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Abstract: Forecasting energy consumption in Saudi Arabia for the period from 2020 until 2030 is
investigated using a two-part composite model. The first part is the frontier, and the second part is
the autoregressive integrated moving average (ARIMA) model that helps avoid the large disparity
in predictions in previous studies, which is what this research seeks to achieve. The sample of the
study has a size of 30 observations, which are the actual consumption values in the period from 1990
to 2019. The philosophy of this installation is to reuse the residuals to extract the remaining values.
Therefore, it becomes white noise and the extracted values are added to increase prediction accuracy.
The residuals were calculated and the ARIMA (0, 1, 0) model with a constant was developed both of
the residual sum of squares and the root means square errors, which were compared in both cases.
The results demonstrate that prediction accuracy using complex models is better than prediction
accuracy using single polynomial models or randomly singular models by an increase in the accuracy
of the estimated consumption and an improvement of 18.5% as a result of the synthesizing process,
which estimates the value of electricity consumption in 2030 to be 575 TWh, compared to the results
of previous studies, which were 365, 442, and 633 TWh.

Keywords: energy consumption; electricity consumption; prediction; Saudi Arabia

1. Introduction

The Kingdom of Saudi Arabia (KSA) is currently undergoing significant development
in all fields, especially in the production of electric energy and electric energy consumption.
The government is formulating future plans for the advancement of this sector due to its
importance in targeted sustainable development and the mandate to generate electricity
through alternative energy sources, as contained in Vision 2030. This is represented in the
establishment of a number of economic development projects that pave the way to the
goals of the KSA’s Vision 2030. This includes goals such as raising the competitiveness of
renewable energy and managing carbon emissions in KSA.

KSA is the 14th largest consumer of electricity in the world. Its consumption is similar
to that of the most densely populated countries, for example, Mexico, whose population
in 2019 reached 127.5 million, compared to 34.2 million for KSA. It is also on par with the
most advanced economies, for example, Italy, whose gross domestic product (GDP) for the
year 2019 amounted to USD 2151.4 billion, compared to USD 704.0 billion for KSA. The
electric energy consumption in KSA is affected by many economic variables, including
economic growth, population growth, and income of individuals, and by energy prices,
their fluctuations, and their direct and strong connection with the current successive global
economic shocks [1,2].
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The research problem and its challenges are summed up in the existence of a large
variation in the predicted values of consumption in previous studies.

From this point, the importance of predicting electricity consumption until 2030 with
greater accuracy using a composite model that helps avoid the large disparity in predictions
in previous studies lies in clarifying the predicted electricity consumption for decision
makers, in a way that enables them to develop and activate plans to keep pace with
increasing energy demand—as proven by the results of this research—by using more
renewable energy sources.

1.1. Prior Studies

In this part, we review the most important previous studies from two perspectives.
First, the predicted values of electric energy consumption in KSA for the year 2030 are
discussed. Second, a number of models used in prediction are reviewed.

1.1.1. The First Perspective: Predicting Consumption Values in 2030

The first study was conducted by Somani and Gracie in 2022 [1] on “Projecting Saudi
sectoral electricity demand in 2030 using a computable general equilibrium model”. Their
study predicted that the value of the total consumption would be 365.4 TWh in 2030. The
second study was conducted by Al-Harbi and Shala in 2019 [3] on Saudi Arabia’s electricity:
Energy supply and demand future challenges, in which they predicted electric energy
consumption in KSA for the year 2030 to be 442 TWh. The third study was conducted by
Al-Mulla in 2014 [4] on Gulf Cooperation Council (GCC) countries 2040 energy scenario
for electricity generation and water desalination, in which he predicted that KSA’s electric
energy consumption would reach 633.34 TWh in 2030. From the above, it is clear that
there is a discrepancy in the estimates of future consumption, which justifies the need for
further studies to accurately estimate consumption, especially in light of current global
economic challenges.

1.1.2. The Second Perspective: Models Used in Forecasting

Liang and Liang 2017 [5] used a hybrid of the gray model and the logistic model to
predict China’s electricity consumption from 2016 to 2020. It is noted that these are both
distinct models. Muhammed and Podger 2005 [6] used the logistic model after modifying it
by making the saturation level a function of population, electricity price, and gross national
product (GNP). The modified model was used to predict electricity consumption in New
Zealand in the period (2000–2020). Ogungbemi et al. 2017 [7] used the Harvey Model and a
first order autoregressive model to predict the industrial electricity consumption in Nigeria
from 2015 to 2029. Gharib 2022 [8] used a set of specific and stochastic models to predict
the consumption of solar PV energy in China in the period 2019–2030. Al-Samman and
Ahmed 2021 [9] used ten polynomial models to predict the consumption of solar PV energy
in China in the period (2019–2030).

The research is based on the following hypotheses:

1. There will be a steady and continuous increase in KSA’s electric energy consumption
until 2030.

2. It is possible to synthesize the polynomial models and the ARIMA models.
3. Prediction accuracy using the compound models is better than prediction accuracy using a

single polynomial or a single stochastic model.

The rest of the study structure consists of the following sections: Section 2 presents
previous studies. Section 3 develops the general equation of the polynomial models in the
following steps: calculating the parameters of the models, comparing models and selecting
the best one, testing the significance of the second order polynomial model, prediction
using the second order polynomial model in the sample period from 1990 to 2019, modeling
residuals using the ARIMA model, calculating residuals of the residuals and making sure
that they become white noise, calculating the autocorrelation function (ACF) for residuals of
the residuals, testing ACF parameters one by one, synthesizing the second order polynomial
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outputs with the outputs of the autoregressive integrated moving average (ARIMA) model
in the sample period 1990–2019, comparing the polynomial residuals with the compound
model residuals in the sample period, and predicting electric energy consumption in KSA
in the period from 2020 until the end of 2030. Section 4 explains and discusses the results.
The final Section 5 concludes with recommendations.

2. Materials and Methods

The inductive approach, with its descriptive and analytical parts, was used [10,11],
where the electric energy consumption in KSA in the period from 1990 to 2019 was de-
scribed. Then, these data were analyzed, and polynomial models were created to predict
consumption. Various models were evaluated and the best of them selected; then, a
stochastic model was developed for the residuals of the selected polynomial model, and a
compound model was created consisting of a polynomial model and a stochastic model.
The significance of the selected polynomial model was tested using the F-statistical test and
it passed successfully; the significance of the selected ARIMA model was tested using the
Z-statistical test to ensure that its residuals became white noise.

2.1. The General Equation of the Polynomial Models Used

The general equation of these models is [12]:

y = a0 + a1t + a2t2 + . . . + antn (1)

where: y is the dependent variable and expresses the value of the electric energy consump-
tion (the unit is terawatt-hours); t is the independent variable and expresses time (the unit
is the year); a0, a1, a2, . . . . are the model parameters; n is the order of the polynomial and
will be from 1 to 10.

We enter these parameters (a0, a1, a2). into a program called PHP, which calculates the
values, and then put the parameter values in Excel to obtain the estimated ŷ.

2.2. Calculating the Parameters of the Models

The actual electricity consumption data Table A1 will be used [13] in calculating the
model parameters by applying the least squares method and using Excel and Hypertext
Preprocessor (PHP) programs [14].

The results are shown in the Appendix A, where ŷ is the predicted consumption.
In these formulas, numbers in 17 decimal digits are used for accuracy because an

important part of this research is related to the study of residuals, which are small quantities.

2.3. Comparing Models

The comparison between the ten models is made on the basis of the coefficient of
determination R2, which is a strong measure of the quality of the model’s fit for the sample
data. It also expresses the percentage of data interpreted by the model.

The coefficient of determination R2 is calculated as follows: [15–17]:

R2 =
SSF
SST

= 1− SSR
SST

(2)

where
SST = SSR + SSF (3)

SST is the sum of the squared deviations of the actual consumption values from their
mean. SSR is the sum of the square differences between the actual electricity consumption
and estimated electricity consumption. SSF is the sum of the squared deviations of the
estimated electricity consumption values from their mean:

SST =
T

∑
t=1

(yt − y)2 (4)
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SSR =
T

∑
t=1

(yt − ŷt)
2 (5)

SSF =
T

∑
t=1

(ŷt − y)2 (6)

T is the size of the study sample (the number of actual electricity consumption values used
in the research).
yt is the actual electricity consumption.
ŷt is the estimated electricity consumption.
y is the average of the actual electricity consumption values.
ŷ is the average of the estimated electricity consumption values.

From Figure 1 and Table A2, there is an improvement in the value of the coefficient of
determination caused by increasing the polynomial order, which becomes limited after the
second order polynomial. Since the lower the polynomial order, the better it is, due to the
simplicity of the model, the second order polynomial model was selected.

Energies 2023, 16, x FOR PEER REVIEW 4 of 20 
 

 

𝑆𝑆𝑇 = ∑(𝑦𝑡 − �̅�)2

𝑇

𝑡=1

 (4) 

𝑆𝑆𝑅 = ∑(𝑦𝑡 − �̂�𝑡)2

𝑇

𝑡=1

 (5) 

𝑆𝑆𝐹 = ∑(�̂�𝑡 − �̅�)2    

𝑇

𝑡=1

 (6) 

T is the size of the study sample (the number of actual electricity consumption values used 

in the research). 

𝑦𝑡  is the actual electricity consumption. 

�̂�𝑡 is the estimated electricity consumption. 

�̅� is the average of the actual electricity consumption values. 

�̅̂� is the average of the estimated electricity consumption values. 

From Figure 1 and Table A2, there is an improvement in the value of the coefficient 

of determination caused by increasing the polynomial order, which becomes limited after 

the second order polynomial. Since the lower the polynomial order, the better it is, due to 

the simplicity of the model, the second order polynomial model was selected. 

 

Figure 1. The relationship between the polynomial order (n) and the coefficient of determination R2 

according to the data of Table A2. Source: Authors’ calculations. 

2.4. Testing the Significance of the Second Order Polynomial Model 

In this part, the “F-statistical test” is performed [16, 18] to determine the significance 

of the selected model as a whole. 

The general equation of the model is: 

𝑦𝑡 = 𝑎 + 𝑏 𝑡 + 𝑐 𝑡2 (7) 

The test aims to determine if there is a relationship between the dependent variable 

yt and a subset of the variables t, t2. 

The hypotheses are the null hypothesis H0 and the alternative hypothesis H1, and are 

as follows: 

0.95

0.96

0.97

0.98

0.99

1

1.01

0 2 4 6 8 10 12

R
^2

n

R^2

Figure 1. The relationship between the polynomial order (n) and the coefficient of determination R2

according to the data of Table A2. Source: Authors’ calculations.

2.4. Testing the Significance of the Second Order Polynomial Model

In this part, the “F-statistical test” is performed [16,18] to determine the significance of
the selected model as a whole.

The general equation of the model is:

yt = a + b t + c t2 (7)

The test aims to determine if there is a relationship between the dependent variable yt
and a subset of the variables t, t2.

The hypotheses are the null hypothesis H0 and the alternative hypothesis H1, and are
as follows:

H0: a = b = c = 0

H1: at least one of a, . . . , c 6= 0
Rejecting the null hypothesis H0 results in at least one of the variables t and t2 con-

tributing significantly to the model.
Test procedures include an analysis of variance (the mean of sum of squared errors)

by dividing the sum of the total squared errors (SST) into two parts. The first part is the
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sum of squared errors resulting from the model (regression process) SSF, and the second is
the sum of the squared errors resulting due to the residual SSR, i.e.,

SST = SSF + SSR

where

SSF =
30

∑
i=1

(
ŷi − ŷ

)2
= 241915.7399

SSR =
30

∑
i=1

(yi − ŷi)
2 = 2213.57356

The test statistic of the significance of the model is:

F0 =
SSF/k

SSR/(n− p)

where k is the number of independent variables in the model (it is equal to 2 in the case
under study), n is the number of observations (equal to 30 in the case under study), and p
is the number of parameters in the model (equal to 3 in the case under study). In the case
under study, it will be:

F0 =
241915.7399/2

2213.57356/(30− 3)
= 1475.380149.

By comparing the value of F0 to the value

Fα,k,n−p

taken from the general table of the probability distribution “F” with a level of significance
α = 0.05 and degrees of freedom for the numerator k = 2, and degrees of freedom for the
denominator n − p = 27, i.e.,

F0.05,2,27 = 3.35

By comparison, it was found that

F0 > F0.05,2,27

Thus, the null hypothesis H0 was rejected with a confidence level of 95% and the
alternative hypothesis H1 was accepted. That is, there is a significant relationship between
the dependent variable and a subset of the independent variables; therefore, we accept
the model.

The model is significant with a confidence level of 95%, and it reconciles the data
to an excellent degree. The conclusion is that the model can be relied upon in the
prediction process.

2.5. Prediction Using the Second Order Polynomial Model in the Sample Period 1990–2019

Table A3 shows estimated electricity consumption by the second order polynomial
model (calculating the actual and estimated consumption in the sample period 1990–2019)
after concluding that the model as a whole is significant, with a confidence level of 95%,
that it reconciles the data to an excellent degree, and that the model can be relied upon in
the prediction process. The residuals, which will be inputs to the random model, can be
calculated in Table A4.
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2.6. Residues of the Second Order Polynomial Model

Table A4 and Figure 2 present the residues of the second order polynomial model by
calculating the difference between the actual consumption and estimated consumption
E = y − ŷ within the period 1999–2019.
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Figure 2. Second order polynomial residuals versus time intervals. Source: Table 1, reference [3], and
authors’ calculations.

Figure 2 shows that this period (T = 26) (2015) has the biggest difference between
actual and estimated consumption.

2.7. Modeling Residuals Using the ARIMA Model

By entering the residuals into the SPSS program and using the EXPERT MODELER,
we obtained the optimal model for the residuals, which was ARIMA (0, 1, 0) [15,19,20]
with a constant of (−0.616). This is shown in Table A5; by entering the residuals into the
SPSS program and using the EXPERT MODELER, we obtained the optimal model for the
residuals, which was ARIMA (0, 1, 0) [15,19,20] with a constant of (−0.616). This is a step
to calculate the residuals of the residuals.

2.8. Calculating Residuals of the Residuals and Making Sure They Become White Noise

The calculation of residuals of the residuals shown in Table A6 makes sure that it be-
comes white noise; this is very important for the next step of calculating the autocorrelation
function for residuals of the residuals.

2.9. Calculating Autocorrelation Function (ACF) [16,20,21] for Residuals of Residuals

Table A7 shows the calculation of the autocorrelation function. The autocorrelation
analysis helps detect patterns and check for randomness. This is especially important
when intending to use the (ARIMA) model for forecasting because it helps to determine
its parameters.

2.10. Testing ACF Coefficients One by One

If the time series is white noise, then the distribution of the correlation coefficients
for the sample follows the normal distribution with a mean of zero and a variance of
1/T, where T is the number of time periods; in the case under study, T = 30. This can be
expressed as follows [19–21]:

rk ∼ N
(

0,
1
T

)
(8)
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Thus, the null hypothesis:
H0 : rk = 0

and can be tested using the parametric statistical test:

Z0 =
rk√

1
T

= rk
√

T (9)

If it is:
|Z0| < Z α

2
(10)

where Z α
2

is the upper percentage point α/2 in the standard normal distribution. This
indicates that the coefficients of the ACF are statistically zero. That is, we accept the null
hypothesis at the confidence level α = 0.05.

Note that Z α
2
= Z0.025 = 1.96 is from the standard normal distribution table.

From Table A8, it is clear that:
|Z0| < Z α

2
(11)

This is for all rk coefficients. Thus, the null hypothesis can be accepted; all coefficients
are statistically zero at the level of significance α = 0.05. Therefore, the residual series of the
stochastic model is white noise, which means that the model is sufficient and significant
with a confidence level of 95%.

2.11. Synthesizing the Second Order Polynomial Outputs with ARIMA Period 1990–2019

Table A9 presents a compound model. It consists of a polynomial model and a
stochastic model. It examines the process of superposition between the second order
parametric model and the ARIMA model.

2.12. Comparing Polynomial Residuals with Compound Model Residuals (Sample Period
1990–2019)

To show the improvement that occurred in the results due to the synthesizing process
of the second order polynomial model and the ARIMA model, the residuals of the com-
pound model were calculated, and we compared the sum of the residuals square and the
square root of the mean of residuals of the two models shown in Table A10.

The residual sum of squares of the polynomial model RSS1 = 2213.57356.
The residual sum of squares of the compound model RSS2 = 1471.04359.
The amount of improvement resulting from the synthesizing process = RSS1 − RSS2 =

742.52997.
Improvement percentage = (RSS1 − RSS2)/RSS1 × 100 = 33.5444%.
Root-mean-square of residuals of the polynomial model RMSE1 = 8.58987.
Root-mean-square of residuals of the compound model RMSE2 = 7.00248.
Difference = RMSE1-RMSE2 = 1.58739.
Improvement percentage = (RMSE1 − RMSE2)/RMSE1 × 100 = 18.47979%.
As shown above, the synthesizing process of the two models led to a significant

improvement in the accuracy of the results.
Figure 3 shows the synthesizing process of the two models that led to a significant

improvement in the accuracy of the results in line y-(yhat + Ehat) compared to line E.
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2.13. Predicting Electricity Consumption in KSA from 2020 to 2030 Using Compound Model

Table 1 shows the last step in predicting the electricity consumption values for the
period 2020–2030 by using the compound model.

Table 1. Electricity consumption prediction values for the period 2020–2030.

T Year

Estimated
Consumption by the

Second Order
Polynomial

Residuals Estimated
by the ARIMA

Model

Estimated
Consumption by the
Compound Model

31 2020 399.2145 −24.5705 374.64405

32 2021 417.586 −25.1862 392.39983

33 2022 436.4692 −25.8019 410.6673

34 2023 455.864 −26.4176 429.44637

35 2024 475.7705 −27.0334 448.73714

36 2025 496.1887 −27.6491 468.53961

37 2026 517.1186 −28.2648 488.85378

38 2027 538.5601 −28.8806 509.67955

39 2028 560.5133 −29.4963 531.01702

40 2029 582.9782 −30.112 552.8662

41 2030 605.9548 −30.7277 575.22707
Source: Authors’ calculations.

3. Explanation of the Results

The polynomials of the first order to the tenth order were experimented, where their
parameters were calculated by entering the actual electricity consumption data, available
in the study sample, into the PHP program on the Internet based on the method of least
squares. The coefficient of determination R2 was calculated for each polynomial.

The coefficient of determination is a measure of how well the model fits the sample
data; that is, the extent of convergence between the estimated electricity consumption and
actual electricity consumption in the sample period. It also expresses the percentage of the
data explained by the model from the total data in the sample.
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By comparing the values of the coefficient of determination of the polynomials, it was
found that the improvement in the value of the coefficient of determination was little for
the polynomials from the third order to the tenth order. Considering that the simpler the
model, the better, the second order polynomial was selected as a model for the sample data.

A graph was made showing the relationship between the polynomial and the value
of determining factor. From the graph, it was found that the improvement in accuracy
became imperceptible after the second order polynomial; this compendium could reduce
the number of selected orders, but this was not possible before this experiment.

The significance of the model was tested using the F-statistical test at the level of
significance α = 0.05, where the test was successfully passed. The residuals of the model
were calculated, showing the difference between the actual electricity consumption and
estimated electricity consumption in the sample period.

The ARIMA model was developed for these residuals by entering them into the SPSS
statistical program and using the Expert Modeler available in the software. The ARIMA
(0, 1, 0) model was produced with a constant, which is the best model for expressing
residuals. The estimated residuals were calculated in the sample period using the ARIMA
model, and then the residuals of the residuals were calculated, revealing the difference
between the estimated residuals and the actual residuals. To make sure that the residuals
of residuals became white noise, i.e., that they became statistically zero, the coefficients of
the ACF were calculated and the Z-test was applied at the level of significance α = 0.05; the
test was passed successfully. This means that the residuals estimated by the ARIMA model
are all the remaining meaningful values in the actual residuals, and they can then be added
to the electricity consumption estimated by the second order polynomial model in order to
increase its accuracy.

In order to obtain the outputs of the compound model, the outputs of the ARIMA
model were added to the outputs of the second order polynomial model. In order to
find out the extent of improvement in the results obtained from the synthesizing process,
the sum of the root-mean-square error in the sample period was calculated for each of
the second order polynomial model and the compound model; a decrease of 33.5% was
found, the root mean square deviation was calculated in both cases, and a decrease of
18.5% was found. All this means an improvement in the prediction accuracy using the
compound model. The compound model was used in calculating the prediction for the
period 2020–2030, where the value of the predicted electricity consumption in the year 2030
was 575 TWh. This result can be compared with the results of previous studies, mentioned
in the current study, which were 365, 442, and 633 TWh. It should be noted that the actual
electricity consumption for the year 2020 was 341 TWh, while the estimated electricity
consumption in the compound model was 375 TWh, with an increase of about 10% from
the actual. This can be understood as a result of the impact of the COVID-19 pandemic
on actual electricity consumption in that year. As for the year 2021, the actual electricity
consumption value had not yet been published at the time of preparation of this research.

There will be a steady and continuous increase in the KSA’s electricity consumption
until 2030. It is also possible to make a synthesis of the polynomial models and the
ARIMA models.

Prediction accuracy using compound models solves the research problem of a large
discrepancy in the predicted values of consumption in previous studies. It also proves the
validity of the research hypotheses, which are:

- There will be a steady and continuous increase in the KSA’s electric energy consump-
tion until 2030.

- It is possible to synthesize the polynomial models and the ARIMA models.
- Prediction accuracy using the compound models is better than prediction accuracy

using a single polynomial or a single stochastic model.
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4. Discussion

Energy is the mainstay of comprehensive and sustainable development in all societies
and the artery of development in various economic and social fields, in addition to being one
of the most important pillars of national security. Comprehensive sustainable development
plans are linked to the state’s ability to provide the energy resources needed for these plans
during trade-offs between state regulation, and deregulation and liberalization of energy
markets [22,23].

In the case of KSA’s economy, the Ministry of Energy is working on diversifying
the energy mix used in the production of electricity by increasing the share of gas and
renewable energy sources in it in a more efficient and less costly manner. This is done
by replacing liquid fuels with natural gas in addition to renewable energy sources. This
makes the process of predicting electric energy consumption a very important component
of the future planning of any economy, especially in light of current challenges and external
shocks in the global economy from the impact of the COVID-19 pandemic and the Russia–
Ukraine war. Therefore, the importance of this research is to achieve accurate forecasting
of electric energy consumption by making an overlay between polynomial models and
ARIMA models, and to confirm that the accuracy of the prediction using complex models
is better than prediction accuracy using single polynomial or singular stochastic models.
From this point of view, the current research provides an accurate vision of what will be
the level of energy consumption in KSA up to 2030, contrary to what has been presented
by previous studies, which gives a clearer picture for decision makers to make the best
decision regarding the generation of electrical energy through a variety of renewable energy
sources. This is in line with the sustainable development goals in KSA’s 2030 vision.

KSA’s goal of increasing and diversifying the use of renewable energy sources in
generating electric energy by nearly 50% in 2030 on the one hand, and the existence of a
large discrepancy in the predicted values in most of the studies conducted on this subject
on the other, prompted the researchers to perform this study in order to predict KSA’s
electric energy consumption for the period from 2020 to 2030. The current study was based
on a sample size of 30 observations representing KSA’s actual electric energy consumption
in the period from 1990 to 2019 [13]. A composite model was constructed consisting of
two parts. The first part is parametric and the second part is the ARIMA model. The
limits were tested from the first degree to the tenth degree, where their parameters were
calculated by entering the actual consumption data, available in the study sample, into the
PHP program, which is based on the method of least squares. An ARIMA model was built
for these residuals by entering them into the SPSS statistical program, and with the help
of the Expert Modeler available in the program, the ARIMA (0, 1, 0) model was produced
with a fixed term, which is the best model for expressing the residuals.

In order to obtain the outputs of the composite model, the outputs of the ARIMA
model were added to the outputs of the parametric model of the second degree. In order to
find out the extent of improvement in the results resulting from the fitting process, the sum
of the squared errors RSS was calculated in the sample period for each of the parametric
models of the second degree and the composite model, and a decrease of 33.5% was found.
All of this means an improvement in prediction accuracy using the composite model.

The composite model was used to calculate the forecast for the period 2020–2030,
where the predicted consumption value in the year 2030 is 575 terawatt-hours (TWh). This
result can be compared to the results of previous studies that were mentioned in this study,
where they were 365, 442, and 633 TWh. It should be noted that the actual consumption for
the year 2020 was 341 TWh, while the estimated consumption in the composite model was
375 TWh, an increase of about 10% from the actual. This can be understood as a result of
the impact of the COVID-19 pandemic on the actual consumption in that year [24–26]. As
for the year 2021, the actual consumption value had not yet been published by the date of
preparation of this research.
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Although the actual electricity consumption value for the year 2020, which was
341 TWh [27], was available, it was not used in creating the prediction models and was left
to compare with the predicted values.

Therefore, the research problem is presented in the presence of a large discrepancy
in the predicted values of electricity consumption in previous studies, taking these values
as an indicator for sustainable development plans in the generation of electric energy and
comparing them with the target for 2030. This is done in order for decision makers to be
able to do what is required to keep pace with the increase in electric energy consumption
by generating it through a variety of renewable energy sources and reducing carbon
emissions in line with the goals of sustainable development and KSA’s vision 2030. One
of the potential sources can be solar energy [28], as well as more efficient use of energy in
sustainable economic development [29].

The aim of the present research is to shed light on polynomial predictive models,
indicate the degree of confidence in their outputs using appropriate statistical methods,
predict the electric energy consumption values using the compound model representing
the period from 2020 until the end of 2030, and create a synthesis of the selected best
‘polynomial’ and its ARIMA model in order to increase prediction accuracy. It also aims to
draw a future picture of electric energy consumption in KSA.

Finally, it is useful to mention that in the literature, several other forecasting approaches
have been developed, such as those based on statistical and artificial neural network models,
projections based on artificial intelligence [30–33], machine learning models [34–36], and
those using novel hybrid models [37–40]. These are challenging issues for KSA, as well
as other countries in the Middle East and Asian region, and are thus among the issues
deserving of research in future.

5. Conclusions

The research problem was represented in forecasting the consumption of electricity
consumption in the KSA in the period of the years 2020 to 2030, depending on a sample
size of 30 observations, representing the actual consumption of electrical energy by Saudi
Arabia in the period from 1990 to 2019. Although the actual consumption value for the year
2020 was available, which was 341 Twh, it was not used in building forecast models and
was left to compare with the forecast values. The motivation for this research came from
the presence of a large discrepancy in the estimated values presented in previous research.

The importance of the current research pertains to KSA’s goal of increasing and
diversifying the use of renewable energy sources in generating electric energy by nearly
50% by 2030 on the one hand, and the presence of a large discrepancy in the predicted
values in most of the studies conducted on this subject, on the other hand. This prompted
the researchers to perform this study to predict KSA’s electric energy consumption for
the period from 2020 to 2030, based on a sample size of 30 observations representing the
actual electric energy consumption by KSA in the period from 1990 to 2019. Accordingly, a
two-part compound model was developed. The first part is the polynomial model and the
second part is the ARIMA model. Polynomials have the advantage that they can be used to
express a wide range of mathematical models.

An improvement in the prediction accuracy was observed using the compound model.
The compound model was used in calculating the prediction for the period 2020–2030,
where the value of the predicted electricity consumption in the year 2030 was 575 TWh.
This result can be compared with the results of previous studies that were mentioned in this
study, where they were 365, 442, and 633 TWh. It should be noted that the actual electricity
consumption for the year 2020 was 341 TWh, while the estimated electricity consumption
in the compound model was 375 TWh, with an increase of about 10% from the actual.

This study recommends using the composite model as a tool that has proven its effec-
tiveness and accuracy through the findings of this research, in order to provide accurate
data and results for decision makers in KSA to determine the current and future consump-
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tion of electricity in line with the goals of sustainable development and KSA’s Vision 2030
to achieve economic benefit for KSA.
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Appendix A

Contains all the tables and formulas that were used in the model, including: Calculat-
ing the Parameters of the Models a; The relationship between the polynomial order and
the coefficient of determination; Modeling residuals using the ARIMA model; Calculating
residuals of the residuals and making sure they become white noise; Calculating autocorre-
lation function; Calculation of the significance test parameter of the stochastic model of the
second order polynomial residuals; and a table presenting the compound model, which
was created by combining a polynomial model and a stochastic model.

Table A1. Electricity Consumption Time Series (Research Sample).

Year Period
T

Actual
Consumption

TWh
Year Period

T

Actual
Consumption

TWh
Year Period

T

Actual
Consumption

TWh

1990 1 79.9 2000 11 138.7 2010 21 240.1

1991 2 85 2001 12 146.1 2011 22 250.1

1992 3 93.5 2002 13 154.9 2012 23 271.1

1993 4 102.7 2003 14 166.6 2013 24 284.1

1994 5 106 2004 15 173.4 2014 25 311.8

1995 6 109.9 2005 16 191.1 2015 26 338.5

1996 7 112.2 2006 17 196.3 2016 26 345.6

1997 8 119.1 2007 18 204.4 2017 28 355.2

1998 9 126.2 2008 19 204.2 2018 29 359.2

1999 10 131 2009 20 217.3 2019 30 357.4

Data source: reference [3].

Table A1 will be used [3] in calculating the model parameters by applying the least
squares method and using Excel and Hypertext Preprocessor (PHP) programs [15].
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Table A2. The relationship between the polynomial order and the coefficient of determination.

Polynomial Order, n Coefficient of Determination, R2

1 0.954939

2 0.990933

3 0.990954

4 0.994186

5 0.996316

6 0.998177

7 0.998177

8 0.998873

9 0.998929

10 0.998929
Source: Authors’ calculations.

Table A3. Estimated electricity consumption by the second order polynomial.

Period
T

Actual
Consumption

Y

Estimated
Consumption

y Hat

Period
T

Actual
Consumption

Y

Estimated
Consumption

y Hat

Period
T

Actual
Consumption

Y

Estimated
Consumption

y Hat

1 79.9 85.99859 11 138.7 139.2364 21 240.1 243.6417

2 85 89.01984 12 146.1 147.3744 22 250.1 256.8965

3 93.5 92.55276 13 154.9 156.0241 23 271.1 270.6629

4 102.7 96.59736 14 166.6 165.1854 24 284.1 284.941

5 106 101.1536 15 173.4 174.8585 25 311.8 299.7308

6 109.9 106.2216 16 191.1 185.0432 26 338.5 315.0322

7 112.2 111.8012 17 196.3 195.7395 27 345.6 330.8453

8 119.1 117.8925 18 204.4 206.9476 28 355.2 347.1701

9 126.2 124.4955 19 204.2 218.6673 29 359.2 364.0066

10 131 131.6101 20 217.3 230.8987 30 357.4 381.3547

Source: Table 1, reference [3], and authors’ calculations.

Table A4. Residues of the second order polynomial model.

Period
T

Actual
Consumption

Y

Estimated
Consumption

by Second Order
Polynomial ŷ

Residuals
E = y − ŷ

Period
T

Actual
Consumption

Y

Estimated
Consumption
Second Order
Polynomial ŷ

Residuals
E = y − ŷ

1 79.9 85.99858871 −6.09858871 16 191.1 185.0431591 6.05684093

2 85 89.01983732 −4.01983732 17 196.3 195.7395278 0.56047215

3 93.5 92.55276061 0.94723939 18 204.4 206.9475713 −2.54757131

4 102.7 96.59735857 6.10264143 19 204.2 218.6672894 −14.4672894

5 106 101.1536312 4.84636878 20 217.3 230.8986823 −13.5986823

6 109.9 106.2215785 3.67842146 21 240.1 243.6417498 −3.54174976

7 112.2 111.8012005 0.39879946 22 250.1 256.8964919 −6.79649194

8 119.1 117.8924972 1.20750278 23 271.1 270.6629088 0.43709121

9 126.2 124.4954686 1.70453142 24 284.1 284.9410003 −0.84100032

10 131 131.6101146 −0.61011461 25 311.8 299.7307665 12.0692335

11 138.7 139.2364353 −0.53643532 26 338.5 315.0322074 23.4677926

12 146.1 147.3744307 −1.27443072 27 345.6 330.845323 14.754677
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Table A4. Cont.

Period
T

Actual
Consumption

Y

Estimated
Consumption

by Second Order
Polynomial ŷ

Residuals
E = y − ŷ

Period
T

Actual
Consumption

Y

Estimated
Consumption
Second Order
Polynomial ŷ

Residuals
E = y − ŷ

13 154.9 156.0241008 −1.12410079 28 355.2 347.1701132 8.02988678

14 166.6 165.1854455 1.41455447 29 359.2 364.0065781 −4.80657814

15 173.4 174.858465 −1.45846496 30 357.4 381.3547177 −23.9547177

Source: Table 1, reference [3], and authors’ calculations.

Table A5. The estimated residuals using the ARIMA model in the sample period 1990–2019.

Period
T

Actual
Consumption

Y

Estimated
Consumption

ŷ

Actual
Residuals E

Estimated
Residuals Ê

1 79.9 85.99859 −6.09859

2 85 89.01984 −4.01984 −6.71432

3 93.5 92.55276 0.94724 −4.63557

4 102.7 96.59736 6.10264 0.33151

5 106 101.1536 4.84637 5.48691

6 109.9 106.2216 3.67842 4.23064

7 112.2 111.8012 0.39880 3.06269

8 119.1 117.8925 1.20750 −0.21693

9 126.2 124.4955 1.70453 0.59177

10 131 131.6101 −0.61011 1.08880

11 138.7 139.2364 −0.53644 −1.22584

12 146.1 147.3744 −1.27443 −1.15216

13 154.9 156.0241 −1.12410 −1.89016

14 166.6 165.1854 1.41455 −1.73983

15 173.4 174.8585 −1.45846 0.79883

16 191.1 185.0432 6.05684 −2.07419

17 196.3 195.7395 0.56047 5.44111

18 204.4 206.9476 −2.54757 −0.05526

19 204.2 218.6673 −14.46729 −3.16330

20 217.3 230.8987 −13.59868 −15.08302

21 240.1 243.6417 −3.54175 −14.21441

22 250.1 256.8965 −6.79649 −4.15748

23 271.1 270.6629 0.43709 −7.41222

24 284.1 284.941 −0.84100 −0.17864

25 311.8 299.7308 12.06923 −1.45673

26 338.5 315.0322 23.46779 11.45350

27 345.6 330.8453 14.75468 22.85206

28 355.2 347.1701 8.02989 14.13895

29 359.2 364.0066 −4.80658 7.41416

30 357.4 381.3547 −23.95472 −5.42231
Source: Table 1, reference [3], and authors’ calculations.
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Table A6. Calculation of the residuals of residuals in the sample period 1990–2019.

Time
T

Actual Error
E

Estimated Error
Ê

Difference between Actual
Error and Estimated Error

E − Ê
the Residuals of Residuals

1 −6.09859

2 −4.01984 −6.71432 2.69448

3 0.94724 −4.63557 5.58281

4 6.10264 0.33151 5.77113

5 4.84637 5.48691 −0.64054

6 3.67842 4.23064 −0.55222

7 0.39880 3.06269 −2.66389

8 1.20750 −0.21693 1.42443

9 1.70453 0.59177 1.11276

10 −0.61011 1.08880 −1.69892

11 −0.53644 −1.22584 0.68941

12 −1.27443 −1.15216 −0.12227

13 −1.12410 −1.89016 0.76606

14 1.41455 −1.73983 3.15438

15 −1.45846 0.79883 −2.25729

16 6.05684 −2.07419 8.13103

17 0.56047 5.44111 −4.88064

18 −2.54757 −0.05526 −2.49231

19 −14.46729 −3.16330 −11.30399

20 −13.59868 −15.08302 1.48434

21 −3.54175 −14.21441 10.67266

22 −6.79649 −4.15748 −2.63901

23 0.43709 −7.41222 7.84931

24 −0.84100 −0.17864 −0.66236

25 12.06923 −1.45673 13.52596

26 23.46779 11.45350 12.01429

27 14.75468 22.85206 −8.09739

28 8.02989 14.13895 −6.10906

29 −4.80658 7.41416 −12.22074

30 −23.95472 −5.42231 −18.53241
Source: Authors’ calculations.
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Table A7. Coefficients of the two autocorrelation functions.

Lag
Coefficients of the

Autocorrelation Function
ACF

La
Coefficients of the

Autocorrelation Function
ACF

1 0.258 13 0.000

2 0.112 14 −0.123

3 −0.088 15 −0.067

4 −0.322 16 −0.116

5 −0.036 17 0.047

6 −0.274 18 0.014

7 −0.174 19 0.007

8 −0.079 20 0.034

9 −0.041 21 0.049

10 0.180 22 0.110

11 0.136 23 0.081

12 0.156 24 −0.021
Source: Authors’ calculations.

Table A8. Second order polynomial residuals.

Lag rk Z0 = rk Ö30 |Z0|

1 0.258 1.413 1.413

2 0.112 0.613 0.613

3 −0.088 −0.482 0.482

4 −0.322 −1.764 1.764

5 −0.036 −0.197 0.197

6 −0.274 −1.501 1.501

7 −0.174 −0.953 0.953

8 −0.079 −0.433 0.433

9 −0.041 −0.225 0.225

10 0.180 0.986 0.986

11 0.136 0.745 0.745

12 0.156 0.854 0.854

13 0.000 0.000 0.000

14 −0.123 −0.674 0.674

15 −0.067 −0.367 0.367

16 −0.116 −0.635 0.635

17 0.047 0.257 0.257

18 0.014 0.077 0.077

19 0.007 0.038 0.038

20 0.034 0.186 0.186

21 0.049 0.268 0.268

22 0.110 0.602 0.602

23 0.081 0.444 0.444

24 −0.021 −0.115 0.115
Source: Authors’ calculations.



Energies 2023, 16, 506 17 of 20

Table A9. Synthesis of the second order polynomial outputs with the ARIMA model outputs.

T Y
Second Order Polynomial

Outputs
ŷ

E
ARIMA Model

Outputs
Ê

Compound Model Outputs
ŷ + Ê

1 79.9 85.99859 −6.09859 85.99859

2 85 89.01984 −4.01984 −6.71432 82.30552

3 93.5 92.55276 0.94724 −4.63557 87.91719

4 102.7 96.59736 6.10264 0.33151 96.92887

5 106 101.1536 4.84637 5.48691 106.64051

6 109.9 106.2216 3.67842 4.23064 110.45224

7 112.2 111.8012 0.3988 3.06269 114.86389

8 119.1 117.8925 1.2075 −0.21693 117.67557

9 126.2 124.4955 1.70453 0.59177 125.08727

10 131 131.6101 −0.61011 1.0888 132.6989

11 138.7 139.2364 −0.53644 −1.22584 138.01056

12 146.1 147.3744 −1.27443 −1.15216 146.22224

13 154.9 156.0241 −1.1241 −1.89016 154.13394

14 166.6 165.1854 1.41455 −1.73983 163.44557

15 173.4 174.8585 −1.45846 0.79883 175.65733

16 191.1 185.0432 6.05684 −2.07419 182.96901

17 196.3 195.7395 0.56047 5.44111 201.18061

18 204.4 206.9476 −2.54757 −0.05526 206.89234

19 204.2 218.6673 −14.4673 −3.1633 215.504

20 217.3 230.8987 −13.5987 −15.083 215.81568

21 240.1 243.6417 −3.54175 −14.2144 229.42729

22 250.1 256.8965 −6.79649 −4.15748 252.73902

23 271.1 270.6629 0.43709 −7.41222 263.25068

24 284.1 284.941 −0.841 −0.17864 284.76236

25 311.8 299.7308 12.06923 −1.45673 298.27407

26 338.5 315.0322 23.46779 11.4535 326.4857

27 345.6 330.8453 14.75468 22.85206 353.69736

28 355.2 347.1701 8.02989 14.13895 361.30905

29 359.2 364.0066 −4.80658 7.41416 371.42076

30 357.4 381.3547 −23.9547 −5.42231 375.93239

Source: Table 1, reference [3], and authors’ calculations.

Table A10. Residues of the Compound Model.

T Y ŷ Boundary Residuals
E = y − ŷ Ê ŷ + Ê

Residuals of the
Compound Model

y − (ŷ + Ê)

1 79.9 85.99859 −6.09859 85.99859 −6.09859

2 85 89.01984 −4.01984 −6.71432 82.30552 2.69448

3 93.5 92.55276 0.94724 −4.63557 87.91719 5.58281



Energies 2023, 16, 506 18 of 20

Table A10. Cont.

T Y ŷ Boundary Residuals
E = y − ŷ Ê ŷ + Ê

Residuals of the
Compound Model

y − (ŷ + Ê)

4 102.7 96.59736 6.10264 0.33151 96.92887 5.77113

5 106 101.1536 4.84637 5.48691 106.64051 −0.64051

6 109.9 106.2216 3.67842 4.23064 110.45224 −0.55224

7 112.2 111.8012 0.3988 3.06269 114.86389 −2.66389

8 119.1 117.8925 1.2075 −0.21693 117.67557 1.42443

9 126.2 124.4955 1.70453 0.59177 125.08727 1.11273

10 131 131.6101 −0.61011 1.0888 132.6989 −1.6989

11 138.7 139.2364 −0.53644 −1.22584 138.01056 0.68944

12 146.1 147.3744 −1.27443 −1.15216 146.22224 −0.12224

13 154.9 156.0241 −1.1241 −1.89016 154.13394 0.76606

14 166.6 165.1854 1.41455 −1.73983 163.44557 3.15443

15 173.4 174.8585 −1.45846 0.79883 175.65733 −2.25733

16 191.1 185.0432 6.05684 −2.07419 182.96901 8.13099

17 196.3 195.7395 0.56047 5.44111 201.18061 −4.88061

18 204.4 206.9476 −2.54757 −0.05526 206.89234 −2.49234

19 204.2 218.6673 −14.46729 −3.1633 215.504 −11.304

20 217.3 230.8987 −13.59868 −15.083 215.81568 1.48432

21 240.1 243.6417 −3.54175 −14.2144 229.42729 10.67271

22 250.1 256.8965 −6.79649 −4.15748 252.73902 −2.63902

23 271.1 270.6629 0.43709 −7.41222 263.25068 7.84932

24 284.1 284.941 −0.841 −0.17864 284.76236 −0.66236

25 311.8 299.7308 12.06923 −1.45673 298.27407 13.52593

26 338.5 315.0322 23.46779 11.4535 326.4857 12.0143

27 345.6 330.8453 14.75468 22.85206 353.69736 −8.09736

28 355.2 347.1701 8.02989 14.13895 361.30905 −6.10905

29 359.2 364.0066 −4.80658 7.41416 371.42076 −12.22076

30 357.4 381.3547 −23.95472 −5.42231 375.93239 −18.53239

Source: Table 1, reference [3], and authors’ calculations.

Calculating the Parameters of the Models
The first order polynomial model:

ŷ = 41.19057471264368 + 10.184694104560624t (A1)

The second order polynomial model:

ŷ = 83.48901477832513 + 2.253736592245352t + 0.25583733910694423t2 (A2)

The third order polynomial model:

ŷ = 84.83395730706076 + 1.7721439626681563t + 0.2940459336732974t2 − 0.0008216902057280256t3 (A3)

The fourth order polynomial model:
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ŷ = 63.33479221927498 + 13.867819507823924t− 1.395524075804146t2 + 0.08300972446366839t3−
0.0013521195914418776t4 (A4)

The fifth order polynomial model:

ŷ = 86.16489832007073− 4.099943959460825t + 2.400591494097555t2 − 0.23516904422015494t3+
0.010093454991176316t4 − 0.00014768483332410572t5 (A5)

The sixth order polynomial model:

ŷ = 57.75731211317419 + 24.83996800501148t− 6.041637787034118t2 + 0.8068538789773372t3−
0.051680440105507985t4 + 0.0015929760862161242t5 − 0.00001871678408107774t6 (A6)

The seventh order polynomial model:

ŷ = 57.643512858955226 + 24.9819845514518t− 6.095377306021259t2 + 0.815862184315436t3−
0.05245280907224429t4 + 0.0016282585012546156t5 − 0.00001953344097961959t6 + 0.00000000752679169163t7 (A7)

The eighth order polynomial model:

ŷ = 90.76698650674774− 23.644465498609527t + 16.69659216991278t2 − 4.0949632466064285t3+
0.5120294538898259t4 − 0.035190806450623516t5 + 0.0013459517043590157t6 − 0.00002680117056660032t7+

0.00000021619917224429t8
(A8)

The ninth order polynomial model:

ŷ = 77.18611694154131− 0.8930437908518888t + 3.950515271184289t2 − 0.7057407804364993t3+
0.015718240582896285t4 + 0.007782396358829107t5 − 0.0009080646201480251t6 + 0.00004348308707838665t7−

0.00000098162131905363t8 + 0.00000000858652681934t9
(A9)

The tenth order polynomial model:

ŷ = 77.67766416789804− 1.8113357174773226t + 4.54824364199519t2 − 0.8957648439793898t3+
0.04986512462338578t4 + 0.004043738455536497t5 − 0.0006497488448332843t6 + 0.00003217491257888407t7−

0.00000067763036404404t8 + 0.00000000401026876840t9 − 0.00000000002952424549t10
(A10)
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