is 0.95. In addition,
for the sake of concision, the numerical results for parameter λ2 and the reliability indices
are not reported for saving space.

Table 1. ABs and MSEs (within bracket) for MOBE competing risks parameters with (c1, c2, c3) =

(2, 2.5, 1.5) and τR = 1.27.

Prior p n
MLE Bayes Estimates E-Bayes Estimates O-Bayes Estimates

λ1 λ3 λ1 λ3 λ1 λ3 λ1 λ3

π1 5% 20 0.1357 0.2021 0.1231 0.1868 0.1221 0.1853 0.1262 0.2136
[0.0271] [0.0716] [0.0227] [0.0607] [0.0213] [0.0598] [0.0250] [0.0797]

35 0.1065 0.1490 0.1010 0.1424 0.1004 0.1417 0.0968 0.1550
[0.0162] [0.0358] [0.0156] [0.0336] [0.0143] [0.0323] [0.0143] [0.401]

50 0.0926 0.1250 0.0893 0.1214 0.0890 0.1205 0.0839 0.1292
[0.0129] [0.0259] [0.0120] [0.0242] [0.0109] [0.0231] [0.0115] [0.0272]

10% 20 0.1367 0.2051 0.1238 0.1900 0.1213 0.1890 0.1273 0.2161
[0.0282] [0.0726] [0.0232] [0.0615] [0.0214] [0.0604] [0.0252] [0.0807]

35 0.1068 0.1533 0.1018 0.1465 0.1017 0.1457 0.0996 0.1597
[0.0174] [0.0396] [0.0154] [0.0360] [0.0145] [0.0341] [0.0152] [0.0429]

50 0.0939 0.1263 0.0918 0.1227 0.0902 0.1212 0.0868 0.1308
[0.0132] [0.0261] [0.0122] [0.0244] [0.0105] [0.0234] [0.0117] [0.0279]

π2 5% 20 0.1005 0.1545 0.0911 0.1405 0.0902 0.1401 0.0941 0.1602
[0.0154] [0.0404] [0.0126] [0.0338] [0.0117] [0.0314] [0.0137] [0.0428]

35 0.0797 0.1124 0.0754 0.1062 0.0751 0.1053 0.0745 0.1158
[0.0098] [0.0208] [0.0085] [0.0190] [0.0076] [0.0169] [0.0082] [0.0210]

50 0.0696 0.0927 0.0670 0.0915 0.0669 0.0914 0.0653 0.0976
[0.0073] [0.0145] [0.0064] [0.0139] [0.0063] [0.0125] [0.0063] [0.0119]

10% 20 0.1021 0.1573 0.0927 0.1433 0.0918 0.1431 0.0953 0.1640
[0.0146] [0.0419] [0.0129] [0.0350] [0.0119] [0.0332] [0.0142] [0.0436]

35 0.0807 0.1138 0.0763 0.1075 0.0754 0.1068 0.0756 0.1174
[0.0095] [0.0213] [0.0088] [0.0193] [0.0082] [0.0183] [0.0087] [0.0227]

50 0.0708 0.0944 0.0681 0.0921 0.0680 0.0917 0.0664 0.0980
[0.0075] [0.0150] [0.0069] [0.0142] [0.0068] [0.0134] [0.0069] [0.0130]

π3 5% 20 0.2038 0.3130 0.1859 0.2815 0.1843 0.2794 0.1896 0.3198
[0.0627] [0.1612] [0.0516] [0.1373] [0.0507] [0.1350] [0.0559] [0.1693]

35 0.1601 0.2241 0.1515 0.2150 0.1514 0.2124 0.1498 0.2317
[0.0384] [0.0846] [0.0344] [0.0774] [0.0323] [0.0769] [0.0338] [0.0816]

50 0.1386 0.1840 0.1331 0.1783 0.1325 0.1766 0.1298 0.1905
[0.0287] [0.0559] [0.0265] [0.0527] [0.0246] [0.0523] [0.0254] [0.0558]

10% 20 0.2053 0.3034 0.1862 0.2910 0.1850 0.2888 0.1916 0.3304
[0.0638] [0.1720] [0.0525] [0.1463] [0.0512] [0.1439] [0.0573] [0.1711]

35 0.1622 0.2255 0.1547 0.2161 0.1532 0.2155 0.1509 0.2325
[0.0395] [0.0852] [0.0354] [0.0778] [0.0338] [0.0771] [0.0347] [0.0822]

50 0.1401 0.1885 0.1346 0.1837 0.1332 0.1820 0.1312 0.1951
[0.0296] [0.0593] [0.0276] [0.0557] [0.0274] [0.0539] [0.0265] [0.0604]
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Table 2. CPs and ALs (within bracket) for MOBE competing risks parameters with (c1, c2, c3) =

(2, 2.5, 1.5) and τR = 1.27.

Prior p n
MLE Bayes Estimates E-Bayes Estimates O-Bayes Estimates

λ1 λ3 λ1 λ3 λ1 λ3 λ1 λ3

π1 5% 20 0.8650 0.9243 0.9358 0.9244 0.9341 0.9045 0.9418 0.9780
[0.8217] [1.0285] [0.7343] [1.0108] [0.7336] [1.0226] [0.8083] [1.0149]

35 0.9223 0.9555 0.9486 0.9555 0.9401 0.9529 0.9593 0.9824
[0.6259] [0.8281] [0.5865] [0.8125] [0.5862] [0.8024] [0.6189] [0.8096]

50 0.9487 0.9837 0.9501 0.9851 0.9588 0.9940 0.9614 0.9895
[0.5221] [0.7817] [0.5006] [0.6790] [0.4896] [0.7816] [0.5145] [0.6730]

10% 20 0.8223 0.9047 0.9328 0.9239 0.9407 0.8940 0.9327 0.9765
[0.8235] [1.1219] [0.7352] [1.0221] [0.7341] [1.1144] [0.8077] [1.0481]

35 0.9076 0.9421 0.9342 0.9470 0.9484 0.9471 0.9561 0.9800
[0.6268] [0.8441] [0.5872] [0.8339] [0.5868] [0.8239] [0.6178] [0.8160]

50 0.9323 0.9744 0.9484 0.9838 0.9650 0.9851 0.9605 0.9814
[0.5242] [0.8185] [0.5105] [0.6806] [0.5007] [0.7885] [0.5187] [0.6745]

π2 5% 20 0.9275 0.9617 0.9394 0.9851 0.9394 0.9851 0.9618 0.9743
[0.6167] [0.8333] [0.5535] [0.7644] [0.5525] [0.7642] [0.6046] [0.8209]

35 0.9394 0.9774 0.9483 0.9880 0.9484 0.9882 0.9637 0.9788
[0.4697] [0.6331] [0.4402] [0.6356] [0.4401] [0.6138] [0.4636] [0.6094]

50 0.9425 0.9816 0.9519 0.9933 0.9520 0.9933 0.9645 0.9803
[0.3923] [0.5836] [0.3748] [0.5785] [0.3743] [0.5407] [0.3880] [0.5045]

10% 20 0.9158 0.9423 0.9381 0.9832 0.9381 0.9832 0.9622 0.9732
[0.6229] [0.8422] [0.5578] [0.7719] [0.5572] [0.7712] [0.6101] [0.8286]

35 0.9271 0.9726 0.9468 0.9866 0.9464 0.9866 0.9629 0.9779
[0.4706] [0.6357] [0.4510] [0.6363] [0.4413] [0.6156] [0.4649] [0.6100]

50 0.9379 0.9764 0.9484 0.9928 0.9498 0.9928 0.9630 0.9813
[0.3942] [0.5878] [0.3766] [0.5881] [0.3770] [0.5592] [0.3901] [0.5061]

π3 5% 20 0.9261 0.9827 0.9400 0.9854 0.9402 0.9848 0.9610 0.9779
[1.2326] [1.6695] [1.0988] [1.5316] [1.0769] [1.5231] [1.2092] [1.6372]

35 0.9402 0.9813 0.9444 0.9875 0.9519 0.9854 0.9601 0.9803
[0.9343] [1.2286] [0.8754] [1.2394] [0.8726] [1.1804] [0.9225] [1.2163]

50 0.9415 0.9863 0.9520 0.9939 0.9520 0.9939 0.9668 0.9809
[0.7849] [1.1752] [0.7499] [1.1769] [0.7311] [1.0161] [0.7767] [1.0071]

10% 20 0.9248 0.9822 0.9390 0.9829 0.9392 0.9935 0.9580 0.9756
[1.2391] [1.6836] [1.1029] [1.5424] [1.1027] [1.5384] [1.2143] [1.6454]

35 0.9342 0.9832 0.9509 0.9864 0.9445 0.9875 0.9650 0.9769
[0.9393] [1.3131] [0.8799] [1.2516] [0.8658] [1.2292] [0.9274] [1.2192]

50 0.9369 0.9837 0.9479 0.9913 0.9479 0.9892 0.9613 0.9781
[0.7882] [1.1805] [0.7528] [1.1412] [0.7525] [1.1229] [0.7799] [1.0121]

From Tables 1 and 3, following conclusions for point estimates are noted:

• Under each prior π1, π2, and π3, quantities ABs and MSEs of different point estimates
(i.e., MLEs and Bayesian results) decrease with an increase of sample size n. A similar
phenomenon also appears for both likelihood and Bayes estimates with the decrease
of truncation factor p. This indicates that the MLEs and different Bayes estimates
feature consistency properties and are satisfactory under design scenarios.

• Under given n and p, the performance of all Bayesian results (i.e., Bayesian, E-Bayesian,
and O-Bayesian estimates) are superior to the associated MLEs in terms of ABs and
MSEs, in general, under each prior πj, j = 1, 2, 3, showing the performance of different

results in ascending ranking order as
Bayes
E-Bayes
O-Bayes

 < MLEs.



Energies 2023, 16, 62 15 of 25

• For Bayesian results, the ABs and MSEs of the results from Bayesian and E-Bayesian
approaches are relatively smaller than the ones obtained from the O-Bayesian proce-
dure showing the performance of various estimates in ascending ranking order as

Bayes
E-Bayes

}
< O-Bayes < MLEs.

Table 3. ABs and MSEs (within bracket) for MOBE competing risks parameters with (c1, c2, c3) =

(3, 2.5, 1) and τR = 1.15.

Prior p n
MLE Bayes Estimates E-Bayes Estimates O-Bayes Estimates

λ1 λ3 λ1 λ3 λ1 λ3 λ1 λ3

π1 5% 20 0.1010 0.2652 0.0868 0.2507 0.0852 0.2503 0.1092 0.2735
[0.0154] [0.1213] [0.0113] [0.1071] [0.0117] [0.1063] [0.0192] [0.1293]

35 0.0762 0.2104 0.0691 0.2036 0.0685 0.2031 0.0778 0.2157
[0.0089] [0.0747] [0.0072] [0.0695] [0.0069] [0.0691] [0.0093] [0.0784]

50 0.0632 0.1840 0.0594 0.1797 0.0591 0.1793 0.0632 0.1881
[0.0060] [0.0558] [0.0056] [0.0533] [0.0049] [0.0530] [0.0056] [0.0582]

10% 20 0.1022 0.2660 0.0878 0.2511 0.0859 0.2458 0.1112 0.2744
[0.0164] [0.1223] [0.0125] [0.1078] [0.0118] [0.1070] [0.0196] [0.1305]

35 0.0767 0.2117 0.0704 0.2046 0.0698 0.2049 0.0782 0.2173
[0.0092] [0.0759] [0.0076] [0.0705] [0.0083] [0.0707] [0.0097] [0.0797]

50 0.0638 0.1847 0.0601 0.1806 0.0593 0.1802 0.0639 0.1889
[0.0063] [0.0565] [0.0061] [0.0538] [0.0052] [0.0535] [0.0064] [0.0589]

π2 5% 20 0.0761 0.2015 0.0653 0.1898 0.0651 0.1896 0.0823 0.2073
[0.0091] [0.0711] [0.0065] [0.0624] [0.0062] [0.0621] [0.0110] [0.0756]

35 0.0565 0.1561 0.0515 0.1503 0.0512 0.1509 0.0576 0.1502
[0.0048] [0.0403] [0.0041] [0.0378] [0.0040] [0.0381] [0.0051] [0.0430]

50 0.0472 0.1337 0.0438 0.1306 0.0431 0.1303 0.0471 0.1367
[0.0035] [0.0297] [0.0031] [0.0282] [0.0029] [0.0273] [0.0032] [0.0310]

10% 20 0.0776 0.2041 0.0662 0.1922 0.0659 0.1919 0.0844 0.2105
[0.0096] [0.0731] [0.0069] [0.0640] [0.0066] [0.0639] [0.0115] [0.0779]

35 0.0569 0.1563 0.0521 0.1516 0.0518 0.1512 0.0581 0.1601
[0.0051] [0.0410] [0.0046] [0.0384] [0.0043] [0.0382] [0.0056] [0.0433]

50 0.0474 0.1378 0.0444 0.1347 0.0434 0.1341 0.0475 0.1409
[0.0038] [0.0311] [0.0037] [0.0296] [0.0035] [0.0289] [0.0036] [0.0324]

π3 5% 20 0.1511 0.4013 0.1305 0.3793 0.1284 0.3775 0.1633 0.4127
[0.0366] [0.2817] [0.0264] [0.2481] [0.0261] [0.2466] [0.0434] [0.3001]

35 0.1146 0.3112 0.1047 0.3014 0.1043 0.3009 0.1162 0.3190
[0.0205] [0.1626] [0.0171] [0.1519] [0.0167] [0.1513] [0.0216] [0.1708]

50 0.0847 0.2708 0.0884 0.2648 0.0873 0.2645 0.0944 0.2770
[0.0130] [0.1208] [0.0120] [0.1152] [0.0113] [0.1150] [0.0140] [0.1218]

10% 20 0.1542 0.4022 0.1333 0.3786 0.1310 0.3802 0.1674 0.4148
[0.0373] [0.2823] [0.0276] [0.2495] [0.0265] [0.2470] [0.0447] [0.3011]

35 0.1161 0.3220 0.1062 0.3117 0.1057 0.3112 0.1185 0.3301
[0.0212] [0.1735] [0.0175] [0.1603] [0.0170] [0.1569] [0.0224] [0.1820]

50 0.0949 0.2780 0.0889 0.2718 0.0879 0.2715 0.0950 0.2843
[0.0141] [0.1264] [0.0123] [0.1203] [0.0121] [0.1200] [0.0143] [0.1260]

Moreover, for the confidence intervals shown in Tables 2 and 4, it is seen that:

• Under each prior πj, j = 1, 2, 3, the ALs of both ACI and HPD credible intervals
from different Bayesian approaches decrease when the sample size n increases or the
truncation proportion p decreases, and CPs increase under the same trend;

• The CPs of both ACIs and various Bayesian HPD credible intervals are close to the
nominal level;
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• Under the same settings n and p, the ALs of different Bayesian credible intervals are
smaller than those of ACIs in most cases;

• Among all Bayesian intervals, the E-Bayesian credible intervals have the smallest
interval lengths whereas the interval estimates from the O-Bayesian approach have
the relatively largest interval lengths in general.

Table 4. CPs and ALs (within bracket) for MOBE competing risks parameters with (c1, c2, c3) =

(3, 2.5, 1) and τR = 1.15.

Prior p n
MLE Bayes Estimates E-Bayes Estimates O-Bayes Estimates

λ1 λ3 λ1 λ3 λ1 λ3 λ1 λ3

π1 5% 20 0.9423 0.9700 0.9741 0.9814 0.9742 0.9815 0.9906 0.9583
[0.7732] [1.4377] [0.6380] [1.3264] [0.6373] [1.3250] [0.7445] [1.3970]

35 0.9755 0.9737 0.9797 0.9931 0.9797 0.9931 0.9871 0.9646
[0.5656] [1.3027] [0.5109] [1.1026] [0.5108] [1.0597] [0.5567] [1.1096]

50 0.9784 0.9779 0.9842 0.9942 0.9834 0.9939 0.9912 0.9753
[0.4663] [1.2108] [0.4388] [1.0245] [0.4367] [0.9816] [0.4324] [1.0775]

10% 20 0.9414 0.9698 0.9721 0.9799 0.9722 0.9800 0.9857 0.9579
[0.7769] [1.4384] [0.6405] [1.3308] [0.6401] [1.3302] [0.7477] [1.4025]

35 0.9738 0.9720 0.9771 0.9914 0.9775 0.9914 0.9899 0.9652
[0.5690] [1.3066] [0.5142] [1.2066] [0.5138] [1.0752] [0.5600] [1.1552]

50 0.9783 0.9757 0.9834 0.9939 0.9843 0.9933 0.9906 0.9747
[0.4733] [1.2121] [0.4396] [1.1122] [0.4394] [1.0853] [0.4674] [0.9781]

π2 5% 20 0.9447 0.9682 0.9726 0.9788 0.9728 0.9789 0.9877 0.9606
[0.5854] [1.0732] [0.4836] [0.9923] [0.4635] [0.9891] [0.5567] [0.0450]

35 0.9772 0.9756 0.9787 0.9927 0.9789 0.9928 0.9905 0.9683
[0.4249] [0.9150] [0.3814] [0.8731] [0.3733] [0.7931] [0.4175] [0.7859]

50 0.9796 0.9800 0.9811 0.9941 0.9813 0.9943 0.9911 0.9720
[0.3527] [0.9010] [0.3263] [0.9012] [0.3159] [0.6607] [0.3481] [0.6554]

10% 20 0.9421 0.9656 0.9710 0.9780 0.9709 0.9782 0.9862 0.9583
[0.5791] [1.0841] [0.4872] [1.0011] [0.4792] [1.0001] [0.5619] [1.0548]

35 0.9739 0.9761 0.9774 0.9922 0.9774 0.9922 0.9894 0.9680
[0.4241] [0.9164] [0.3838] [0.9024] [0.3806] [0.8054] [0.4183] [0.7881]

50 0.9776 0.9796 0.9807 0.9924 0.9808 0.9925 0.9899 0.9704
[0.3543] [0.9323] [0.3297] [0.8865] [0.3179] [0.6631] [0.3497] [0.6578]

π3 5% 20 0.9424 0.9683 0.9714 0.9793 0.9715 0.9794 0.9887 0.9628
[1.1588] [2.1473] [0.9341] [1.9255] [0.9317] [1.8954] [1.1144] [2.0916]

35 0.9745 0.9840 0.9787 0.9927 0.9787 0.9928 0.9901 0.9689
[0.8472] [1.8912] [0.7636] [1.6782] [0.7568] [1.5485] [0.8344] [1.5740]

50 0.9781 0.9776 0.9849 0.9935 0.9850 0.9940 0.9909 0.9733
[0.7054] [1.3230] [0.6523] [1.2612] [0.6504] [1.1151] [0.6962] [1.3117]

10% 20 0.9412 0.9678 0.9452 0.9783 0.9701 0.9783 0.9851 0.9580
[1.1630] [2.1563] [0.9490] [1.9464] [0.9420] [1.9063] [1.1207] [2.1019]

35 0.9713 0.9765 0.9700 0.9917 0.9751 0.9916 0.9891 0.9626
[0.8504] [1.9912] [0.7658] [1.7157] [0.7619] [1.6429] [0.8368] [1.5808]

50 0.9792 0.9752 0.9828 0.9923 0.9829 0.9935 0.9899 0.9729
[0.7082] [1.3286] [0.6577] [1.2716] [0.6538] [1.2316] [0.6991] [1.3122]

To sum up, it is seen from the simulation results that the performance of both likelihood
and various Bayesian point and credible interval estimates are preferable, and that the
Bayesian and E-Bayesian methods could be viewed as superior choices in our discussion;
otherwise, one can use the results obtained from the objective Bayesian approach.
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5.2. Real Data Illustrations

Example 1 (Electric Power Transformers Data). In this illustration, the previous mentioned
LTRC voltage power transformer LTRC data from the US are discussed. Kundu et al. [34] provided
the LTRC competing risks data with exact failure causes, where ν = 1 or 0 indicating that the
transformer was installed after or before 1980 but did not fail till 1980, δ = 1 or 2 gives the failure
causes one or two of the transformer, respectively, and δ = 0 implies that transformers survived
till 2008. In our illustration, since we focus on a more general case with partially observed failure
causes, based on Kundu et al. [34]’s LTRC competing risks data, some transformer observations are
randomly chosen and denote their associated failure indicator as δ = 3. Thus, a group of LTRC
competing risks data with partially observed failure causes is generated and the details are provided
in Table 5. It is clearly seen that comparing with Kundu et al. [34]’s discussion, a more general
study is considered with dependent competing risks data and partially recorded failure causes in
our illustration.

Table 5. LTRC transformers’ competing risks data with partially observed failure causes.

No. IY EY ν δ No. IY EY ν δ No. IY EY ν δ

1 1961 1996 0 2 11 1963 2008 0 3 21 1960 1988 0 1
2 1964 1985 0 1 12 1963 2000 0 1 22 1961 1993 0 2
3 1962 2007 0 2 13 1960 1981 0 2 23 1961 1990 0 2
4 1962 1986 0 2 14 1963 1984 0 2 24 1960 1986 0 1
5 1961 1992 0 2 15 1963 1993 0 2 25 1962 2008 0 3
6 1962 1987 0 1 16 1964 1992 0 2 26 1964 1982 0 2
7 1964 1993 0 2 17 1961 1981 0 2 27 1963 1984 0 1
8 1960 1984 0 2 18 1960 1995 0 1 28 1960 1987 0 2
9 1963 1997 0 2 19 1961 2008 0 3 29 1962 1996 0 2
10 1962 1995 0 2 20 1960 2002 0 1 30 1963 1994 0 1
31 1987 2008 1 3 41 1980 2008 1 3 51 1984 2001 1 2
32 1980 2008 1 3 42 1982 2008 1 3 52 1983 2008 1 3
33 1988 2008 1 0 43 1986 2008 1 0 53 1988 2008 1 3
34 1985 2008 1 3 44 1984 2008 1 3 54 1988 2008 1 0
35 1989 2008 1 3 45 1986 1995 1 2 55 1985 2008 1 3
36 1981 2008 1 0 46 1986 2008 1 3 56 1986 2008 1 0
37 1985 2008 1 3 47 1987 2008 1 3 57 1988 2008 1 3
38 1986 2004 1 2 48 1986 2008 1 0 58 1982 2008 1 3
39 1980 1987 1 2 49 1986 2008 1 0 59 1985 2008 1 0
40 1986 2005 1 1 50 1984 2008 1 3 60 1988 2008 1 3
61 1982 2004 1 2 71 1989 2008 1 3 81 1981 2006 1 2
62 1980 2008 1 3 72 1989 2008 1 3 82 1988 1996 1 1
63 1980 2002 1 2 73 1986 2008 1 3 83 1985 2002 1 2
64 1984 2008 1 3 74 1982 1999 1 2 84 1984 2008 1 0
65 1981 1999 1 1 75 1985 2008 1 3 85 1980 2008 1 3
66 1986 2007 1 2 76 1986 2008 1 3 86 1982 2008 1 0
67 1987 2008 1 0 77 1982 2008 1 3 87 1981 1995 1 2
68 1983 2008 1 3 78 1988 2004 1 1 88 1986 1997 1 2
69 1983 2006 1 2 79 1980 2008 1 3 89 1986 2008 1 3
70 1983 1993 1 1 80 1982 2002 1 2 90 1986 2008 1 3
91 1982 2008 1 3 96 1986 2008 1 0
92 1989 2008 1 0 97 1982 1996 1 2
93 1984 2008 1 0 98 1982 2008 1 0
94 1980 2008 1 0 99 1982 2008 1 0
95 1988 2008 1 0 100 1989 2008 1 0

Note: abbreviation “IY” refers to “Instal year”, “EY” denotes “Exit year”, respectively.

In this example, since there is no extra information for model parameters, Bayesian
estimates are obtained with hyperparameters (c1, c2, c3) = (8.5, 8, 7.5) due to the moment
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matching principle. Under this assumption, second-stage priors π1, π2, and π3 are proper
but almost noninformative with relatively flat curves. Therefore, using the LTRC competing
risks data tabulated in Table 5, classical and various Bayesian estimates are obtained in
Table 6 with significance level 0.95 and interval lengths given in squared brackets. It is
seen that estimates of MLEs and different Bayes estimates are close to each other, and that
the different Bayes HPD credible intervals feature relatively shorter interval lengths than
the associated ACIs. In addition, plots of reliability index SF of T = min{T1, T2} given in
Corollary 2 are presented in Figure 3 based on likelihood and various Bayesian results,
where in the associated figure legend, notations “MLE”, “πj-Bayes” and “πj-EB” with
j = 1, 2, 3 and “OB” denote that the SFs are plotted by using the point estimates of MLE,
Bayes, and E-Bayes estimates with priors π1, π2, π3, and O-B estimates respectively given
in Table 6. It is also observed that SF generally performs similar with respect to different
estimates in this illustration.

Table 6. Point and interval estimates of MOBE parameters for dependent electric power transformers’
competing risks data

Estimates λ1 λ2 λ3

MLE 0.0081 0.0192 0.0262
π1 Bayes 0.0084 0.0194 0.0264

E-B 0.0083 0.0194 0.0263
π2 Bayes 0.0084 0.0193 0.0261

E-B 0.0085 0.0195 0.0264
π3 Bayes 0.0084 0.0194 0.0262

E-B 0.0084 0.0192 0.0264
O-B estimates 0.0083 0.0194 0.0110

ACI (0.0039,0.0168)[0.0129] (0.0143,0.0256)[0.0113] (0.0206,0.0333)[0.0127]
π1 B-HPD (0.0082,0.0133)[0.0051] (0.0191,0.0245)[0.0054] (0.0260,0.0315)[0.0055]

E-B HPD (0.0081,0.0128)[0.0047] (0.0190,0.0241)[0.0051] (0.0261,0.0314)[0.0052]
π2 B-HPD (0.0083,0.0134)[0.0051] (0.0192,0.0245)[0.0053] (0.0259,0.0313)[0.0054]

E-B HPD (0.0084,0.0133)[0.0049] (0.0193,0.0243)[0.0050] (0.0262,0.0319)[0.0057]
π3 B-HPD (0.0080,0.0129)[0.0049] (0.0192,0.0245)[0.0053] (0.0261,0.0317)[0.0056]

E-B HPD (0.0083,0.0130)[0.0047] (0.0189,0.0242)[0.0053] (0.0263,0.0316)[0.0053]
O-B HPD (0.0081,0.0130)[0.0049] (0.0191,0.0243)[0.0052] (0.0110,0.0166)[0.0056]
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Figure 3. Plots of SF with different estimates under transformer data.

Example 2 (HIV Infection Data). The AIDSSI dataset about human immunodeficiency virus
(HIV) infection in the Amsterdam Cohort Studies is analyzed. In this dataset, 329 homosexual men’s
follow-up times (in years) are observed from HIV infection to the first of acquired immunodeficiency
syndrome (AIDS) and syncytium-inducing (SI) HIV phenotype. Following Geskus [44], AIDS and
SI HIV phenotype are treated as competing failure causes indicated by δ = 1 and 2. For generating
LTRC competing risks data, 20% of the observations are randomly chosen from the original data
as left-truncated observations, and some failure causes are also randomly taken as unknown with
δ = 3. Thus, a set of LTRC competing risks with partially observed failure causes is generated and
presented in Table 7.
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Table 7. Left-truncated and right-censored HIV infection competing risks data.

No. Time ν δ No. Time ν δ No. Time ν δ No. Time ν δ No. Time ν δ

1 9.106 1 1 11 9.895 0 1 21 8.755 1 1 31 13.405 1 3 41 0.531 1 3
2 11.039 1 3 12 6.218 1 2 22 13.44 0 3 32 13.424 0 3 42 7.636 1 3
3 2.234 0 1 13 6.82 1 2 23 8.191 1 1 33 5.106 1 2 43 7.302 1 1
4 9.878 1 2 14 5.054 1 3 24 5.525 1 2 34 10.453 0 1 44 6.85 1 2
5 3.819 1 1 15 10.196 1 1 25 11.529 1 3 35 7.409 0 2 45 8.586 0 1
6 6.801 0 1 16 1.503 0 2 26 2.705 1 1 36 6.018 1 2 46 3.639 1 1
7 3.953 1 1 17 1.259 1 0 27 2.672 1 1 37 12.999 1 3 47 6.439 1 2
8 8.605 1 2 18 6.549 1 3 28 1.889 1 2 38 13.495 1 0 48 0.884 1 2
9 10.078 1 1 19 13.405 1 3 29 3.724 1 1 39 9.694 1 1 49 4.394 1 2
10 5.018 1 1 20 13.311 1 3 30 5.251 0 1 40 5.667 0 1 50 8.142 1 2
51 9.363 1 3 61 1.456 1 3 71 5.618 1 1 81 10.563 1 3 91 3.562 0 3
52 11.269 1 3 62 12.129 1 1 72 10.889 1 1 82 8.657 1 3 92 8.358 0 1
53 0.148 1 0 63 7.904 1 2 73 13.221 1 3 83 5.336 1 2 93 1.205 1 2
54 13.402 0 3 64 7.17 1 2 74 13.32 1 3 84 2.177 1 1 94 1.101 1 2
55 4.118 0 3 65 13.191 1 3 75 9.897 1 2 85 4.608 1 1 95 5.766 1 3
56 6.979 1 2 66 5.886 1 2 76 5.889 1 2 86 6.054 1 1 96 4.066 0 3
57 6.955 1 1 67 5.082 1 2 77 1.593 0 2 87 13.323 1 3 97 3.195 1 1
58 2.322 1 2 68 8.638 0 1 78 3.513 1 1 88 6.943 1 2 98 0.969 1 2
59 10.903 1 1 69 5.9 0 3 79 6.494 1 3 89 11.469 1 1 99 2.798 0 2
60 10.067 1 1 70 7.184 1 3 80 2.866 1 2 90 3.647 1 1 100 3.94 1 2
101 0.474 0 2 111 11.201 1 1 121 6.177 0 1 131 9.566 1 2 141 7.553 1 1
102 5.9 1 3 112 5.867 0 3 122 1.837 1 1 132 5.563 1 2 142 4.4 1 2
103 12.934 1 3 113 3.88 1 2 123 10.303 0 1 133 10.53 0 1 143 9.793 1 0
104 3.439 1 2 114 3.797 1 2 124 5.821 1 3 134 6.111 1 3 144 2.283 1 1
105 0.619 0 3 115 3.003 0 3 125 13.325 1 3 135 9.473 0 1 145 8.632 1 3
106 6.224 1 1 116 13.363 1 3 126 2.368 1 3 136 9.555 0 1 146 5.454 0 2
107 7.751 1 2 117 10.223 1 0 127 12.934 0 3 137 12.934 1 3 147 9.221 1 3
108 0.824 1 2 118 9.437 1 2 128 4.099 1 1 138 6.289 1 3 148 9.07 0 1
109 13.432 1 0 119 9.137 0 1 129 13.131 1 0 139 11.02 1 2 149 8.783 0 3
110 10.617 1 2 120 2.533 1 1 130 3.064 1 1 140 2.316 0 3 150 6.532 1 3
151 13.396 1 3 161 9.07 1 2 171 12.4 1 2 181 4.523 1 2 191 5.938 1 1
152 13.12 0 3 162 13.287 1 3 172 4.854 1 2 182 13.432 1 0 192 5.12 1 2
153 9.733 1 1 163 5.7 1 2 173 8.066 1 1 183 5.494 1 0 193 4.033 1 2
154 5.703 1 2 164 13.284 1 3 174 5.723 0 1 184 6.045 0 1 194 6.042 1 1
155 4.389 1 2 165 6.733 0 1 175 3.373 0 1 185 3.584 1 2 195 6.511 1 2
156 1.462 1 2 166 13.377 0 0 176 11.696 0 2 186 13.432 0 0 196 0.652 1 0
157 1.44 1 1 167 5.73 1 2 177 3.22 1 2 187 3.477 1 1 197 1.013 1 2
158 5.555 1 1 168 7.781 1 1 178 1.166 1 0 188 5.908 1 2 198 5.736 1 2
159 0.137 1 2 169 10.847 1 1 179 8.564 1 0 189 4.966 1 2 199 6.199 1 1
160 0.142 0 3 170 1.687 0 3 180 5.478 1 2 190 5.566 0 1 200 10.73 1 1
201 2.982 1 2 211 4.219 1 1 221 5.021 1 2 231 2.513 1 2 241 9.44 0 2
202 2.155 1 1 212 11.387 1 1 222 5.224 1 2 232 12.876 1 0 242 13.188 1 0
203 13.383 1 0 213 4.214 1 0 223 13.281 1 0 233 6.311 1 2 243 7.537 1 2
204 2.683 1 1 214 8.986 1 1 224 7.349 0 1 234 1.509 1 0 244 2.571 0 2
205 4.811 1 1 215 11.097 1 0 225 3.486 1 1 235 3.242 1 1 245 0.112 1 2
206 13.402 1 0 216 7.499 0 1 226 4.334 1 2 236 3.817 0 2 246 9.068 1 1
207 3.467 1 0 217 13.322 1 0 227 3.258 1 2 237 4.583 1 1 247 5.314 1 2
208 4.734 1 2 218 3.039 0 2 228 3.064 0 2 238 12.876 1 0 248 10.117 1 1
209 13.407 1 0 219 13.347 1 0 229 3.567 1 0 239 13.936 1 2 249 2.631 1 2
210 3.707 1 1 220 7.825 1 1 230 4.981 1 1 240 8.304 1 1 250 13.361 1 0
251 7.589 1 2 261 3.592 0 1 271 3.663 0 1 281 9.777 0 2 291 5.574 0 1
252 6.579 1 1 262 4.079 1 2 272 5.982 1 2 282 13.281 1 0 292 5.038 1 0
253 11.943 1 2 263 5.678 1 1 273 4.219 1 1 283 6.516 1 2 293 10.467 1 2
254 3.411 1 0 264 5.542 1 0 274 2.875 1 1 284 4.375 1 2 294 2.814 0 2
255 5.057 1 0 265 5.541 0 0 275 10.448 1 2 285 4.52 1 2 295 10.229 1 0
256 6.461 1 1 266 13.372 1 0 276 5.968 1 0 286 11.247 1 1 296 9.733 0 2
257 5.374 1 2 267 10.809 1 2 277 3.975 1 1 287 2.053 1 2 297 10.647 1 1
258 3.214 1 1 268 13.125 1 0 278 6.866 1 1 288 12.652 1 0 298 2.565 1 2
259 5.582 1 1 269 6.267 0 1 279 4.69 1 1 289 13.361 1 1 299 3.315 1 1
260 3.8 1 1 270 13.372 1 0 280 13.164 0 0 290 5.057 1 0 300 10.45 1 0
301 6.412 0 1 307 6.195 1 1 313 1.108 1 0 319 9.919 0 0 325 6.042 0 2
302 3.42 1 0 308 9.585 1 0 314 5.013 1 1 320 12.876 0 0 326 9.084 1 2
303 7.006 0 1 309 1.437 1 0 315 3.477 1 2 321 13.372 0 0 327 9.202 1 1
304 3.535 0 1 310 12.936 0 2 316 0.862 1 0 322 2.891 1 1 328 1.303 1 0
305 8.495 1 1 311 4.23 1 2 317 7.461 1 1 323 13.366 1 0 329 2.048 1 2
306 9.051 0 1 312 9.246 1 1 318 4.909 1 2 324 7.721 1 2

Based on Table 7, following a similar line as Example One, likelihood and Bayesian
estimates are presented in Table 8 with (c1, c2, c3) = (10, 10, 10) and significance level 0.95.
It is also noted that the performance of both MLEs and Bayes estimates appears similarly,
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and that the Bayes HPD credible intervals of parameters λ1, λ2, and λ3 from different priors
are superior to the ACIs in terms of interval length, which is consistent with the results
of the previous example and simulation studies. Similarly, plots of SF of T = min{T1, T2}
are also provided in Figure 4 for this case where the notations in the legend of the plot are
defined similarly as explained in Example One, and similarity appears as well under the
survival medicine competing risks data.

Table 8. Point and interval estimates of MOBE parameters under dependent HIV infection competing
risks data.

Estimates λ1 λ2 λ3

MLE 0.0094 0.0087 0.0049
π1 Bayes 0.0095 0.0088 0.0050

E-B 0.0094 0.0085 0.0050
π2 Bayes 0.0096 0.0089 0.0050

E-B 0.0096 0.0086 0.0049
π3 Bayes 0.0095 0.0088 0.0049

E-B 0.0093 0.0088 0.0048
O-B estimates 0.0095 0.0087 0.0031

ACI (0.0079,0.0153)[0.0074] (0.0073,0.0155)[0.0082] (0.0034,0.0101)[0.0067]
π1 B-HPD (0.0091,0.0141)[0.0050] (0.0079,0.0144)[0.0065] (0.0050,0.0114)[0.0064]

E-B HPD (0.0089,0.0138)[0.0049] (0.0080,0.0142)[0.0062] (0.0045,0.0109)[0.0064]
π2 B-HPD (0.0094,0.0146)[0.0052] (0.0082,0.0146)[0.0064] (0.0048,0.0110)[0.0062]

E-B HPD (0.0095,0.0145)[0.0050] (0.0084,0.0145)[0.0061] (0.0047,0.0108)[0.0061]
π3 B-HPD (0.0093,0.0144)[0.0051] (0.0081,0.0145)[0.0064] (0.0046,0.0110)[0.0064]

E-B HPD (0.0090,0.0141)[0.0051] (0.0083,0.0143)[0.0060] (0.0045,0.0107)[0.0062]
O-B HPD (0.0092,0.0143)[0.0051] (0.0079,0.0142)[0.0063] (0.0024,0.0091)[0.0067]
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Figure 4. Plots of SF with different estimates under HIV infection data.

6. Concluding Remarks

In this paper, estimation for dependent competing risks model is discussed under the
LTRC scheme. When the lifetime of the causes of failure follows the MOBE distribution,
point and interval estimates of unknown parameters as well as reliability indices are ob-
tained in classical and Bayesian procedures, respectively. Besides classical MLEs and ACIs,
three types of Bayesian point and interval estimates are also proposed including common
Bayesian, E-Bayesian, and objective-Bayesian, respectively. Extensive simulation studies
and two real-life examples are carried out for investigating the performance of our methods,
and the numerical results show that all classical and Bayesian results perform satisfactory,
and that the proposed Bayesian methods are superior to classical likelihood-based results
in general. Although inference for LTRC competing risks data is discussed from the MOBE
distributions, the scope of this paper can be extended to many other engineering and
reliability application fields when other Marshal–Olkin-type bivariate models are available.
In addition, there are also limitations in our study. For example, the proposed methods may
effectively process relatively simple problems when two random variables are correlated
under a shock phenomenon, but cannot completely describe the correlation among complex
and multidimensional variable situations. In such cases, one potential approach may refer
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to the copula function-based method, which seems to be of interest and will be discussed
in the future.
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Appendix A. Proof of Theorem 2

For the sake of concision and saving space, although there are eight scenarios for pairs
of (δi, νi), we show the results when (δi, νi) = (1, 1), (3, 1), (0, 1), and (0, 1), whereas the
remaining results can be obtained in same manner.

For variable (ti, δi, νi) = (ti, 1, 1), it is conducted that the unit is not truncated and the
unit fails at time ti with failure cause one; then, one equivalently has ti = Ti1 and ti < Ti2.
Thus, the associated likelihood contribution refers to

P(ti < Ti1 < ti + dt, Ti2 > ti) = −
∂S(T1,T2)

(t1, t2)

∂t1

∣∣∣∣∣
(t1,t2)=(ti ,ti)

dti = λ1e−λ123ti dti.

For (ti, δi, νi) = (ti, 3, 1), the unit is not truncated and the failure occurred at ti yielded
by causes one and two simultaneously, which implies that Ti1 = Ti2 = ti. Therefore,
the associated likelihood contribution can be expressed as

P(ti < Ti1 = Ti2 < ti + dt) =
λ3

λ123
f (ti; λ123)dti = λ3e−λ123ti dti.

When (ti, δi, νi) = (ti, 0, 1), it means that the unit is not truncated but right-censored
at ti, which indicates that min{Ti1, Ti2} > ti. So, the associated likelihood contribution can
be provided as

P(ti < min(Ti1, Ti2)) = S(ti, λ123)dti = e−λ123ti dti.

Finally, for (ti, δi, νi) = (ti, 1, 0), it is seen that the unit has been left-truncated indicating
that min{Ti1, Ti2} > ti. Moreover, from δi = 1, one has ti = Ti1 and ti < Ti2. Therefore,
the likelihood contribution can be written as

P(ti < Ti1 < ti + dti, Ti2 > ti|Ti1 > τi
L, Ti2 > τi

L) = −
1

S(τi
L, λ123)

∂S(T1,T2)
(t1, t2)

∂t1

∣∣∣∣∣
(t1,t2)=(ti ,ti)

dti

= λ1
e−λ123ti

e−λ123τi
L

dti.

Therefore, the assertion is completed.
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Appendix B. Proof of Theorem 3

Taking derivatives of `(λ1, λ2, λ3) with respect to λ1, λ2, λ3, respectively, and setting
them to zero, estimator λ̂j, j = 1, 2, 3 could be obtained directly. Further, using inequality

ln t ≤ t− 1, t > 0 for t =
λj

λ̂j
, one has

nj ln λj = nj ln

(
λj

λ̂j

)
+ nj ln λ̂j ≤ λjω(t)− nj + nj ln λ̂j.

Therefore, using above inequality, one further has

`(λ1, λ2, λ3) ≤ n1 ln λ̂1 + n2 ln λ̂2 + n3 ln λ̂3 − n1 − n2 − n3.

Since nj = λ̂jω(t), then it is observed that

`(λ1, λ2, λ3) ≤ n1 ln λ̂1 + n2 ln λ̂2 + n3 ln λ̂3 − λ̂123ω(t) = `(λ̂1, λ̂2, λ̂3),

where equality holds iff λj = λ̂j, j = 1, 2, 3. Therefore, the assertion is completed.

Appendix C. Proof of Theorem 5

Based on prior π1
k(ak, bk), the E-Bayesian estimator of λk, k = 1, 2, 3 is given by

λ̂
π1

k
Ek (ak, bk) =

∫ 1

0

∫ ck

0
λ̂L1

Bk(ak, bk)π
1
k(ak, bk)dakdbk =

1
ck

(
1
2
+ nk

)
ln
(

1 +
ck

ω(t)

)
.

Further, E-Bayesian estimation with priors π2
k(ak, bk) and π3

k(ak, bk) can be obtained
similarly, and the details are omitted for concision. Therefore, the results are shown.

Appendix D. Proof of Theorem 6

Since the PR can be obtained as the expected loss to the associated posterior density (16)
of the targeted parameter, under squared error loss, it is seen that

PR(λ̂Bk) =
∫ ∞

0

(
λ̂L1

Bk − λk

)2
π(λk|data)dλk =

ak + nk
[bk + ω(t)]2

, k = 1, 2, 3.

Therefore, the assertion is completed.

Appendix E. Proof of Theorem 7

From Theorem 8 and Han [42], the EPR of λ̂
π1

k
Ek with respect to π1

k under square error
loss is given by

EPR(λ̂
π1

k
Ek ) =

∫ 1

0

∫ ck

0

∫ ∞

0

(
λ̂Bk − λk

)2
π(λk|data)π1

k(ak, bk)dλkdakdbk

=
∫ 1

0

∫ ck

0

1
ck

ak + nk
[bk + ω(t)]2

dakdbk =
2nk + 1

2ck

(
1

ω(t)
− 1

bk + ω(t)

)
.

Moreover, EPR(λ̂
π2

k
Ek ) and EPR(λ̂

π3
k

Ek ) can be obtained similarly using π2
k and π3

k . There-
fore, the assertion is completed.
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Appendix F. Proof of Theorem 8

From the expressions of λ̂
π2

k
Ek , λ̂

π1
k

Ek , λ̂
π3

k
Ek , it is noted that

λ̂
π3

k
Bk − λ̂

π1
k

Bk = λ̂
π1

k
Bk − λ̂

L1π2
k

Bk =
2nk + 1

ck

{(
1
2
+

w(t)
ck

)
ln
(

1 +
ck

w(t)

)
− 1
}

.

Let x = ck
w(t) , using the Taylor expansion ln(1 + x) = ∑∞

i=1(−1)i−1 xi

i , one has that

[(0.5 + x−1) ln(1 + x)− 1] =
∞

∑
j=1

(2j− 1)x2j

4j(2j + 1)

[
1− 2j2

(j + 1)(2j− 1)
x
]

.

Based on the above expression, it is observed that for 0 < x < 1, [(0.5 + x−1) ln(1 +

x)− 1] > 0 is equivalent to show 2j2

(j+1)(2j−1) < 1 which clearly holds for a positive integer

j = 1, 2, . . .. Thus, first-order relations among λ̂
π1

k
Ek , λ̂

π2
k

Ek , and λ̂
π3

k
Ek are proved. Furthermore,

the second result could be obtained by taking limitations directly. Therefore, the assertion
is completed.

Appendix G. Proof of Theorem 9

By direct integration, it is noted that∫ ∞

0

∫ ∞

0

∫ ∞

0
π(λ1, λ2, λ3|data)dλ1dλ2dλ3

=
∫ ∞

0

∫ ∞

0

∫ ∞

0
λn1−0.5

1 λn2−0.5
2 λn3−0.5

3 λ−0.5
123 e−λ123ω(t)dλ1dλ2dλ3. (A1)

Denote

µ1 = λ1 + λ2 + λ3, µ2 =
λ1

λ1 + λ2 + λ3
and µ3 =

λ2

λ1 + λ2 + λ3
,

then the Jacobian matrix of the transformation is given by

J =

 µ2 µ1 0
µ3 0 µ1

1− µ2 − µ3 −µ1 −µ1

 with |J| = µ2
1,

with 0 < µ1 < ∞, 0 < µ1 + µ2 < 1 and λ1 = µ1µ2, λ2 = µ1µ3, λ3 = µ1(1− µ2 − µ3).
Based on above re-parameterization, and the result from Gradshteyn and Ryzhik [45]

(p. 614, formula 4.635(4)) with∫∫
0<x+y<1

xayb(1− x− y)cdxdy = B(a + 1, b + c + 2)B(b + 1, c + 1),

where B(·, ·) is the beta function defined by B(a, b) =
∫ 1

0 ta−1(1− t)b−1dt, a, b > 0; then,
the integration (A1) can be further rewritten as∫ ∞

0

∫ ∞

0

∫ ∞

0
π(λ1, λ2, λ3|data)dλ1dλ2dλ3

=
Γ(n123 + 1)
[ω(t)]n123+1 B(n1 + 0.5, n23 + 1)B(n2 + 0.5, n2 + 0.5) < ∞.

Therefore, the posterior distribution of λ1, λ2, λ3 under prior (34) is proper and the
assertion is completed.
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