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Abstract: An earthquake early warning system (EEWS) should be included in smart cities to preserve
human lives by providing a reliable and efficient disaster management system. This system can
alter how different entities communicate with one another using an Internet of Things (IoT) network
where observed data are handled based on machine learning (ML) technology. On one hand, IoT
is employed in observing the different measures of EEWS entities. On the other hand, ML can be
exploited to analyze these measures to reach the best action to be taken for disaster management and
risk mitigation in smart cities. This paper provides a survey on the different aspects required for that
EEWS. First, the IoT system is generally discussed to provide the role it can play for EEWS. Second,
ML models are classified into linear and non-linear ones. Third, the evaluation metrics of ML models
are addressed by focusing on seismology. Fourth, this paper exhibits a taxonomy that includes the
emerging ML and IoT efforts for EEWS. Fifth, it proposes a generic EEWS architecture based on IoT
and ML. Finally, the paper addresses the application of ML for earthquake parameters’ observations
leading to an efficient EEWS.

Keywords: machine learning; Internet of Things; earthquake early warning system; smart city
management; disaster management

1. Introduction

Recently, several classical and modern technologies have been significantly involved
in early warning systems (EWS) [1,2]. Accordingly, efficient integration between the dif-
ferent sciences is desired to serve such important systems. Generally speaking, in the
field of seismology, the exerted efforts in risk mitigation, seismic hazard assessment, site
specification parameter determination, etc. can contribute in this regard [3–5]. Establishing
an efficient earthquake EWS has many concerns that are affected by the day-to-day chal-
lenges of earthquake disasters such as the environment type and earthquake parameter
observation [6,7].

From the point of view of modern technology, many research attempts have been made
to mitigate earthquakes consequences using satellite systems, the Internet of Things (IoT),
radio-frequency identification, software-defined network (SDN), 5G, network functions
virtualization (NFV), data networks, and other technologies [8–12]. Moreover, using robots
along with IoT can represent a remarkable transition in this regard. A unique integrated
system called robot-event that can perform automatic inspection and emergency reactions
in the case of a large earthquake was proposed by [13]. The wireless communications
technology included in the home’s seismic warning receiving equipment will send a
message to the robot as soon as it detects an alarm. The robot will next start inspecting
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the inside space using real-time picture tracking and identification. It will travel toward
any fallen humans it finds and controls their motions using the robot operating system
monitoring interface. The robot is intended to function in a home that has had tolerable
damage but is still structurally sound, where furniture may be falling and may endanger
the people. The purpose of the indoor experiment was to confirm that the robot system and
operation were as intended. The smart robot was developed to work with an intelligent
earthquake EWS.

Furthermore, social media played a minor influence in earthquake catastrophe risk
mitigation. In [14], the authors proposed employing complete solutions that combined
the force of social media with classical ways to mitigate catastrophe repercussions. In the
literature context, the research efforts did not stop with remote sensing applications enabled
by satellite communication systems [15,16] but also included SDN and NFV, which included
IoT-based gateways and Micro-Electro-Mechanical systems (MEMS) nodes [17–20]. That
work attempted to assist large-scale domains whose infrastructures had been partially
or completely destroyed. Virtualization may also help with catastrophe risk mitigation
as a pivot. Such networks need to efficiently preserve the nodes’ lifetime, as studied
in [21]. In [22], the authors depicted a disastrous scenario illustrating an EWS for a safe
plan of evacuation against catastrophe risks by integrating a cloud system-based IoT and
heterogeneous network. In the same regard, merging IoT and modern communication
technologies and methodologies can also play a key role in smooth and secured data
transmission [23–27].

All of these efforts are presented in conjunction with classic earthquake detection and
research techniques, as well as fault rupture nature differentiating methodologies, which
have been widely investigated in the literature [28]. In [29], a local similarity earthquake
detection method based on the notion of the nearest neighbor methodology was suggested
for use in assessing the received signal consistency between the studied nearest neighbors
among the targeted stations and their closest neighbors. Moreover, [30,31] concentrated
on estimating the amplitude of the earthquake from a few early seconds rather than the
entire rupture. Meanwhile, the time limitation still necessitates further efforts and research,
calculating the earthquake parameters using conventional means takes a lengthy time [32].
The depth and size of an earthquake occurrence may be accurately predicted, as studied
in [33]. That model was built on a graph CNN with batch normalization and attention
mechanism approaches, for any number of seismic sensors in any location. The performance
of four non-linear machine learning models—Random Forest, Gradient Boosting, SVMs,
and K-Nearest Neighbors—as well as linear least square regression (LSR) was examined
by [34]. They also looked at how well the models calibrated for one region might be applied
to another.

The flowing earthquake waves and the complex Earth structure keep the door open
for adjustable and intelligent solutions in the study. Modern technology can undoubtedly
help to mitigate the earthquake calamity and its implications in this area. ML, for example,
is one of the latest technologies that play an important role in tackling complicated issues
that lack a specific mathematical method [35]. ML is also a valuable technique for data
mining and reassembling missing regular or irregular data. ML algorithms have been
suggested in [36,37] to estimate the peak particle velocity (PPV) and to discriminate the
quarry blasts. ML has also been used to predict peak ground acceleration and its effect
on urban planning [38]. Moreover, microseismic data are among the desired issues that
still need more research efforts. In [39], it was suggested to use ML to classify the signal
and noise in microseismic data from Pohang, South Korea. While hydraulic stimulation
was being carried out, the monitoring system of the borehole station PHBS8 in Yongcheon-
ri, Pohang area, for the first time collected distinctive microseismic data. With suitable
preprocessing, the acquired data were used as training and test sets for the supervised as
well as unsupervised learning algorithms random forest and convolutional neural network
besides K-medoids clustering along with fast Fourier transform.
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Due to the high scalability of IoT networks and the interconnection of different ap-
plications, it has become an inevitable pivot between independent entities such as the
ones involved in earthquake early-warning system (EEWS). Moreover, ML can be used
for analyzing different data formats and solving complex problems. Accordingly, em-
ploying an intelligent system relying on IoT systems in monitoring and ML for efficient
data analysis can be a reliable and adaptive solution for EEWS. To achieve such a robust
integrated system, several aspects should be accurately investigated such as the IoT devices,
environment type, data sources, and ML models. Moreover, the effectiveness of the utilized
model is always questionable. Therefore, the validation parameters and their metrics are
case-dependent. Table 1 lists the utilized abbreviations throughout the paper.

Table 1. List of abbreviations.

Abbreviation Description Abbreviation Description

EEWS Earthquake Early Warning
System LSVM Linear Support Vector

Machine

ML Machine Learning GNB Gaussian Naive Bayes

IoT Internet of Things AB Adaboost

SDN Software Defined Networking GB Gradient Boosting

NFV Network Functions
Virtualization LGB Light Gradient Boosting

MEMS Micro-Electro-Mechanical
Systems XGB Extreme Gradient Boosting

CNN Convolutional Neural
Network DT Decision Tree

RF Random Forest ET Extra Trees

SVM Support Vector Machine ROC Receiver Operating
Characteristic

SVR Support Vector Regression VEO Volcano Event Ontology

KNN K-Nearest Neighboring IRIS Incorporated Research
Institutions for Seismology

LSR Least Square Regression STEAD Stanford Earthquake Dataset

PPV Peak Particle Velocity MSE Mean Square Error

NIED
National Research Institute of

Earth Science and Disaster
Prevention

Std Standard Division

AE Autoencoder UAV Unmanned Aerial Vehicle

FL Federated Learning NOAA National Geophysical Data
Center

PGA Peak Ground Acceleration JMA Japan Meteorological Agency

DMSEEW Distributed Multi-Sensor
Earthquake Early Warning GSI Geological Survey of India

GPS Global Positioning System USGS United States Geological
Survey

LR Linear Regression ANN Artificial Neural Network

LDA Linear Discriminant Analysis CRNN Convolutional-recurrent
neural network

QDA Quadratic Discriminant
Analysis MLP Multilayer perceptron
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In the literature context, the exerted efforts only focused on a general overview for
the integration of different technologies such as IoT, ML, etc. for EEWS [6,11,20,40,41].
Such efforts concentrated on seismic alert systems. Unlike previous work, we propose
a comprehensive paradigm for an effective EEWS throughout two phases. The process
involves two stages. The ML models are used in the first stage, which is the pre-disaster
phase, to identify the beginning of the primary wave. For risk mitigation, such an EEWS
is useful for fast switching off to nuclear plants, electricity generators, etc. Following the
disaster presence, the second phase starts to alleviate the earthquake consequences. This
system efficiently integrates ML and IoT supported by an informative taxonomy to achieve
a practical robust EEWS.

To the best of our knowledge, the introduced taxonomy of the integrated system based
on ML and IoT has not been considered in the literature. More particularly, in this paper, we
investigate the essential roles of ML and IoT as key technologies to attain an effective EEWS
in smart cities. More particularly, preserving human lives in smart cities against earthquake
disasters cannot be achieved without a reliable EEWS. In this regard, we have presented
a general overview of the IoT systems showing their system framework and statistical
forecasting of IoT usage. Afterward, we generally classified the ML models into linear and
non-linear approaches as well as the evaluation metrics of the main ML models developed
for seismology. Then, we present the exerted efforts of the IoT and ML integration for
EEWS supported by a comprehensive taxonomy concerning the ML models, IoT devices,
environment type, data source, measured parameters, and validation metric. Moreover,
we portray a general architecture using IoT that integrates the potential administrations in
case of a disaster.

The major contributions of the paper highlighting the innovation points are as follows.

• We shed light on the desirability of the EEWS for smart cities.
• As IoT and ML are among the key technologies involved in the EEWS, we highlight

the development of IoT usage including the general IoT system framework and
its components.

• The ML models are generally classified into linear and non-linear approaches.
• The main evaluation metrics of ML models dedicated to seismology are addressed.
• A thorough taxonomy of ML models, IoT devices, environment type, data source,

measured parameter, and validation metric is presented to demonstrate the efforts
made to integrate IoT and ML for EEWS.

• Finally, we illustrate a general IoT architecture that combines the potential disas-
ter administrations.

The rest of the paper is organized as follows. Section 2 portrays an overview of
IoT systems. Section 3 presents an ML taxonomy. Section 4 addresses the commonly
involved metrics used to evaluate the ML models. The integration of IoT and ML for
EEWS is illustrated in Section 5. Then, a general EEWS is presented in Section 6. Section 7
introduces open applications of ML in seismology to the stakeholders, and finally, the paper
is concluded in Section 8.

2. Internet of Things (IoT) Systems

IoT is becoming more extensively embraced globally as a new technology. Table 2
shows the growth of smart technology according to Gartner research [42]. A network of
connected embedded items or devices with identifiers that can communicate using a stan-
dard communication protocol without human intervention is referred to as an IoT [43–46].
According to reports, there are already more internet-connected devices than people on the
planet, and these IoT devices serve as the foundation for smart cities [47–49]. As demon-
strated, there will be a significant number of smart residences and commercial structures
where smart power and water management are crucial requirements to be addressed. From
9.7 billion IoT devices in 2020 to more than 29 billion IoT devices in 2030, the number of
IoT devices is expected to nearly treble [42]. China will have almost 5 billion consumer
IoT devices by 2030, making it the country with the most of them. Consumer markets and
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other business verticals both employ IoT devices, with the consumer market expected to
account for over 60% of all IoT-connected devices by 2020. Over the following ten years, it
is expected that this share will remain at this level.

Table 2. Number of Internet of Things (IoT) connected devices worldwide from 2019 to 2021, with
forecasts from 2022 to 2030. These statistics are extracted from [42].

Year 2019 2020 2021 2022 * 2023 * 2024 * 2025 * 2026 * 2027 * 2028 * 2029 * 2030 *

Connected devices
in billions 8.6 9.7 11.3 13.1 15.1 17.1 19.1 21.1 23.1 25.2 27.3 29.4

* Refers to statistical forecasting.

Electricity, gas, steam, air conditioning, water supply, waste management, retail and
wholesale, transportation and storage, and government are major industry verticals with
more than 100 million linked IoT devices at this time [50–52]. By 2030, there will be more
than eight billion IoT devices in use across all industry verticals. Consumer internet and
media devices such as smartphones, where the number of IoT devices is expected to
increase to more than 17 billion by 2030, represent the most significant use case for IoT
devices in the consumer market. By 2030, linked (autonomous) vehicles, IT infrastructure,
asset tracking and monitoring, and smart grid will all have more than one billion IoT
devices in use [53–55].

According to accepted standards [56–60], the following steps should be taken while
setting up an IoT system:

• The device with the data-gathering capability of the environment (including the
identification address of the sensor).

• A tool for gathering and analyzing data so that knowledge can be drawn from it.
• Making decisions and sending information to the required hubs. Big data analytics

and actuators are utilized for the same purposes.

The general structure of an IoT solution is realized based on the research conducted
on the various IoT systems. A typical IoT system’s structure or architecture is shown in
Figure 1. A sensor network that monitors environmental changes makes up an IoT system.
Depending on the desired distance and data speed, these measured data must be sent to a
central or decentralized system via connectivity such as 3G, Bluetooth, Zigbee, etc. The
sensor system also requires a consistent power source. The power capacity mostly depends
on the connectivity, as systems such as 3G use more power than Bluetooth; therefore, this
should be taken into consideration when selecting connectivity. Additionally, care must
be taken with the hardware and connectivity’s security aspects. The primary requirement
for an IoT system is that the solution is usable by everyone, not just a specialist. The
data received in the cloud system are analyzed or stored in order to find patterns and to
extrapolate knowledge. Data visualization can be carried out to make it simpler for the
user to grasp, and alert systems can be used to send the right kind of warning.

Application/Alert 

System

IoT Sensor

Sensors or 

Devices

Mobile Network

Mobile Wifi

Router

Rest API

Service API

Service 

Generator

Figure 1. IoT system framework.
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3. Machine Learning Taxonomy

Ordinarily, a human is required to investigate data and to determine an object’s
classification. Using appropriate ML algorithms, the goal is to make this operation as
automated as possible. In this section, we categorize the main developed ML algorithms
in the literature. Following is a brief explanation of each method of operation. To put
it another way, we create a categorization of the most frequent linear and nonlinear ML
approaches used in the literature, as depicted in Figure 2. It is worth mentioning that linear
ML algorithms assume a linear relationship between the features and the target variable.

Machine Learning Taxonomy

Logistic Regression (LR)

Linear Discriminant Analysis 

(LDA)

Quadratic Discriminant Analysis 

(QDA)

Ridge Classifier

Naive Bayes (NB)

Support Vector Machine (SVM) 

GaussianNB (GNB)

Random Forest Classifier(RF)

K-nearest Neighbors (KNN)

Catboost (CB)

Extra Tree Classifier (ET)

Decision Tree Classifier (DT)

Extreme Gradient Boosting 

Classifier(EGB) 

Adaboost (AB)

Light Gradient Boosting 

Classifier(LGB) 

Gradient Boosting Classifier(GB) 

Linear Non-linear

Figure 2. ML taxonomy.

3.1. Linear Approaches
3.1.1. Logistic Regression

In the statistical study of a dataset containing numerous independent variables, logistic
regression (LR) is used to arrive at a binary conclusion. LR approaches the likelihood
feature classes (K) to fit data across a logit function that yields a binary output ∈ {0, 1}.
Multinomial LR is used to classify situations with more than two outcomes. The initial
step is to categorize the inputs as either class 0 or class 1. The probability tends to class
1 is addressed by the LR. The probabilities are then classified using a logit function to
discriminate the components into the two targets ∈ {0, 1}. Following that, LR establishes a
distinction level for values ∈ [0, 1] [61].

3.1.2. Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA)

Linear Discriminant Analysis (LDA) was created to address many challenges that the
LR faces. The LR is not suited for parameter assessment when the classes are sufficiently
divided. The LDA model, on the other hand, is more suitable than the LR when a short
sample length is used and each class contains a normal distribution of predictors. Before
using the LDA, it is necessary to consider a hypothesis for the processed data where the
normal distribution is used for each predictor. However, when it is easy to describe the data
(higher or lower than a linear hypothesis), the LDA may be insufficient. In these instances,
the Quadratic Discriminant Analysis (QDA), which relies on a non-linear assumption, is
also suitable [62].

3.1.3. Linear Support Vector Machine (SVM)

The SVM aims to discover an ideal hyperplane taking into account K features. In order
to obtain the optimum intended hyperplane, the input data features are addressed for a
K-dimension space. The hyperplane can be realized if the distances among the data points
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are maximized. For depicting the data points close to the hyperplane besides influencing
the hyperplane behavior, SVMs can be utilized. Moreover, another enhanced version of
SVM, namely linear SVM (LSVM), was proposed to offer attributes between [−1, 1], which
is sent to the output of a linear function like the LR. It is important to note that the use of the
SVM stabilizes boundary maximization and boundary loss depending on a cost function
regularization parameter. The aforementioned process is considered to aim at maximizing
the boundary among the hyperplane and data points [63,64].

3.1.4. Ridge

It is commonly used for the regression problem, mapping label data in the range of
[−1, 1]. As a result, it employs a regression mindset to tackle the problem. The highest
prediction value is translated to the target class after that, although in the event of multiclass
data, multi-output regression is used [65,66].

3.1.5. Naive Bayes (NB)

The NB is broadly nonlinear. The NB classifier in contrast is handled as a linear
approach if the likelihood factors rely on exponential sets. A Gaussian paradigm is a
variant of the NB method (GNB) that is used in the situation of continuous value features.
Specifically, the features are expected to follow a Gaussian distribution supervised by [67].
The GNB is a likelihood classification approach. The likelihood is given by the following:

p(d = F|C) = 1√
2πσ2

× e−
(F−µ)2

2σ2 (1)

where the continuous data input is represented by d, the probability density is denoted as
F , the class is constituted by C , the variance is represented by σ, and the mean is µ.

3.2. Non-Linear Approaches
3.2.1. AdaBoost (AB)

The AB uses adjustable boosting to stratify successive soft classifiers to improve
datasets by aggregating them into a stronger discriminator relying on the majority of a
weighted vote. The AB method gives higher weights to items that are difficult to dis-
criminate and lower weights to those that are simple to classify. This approach starts the
censorship weights [68] in the first stage. Then, the approach is fitted based on the weights,
and the error rate is calculated, after which another weight is given to the approach to
discriminate the classifier’s conclusion. The new discriminator is then compared to the
previous classifier to see if the new tree can make a better prediction. As a result, the
resulting model is a hybrid of the two trees. This technique is repeated indefinitely for
specified epochs [69].

3.2.2. Gradient Boosting (GB), Light Gradient Boosting (LGB), and Extreme Gradient
Boosting (XGB)

To begin, the GB converts soft discriminators to more robust ones. It uses a gradient to
determine the soft discriminators’ weaknesses. Furthermore, GB’s loss function employs
high-weight data points. As a result, GB allows for a common and stated cost function for
optimization. Accordingly, it is acceptable for discrimination [69]. The LGB is a modified
version of the GB. To put it another way, LGB is being developed as a more effective
distributed approach than GB [70]. The XGB is a more streamlined paradigm of the GB
that offers increased efficiency, versatility, and likelihood. It offers a fast accurate parallel
tree boosting [71]. Furthermore, using the apportionment of characteristics for leaf data
points, the XGB examines the probable loss for probable divisions to form a new division.
This strategy is employed to reduce the search span for prospective feature divisions. For
optimal tuning, this approach uses a large number of hyper-parameters.
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3.2.3. Random Forest (RF), Decision Tree (DT), and Extra Trees (ET)

To begin with, RF is one of the ensemble approaches based on the tree notion. It is
made up of parallel learners utilized to reduce prejudice and variation at the same time [72].
In general, RF is used in classification issues as a probabilistic estimator:

D̂(v) =
1
T

T

∑
j=1

Rj(v), (2)

where v expresses the input vector, T is the trees’ number, and Ri(x) denotes regression
tree (jth).

The ET approach is a variant of the RF, with a lower likelihood of overfitting. It
can select the best features from the input data at random to help the investigators attain
efficient results [73]. The DT approach is excellent for both discrimination and regression
issues and is capable of splitting large problems into several simpler ones in order to
facilitate solution fulfillment [74,75].

3.2.4. K-Nearest Neighbors (KNN)

The KNN mechanism is a discrimination approach that relies on the decision-boundary
for classifying an input. Its strategy is based on the majority of the nearest neighbors’
class [76]. Both The involved neighbors set and the distance factor of the nearest neighbors
are configurable hyperparameters for this algorithm. Due to KNN being vulnerable to
excessive dependency on noise or outliers, the smallest KNN is attained at k = 1. Further-
more, KNN variations can evaluate the training-set votes based on the cosine analogy to
the input.

3.2.5. CatBoost (CB)

The CB is based on insensible trees that are considered a depth-first expansion. In
detail, CB employs a vectorized tree impersonation, with each level employing a binary
splitting approach. As a result, it yields a fast convergence. Conversely, CB is not rec-
ommended for use with low false-positive rates, according to [77]. The following section
discusses the metrics involved in evaluating common ML models focusing on the ones
utilized in seismology.

4. Evaluation Metrics of ML Models

In the literature context, several metrics can be used to evaluate the model performance.
The commonly known one is the accuracy score which is calculated by the ratio of the
correct predictions to the total number of estimations:

Accuracy =
∑N

j=1 I(ŷj = yj)

N
(3)

where N expresses the total number of estimators, ŷj is the predicted target, the true label
is yj, and I denotes the indicator function. It is worth mentioning that the predicted labels
fully match the true ones when the optimal score of accuracy is 1. This metric has been
widely used in seismology such as in [78,79]. The authors have utilized their models
for efficient acceleration data observation and for determining its quality by computing
the noise levels. Moreover, the metric has been employed for evaluating the model of
earthquake detection. However, this metric cannot handle the class imbalance problem.

A different evaluation metric is the Cohen Kappa score (κ), which relies on random
predictions. The κ determines how well the discriminator precisely acts, where its optimum
score is 1. This score is derived by the following [80]:

κ =
TA− EA
1− EA

. (4)
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where TA is the true accuracy and EA is the estimated accuracy. This metric has been used
for ensuring the discrimination efficiency of earthquakes and quarry blasts [1], but the
expectation of its values is difficult.

In addition, discrimination evaluation can be measured by precision and recall, and
F1-score factors, which are given by the following:

Precision =
TP

TP + FP
, (5)

Recall =
TP

TP + FN
, (6)

F1-score = 2×
(

Precision× Recall
Precision + Recall

)
, (7)

where the true positive decision is represented by TP, the false positive decision is repre-
sented by FP, while a false negative decision is denoted by FN. In many cases of measuring
the models’ accuracy, the F1-score has been adopted [81–83]. These metrics have been em-
ployed for evaluating models of differentiation between earthquakes and artificial seismic
sources and for identifying exposure of the urban area to certain seismic hazards. However,
it does not consider the true negatives.

Moreover, the receiver operating characteristic (ROC) curve represents another graphic
we can make with these prediction results. The graphs of the classifier’s targets ∈ {0, 1},
micro-average, and macro-average indicate the relationship between the TP rate and
the FP rate. The accuracy of the classifier improves as the TP rate approaches 1. The
classifier efficiency is determined by estimating the label targets as the percentage of
samples varies by charting the cumulative profit of the label objectives relating to the
sample percentage [84]. Indeed, ROC has proved beneficial in measuring earthquakes
compared to quarry blast discrimination model effectiveness [37], earthquake detection,
and noise discrimination. However, in ROC, the FP and FN analyses have different
misclassification values.

Moreover, R2, root-mean-square error (RMSE), and MSE are used for models’ eval-
uation. First, in statistics, the determination coefficient, denoted by R2 and pronounced
“R squared”, is the variation proportion in the dependent variable predicted from the
independent variable(s). This scoring value can be computed by the following:

R2 = 1− RSS
TSS

, (8)

where the sum of squares of residuals is represented by RSS and the total sum of squares is
denoted as TSS, which can be given by the following:

RSS =
z

∑
i=1

(
yi − f (xi)

)2, (9)

TSS =
z

∑
i=1

(
yi − ŷ

)2, (10)

where the number of observations is denoted as z, the ith value to be predicted is represented
by yi, the predicted value is f (xi), and the sample mean value is ŷ.

Second, the RMSE/MSE is the most commonly utilized loss function measure in the
assessment process. The MSE can be given by the following:

MSE =
1
N
||VT −VP||, (11)
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where the set of true values is denoted as VT , the Euclidean norm is represented by ||.||,
and VP represents the predicted values set that can be given as follows:

VP = f (X; θ), (12)

where the parameters that contain the sets of weights and bias values represented by W
and b, respectively, are represented by θ. Additionally, the probability density function of
the predicted values can be given by the following:

f (v) =
1√

2πσ2
e−

(v−µ)2

2σ2 , v ∈ V, (13)

where the test set used for the prediction process is denoted as V. R2, MSE, and RMSE,
have been utilized for several applications in seismology such as PPV estimation, location,
and magnitude detection and prediction, etc. [31,36]. On the other hand, they have some
drawbacks such as the inability to calculate predictive error and the high probability of
having outliers.

5. IoT-ML Integration for EEWS

This section presents the significant roles of both IoT and ML in EEWS. Furthermore,
it investigates previous work that aimed at predicting the earthquake parameters via ML
models. Moreover, these models have been integrated with IoT technology to serve EEWS
in a reliable manner. Indeed, the integration of IoT and ML have proved beneficial for
EEWS enhancements in both pre-disaster and post disaster management.

In [85], mobile computing, remote sensing, SVM, and KNN ML models have all been
employed to alleviate the effects of earthquake disasters. Entity categories, geographical
linkages, and entity names serve as input features to the ML models used in this model,
which is assessed using the accuracy measure. In [78], the authors proposed a seismic
detection system relying on deep learning, namely CrowdQuake, to utilize a dense IoT
network for analyzing the big deal of observed acceleration data via multi-head convolution
neural network. The IoT network employed the MEMS nodes. The model is examined by
evaluating the noise level in the signals as well as the accuracy, and precision-recall. In that
work, the data were collected from the National Research Institute of Earth Science and
Disaster Prevention (NIED). The authors mentioned that the developed model could deal
handle data sent from 8000 IoT sensors and only a few seconds were needed to detect an
earthquake. In [79], a robust EEWS has been developed based on real-time alerts supported
by an IoT network. The network adopted the MEMS accelerometers with Arduino Cortex
M4 microcontroller. That system employed ML for earthquake detection accuracy as well as
detection latency. That model relied on locally collected acceleration data via the deployed
MEMS accelerometer nodes.

In [86], the IoT acceleration nodes have been developed to detect earthquakes. In
that work, there are two methods for using such devices as seismic sensors: a standalone
method or a client-server method. The client-server method is more precise than the
stand-alone method, but it necessitates high-performance servers as well as network
infrastructures. This handles the data acceleration gathered from several client machines.
Simple earthquake detection paradigms can be readily considered in a standalone way on
less capable mobile nodes, but there exists a chance of false warnings. This limitation is
overcome via a cooperative technique that makes use of several adjacent mobile phones
to detect an earthquake, improving the earthquake detection capability of the standalone
solution without system and network infrastructures. The nearby cellphones build a seismic
network to jointly detect earthquakes, and they then watch for any shaking brought on by
human activity, mechanical vibrations, earthquakes, etc. Using an earthquake detection
method relying on a key neural network, a smartphone that detects an earthquake-like
motion communicates the detection result to other cellphones nearby in a multi-hop fashion.
Each smartphone involved in the seismic network undertakes a decision-making operation
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after receiving the detection data from adjacent smartphones, reports an earthquake, and
then initiates an alarm.

In [87], the geological landslide events have been monitored by exploiting a predictive
model employing both IoT devices and an ML scheme. Data from numerous geotechnical
factors, such as soil moisture, soil shear strength, rain intensity, terrain slope, etc., were used
to train the prediction model. A collection of sensors makes up the hardware, which collects
the necessary soil and terrain characteristics in real-time. The authors in [88] suggest a
compute offloading system design for Internet-connected drones. The performance of the
edge computing technique vs. the cloud compute offloading approach for deep learning
applications (CNN) in the context of UAVs is then assessed through a thorough experimen-
tal analysis. The authors specifically conduct an experimental investigation of the trade-off
between the communication cost and the computation of the two possible methodologies.

For an instant discovery of earthquake magnitude and position after 3 s from the start
of the P-wave, a deep learning paradigm based on integrating an autoencoder (AE) and a
convolutional neural network (CNN) was proposed in [31]. The authors thus call it 3 s AE
and CNN (3S-AE-CNN). Three stations from the Japanese Hi-net seismic network monitor
the used data set. The approach has been practiced on 12,200 events (109.80 thousand 3 s
three-component seismic windows). The model makes it easier to extract the important
characteristics of waveforms, which results in a reliable assessment of the earthquake
parameters. The suggested model’s magnitude, latitude, and longitude predictions are
accurate to within 0.000028, 0.0000033, and 0.0001 degrees, respectively. The suggested
3S-AE-CNN model quickly transmits the earthquake’s characteristics to a centralized IoT
system, which then instructs the concerned organization to take the appropriate action.

A brand-new framework for predicting earthquakes based on federated learning
(FL) has been released [89]. The suggested FL framework beat previously created ML-
based earthquake prediction models in terms of efficiency, dependability, and accuracy.
We have investigated three different local datasets to build multiple ML-based local data
models. These local data models have been integrated using the FedQuake algorithm on
the central FL server via an IoT gateway to create global data models. That model analyzed
multidimensional data over 100 km radial area aside Western Himalayas achieving an
accuracy of 88%. In [81], it has been suggested to use an IoT-based warning system with a
machine learning classification algorithm to anticipate tsunamis. The model was trained
using historical tsunami data drawn from records dating back to 2100 BC. Based on the
dataset’s earthquake parameters, that model has been trained based on location, depth,
and magnitude, reaching an accuracy of 95%.

A deep learning algorithm that can find P-waves in noisy situations has been devel-
oped by [82]. The model exploited the MEMS nodes for events observation. The model
produces the likelihood of discovery before the onset of strong shocks. That model could
achieve an accuracy of 98.8% of P-waves within 1.5–2.5 s from its arrival. To detect earth-
quakes locally, the authors in [90] suggested bringing computing to the edge and using
detector nodes that probe the environment and to analyze data from neighboring probes.
The method maintained all data locally while tolerating numerous node failures and partial
network disruption, boosting privacy. Indeed, twenty instances of the node code, each
operating on a separate machine and connected to ten arbitrary neighbors, were used to
construct the test network. In addition, every 10 s, the number of detectors was sampled.
By forecasting the likelihood that the onsite intensity would surpass a pre-trained PGA
threshold associated with harmful intensities in the MMI scale, a Multilayer Perceptron-
classifier was designed to deliver the severity-based warning in [83]. Seismic characteristics
that were recovered from the strong-motion signal following the commencement of the
p-wave were used in the classifier’s supervised learning process. The application of a
stratified differential feature-window resampling was adopted.

In [91], the authors presented a standalone earthquake detector with a low-cost acceler-
ation sensor and little computer power. To achieve this, they first evaluated the effectiveness
and precision of four distinct acceleration sensors, before choosing the best one. After
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that, they created an earthquake alarm system. They used a straightforward machine
learning approach to identify earthquakes that train an earthquake detection model using
daily vibrations, noise data collected from buildings, and previously recorded earthquakes.
The four acceleration sensors were further tested by the authors by recording two actual
earthquakes on a shake table. That work noted that the low-cost acceleration sensors can
monitor changes in acceleration brought on by different degrees of earthquakes ranging
from 0.02 g to 0.8 g in order to identify earthquakes. Accordingly, the authors utilized the
scaled data within that range.

Instead of using conventional seismic techniques, it made use of an ML methodology
with earthquake characteristics [92]. The detection problem was first divided into two
groups by the authors: static environments and dynamic environments. Following an
experimental evaluation of several features, they recommend the best ML model and
features for the static environment in order to address the problem of noisy components
and to identify earthquakes in real-time with a lower rate of false alarms. That model has
been realized using 385 earthquake events with magnitudes ranging from 4 to 8.

To identify medium and big earthquakes, the authors in [93] presented the Distributed
Multi-Sensor Earthquake Early Warning (DMSEEW) system, a cutting-edge ML-based
method that incorporates data from both types of sensors (GPS stations and seismometers).
The foundation of DMSEEW is a novel stacking ensemble approach that has been tested
on a real-world dataset and verified by geoscientists. The system was developed using
a geographically dispersed infrastructure, guaranteeing fast computing and resilience to
partial infrastructure outages. More particularly, that systems integrated GPS data with
seismic data to improve the earthquake detection quality leading to an effective EEWS.

To gather, interpret, and store seismic data into a knowledge base, the authors in [94]
presented an IoT-oriented system. A seismic domain ontology dubbed Volcano Event
Ontology (VEO) intends to aggregate seismic signals gathered by sensors for seismic event
identification. The well-known SSN/SOSA ontology, which is used to represent systems of
sensors, actuators, and observations, served as the foundation for the ontology’s construc-
tion. Monitoring networks at Mt. Vesuvius (Naples, Italy) and Colima volcano (Mexico)
have gathered seismic data, which has been aggregated in the ontology. Additionally, a
classification module analyzed the seismic data to identify various seismic occurrences
(such as volcano-tectonic and long-period earthquakes, underwater explosions, and quarry
blasts), after which the information was saved in the knowledge base. The data collection
was created by gathering and analyzing seismic data from the volcanoes Colima and Vesu-
vius. The dataset was composed of 4008 signals in SAC format. The model achieved 93%
accuracy examined by F1-score.

Despite extensive efforts exerted in the state-of-the-art methods, an intelligent, reliable,
and adaptable solution is strictly desired due to the vulnerability of the targeted problem,
and the direct effect on human life. Here, we shed light on the main research explorations in
this regard. Table 3 summarizes the main efforts carried out using IoT and Ml for the EEWS.

Table 3. Summary of IoT and ML main efforts for EEWS.

Ref. ML
Model

IoT
Device Environment Dataset

Type
Data

Source
Measured
Parameter

Validation
Metric

Pros of
Used ML

Model

Cons of
Used ML

Model

[78]
Multi-
head
CNN

MEMS Under
ground

Acceleration
data NIED Acceleration,

SNR

Accuracy,
and

precision-
recall

Very high
accuracy
in image
recogni-

tion

Do not
encode the

position
and orien-
tation of

object
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Table 3. Cont.

Ref. ML
Model

IoT
Device Environment Dataset

Type
Data

Source
Measured
Parameter

Validation
Metric

Pros of
Used ML

Model

Cons of
Used ML

Model

[79] Simple ML
model

Arduino
Cortex M4
microcon-

troller

Underground Acceleration
data

Local data
observed
by MEMS
accelerom-

eters

earthquake
detection
accuracy

and
detection
latency

Accuracy Easy to im-
plement

Poor per-
formance

on
non-linear
data, high
reliance on
proper pre-
sentation
of data

[85] SVM and
KNN

remote
sensing-
based
mobile

comput-
ing

Indoor GIS data

Open
Street Map,
Wikimapia,

and
Google
places

Affected
areas via

maps
Accuracy

For SVM:
Performs
well in

Higher di-
mension,

best
algorithm

when
classes are
separable.
For KNN:

No
Training
Period,

easy
Implemen-

tation

For SVM:
Slow, poor

perfor-
mance

with Over-
lapped
classes.

For KNN:
does not

work well
with large

dataset,
does not

work well
with high

dimen-
sionality

[86]
basic

neural
network

IoT accel-
eration
nodes

Indoor
non-line-
of-sight

Acceleration
data

Local dis-
tributed
smart-

phones

PGA and
human
activity

Accuracy,
precision-

recall,
F1

Easy to im-
plement

Poor per-
formance

on
non-linear
data, high
reliance on
proper pre-
sentation
of data

[87] SVR and
XGB

IoT soil
and

terrain
nodes

Underground

Soil
moisture,

shear
strength of

the soil,
severity of

the rain

GSI

Soil
moisture,
Soil shear
strength ,

rain
severity

Std and
accuracy

Outliers
have less
impact,

suited for
extreme

case
binary

classifica-
tion. For

XGB:
Effective

with large
data sets

Needs ap-
propriate
hyperpa-
rameters,
selecting

the appro-
priate
kernel

function
can be

tricky. For
XGB: Can

over-fit
with noisy

data
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Table 3. Cont.

Ref. ML
Model

IoT
Device Environment Dataset

Type
Data

Source
Measured
Parameter

Validation
Metric

Pros of
Used ML

Model

Cons of
Used ML

Model

[88] CNN
UAV-
based

IoT

Outdoor
line-of-
sight

Aerial
images

data

Local
drones

Received
frames/sec Throughput

Automatically
detects the
important
features

Lack of
ability to

be
spatially
invariant

to the
input data

[31] AU and
CNN Tmote Sky

Indoor
and

Outdoor

Seismic
velocity

data

JMA and
Hi-net

Location
and mag-

nitude

MSE and
Std

Weight
sharing

Lots of
training
data is

required

[89] FL IoT
gateway Underground Seismic

waveform

Local
datasets

and
regional
data [95]

Earthquake
predic-
tions

Accuracy,
precision
-recall, F1,

loss

Learn
many

models
simultane-

ously,
having

access to
various

data

Hard veri-
fication,
data and

model
privacy

[81] RF

Mobile
nodes-

based feed
processor

Over the
coastal
regions

Tsunamic
data NOAA

Location,
depth, and

magni-
tude

Confusion
matrix,

accuracy,
precision-

recall,
F1

No scaling
required

Extensive
computa-

tions

[82] CNN and
LSTM MEMS

Noisy
environ-
ments

Seismic
waveform STEAD P-wave

arrival

Accuracy,
precision-

recall,
F1

Low
weight

complex-
ity

Require a
lot of

resources
and time,

affected by
different
random

weight ini-
tialization

[90] CRNN Raspberry
Pi

Mesh
network

Seismic
waveform

Locally
observed

Local
earth-
quake

Accuracy
and

latency

Generate
better or
optimal
results

than either
CNN

High com-
plexity,

heterogen-
ity

[83] MLP
Strong
motion
nodes

Underground Acceleration
data NIED PGA

Precision-
recall,

F1

Solve
complex

non-linear
problems

High com-
putations

[91] Simple
ANN

Acceleration
sensors

(ADXL355,
LIS3DHH,
MPU9250,

and
MMA8452)

Underground Accelaration
data

NIED and
USGS PGA

Confusion
matrix,

accuracy,
precision-

recall,
F1

Can work
with in-

complete
knowl-
edge

Unexplained
behavior
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Table 3. Cont.

Ref. ML
Model

IoT
Device Environment Dataset

Type
Data

Source
Measured
Parameter

Validation
Metric

Pros of
Used ML

Model

Cons of
Used ML

Model

[92] Simple
ANN Smartphones

Static and
dynamic
environ-

ment

Acceleration
data

NIED and
USGS

Earthquake
data

Confusion
matrix,

accuracy,
precision-

recall,
F1

Having
fault

tolerance

Hardware
depen-
dence

[93]
KNN,

SVM, RF,
XGB

GPS
stations
and seis-

mometers

Underground

GPS and
Seismic
velocity

data

IRIS and
NIED

Earthquake
data

Precision-
recall

For RF:
High

accuracy,
can handle
linear and
non-linear

relation-
ships

Not easily
inter-

pretable

[94] CNN SSN/SOSA
ontology Underwater Volcanic

data Local data

Volcano-
Tectonic,

long-
period
earth-

quakes,
underwa-

ter
explo-

sions, and
quarry
blasts

Confusion
matrix,

accuracy

Very high
accuracy

Lots of
training
data is

required

6. General Architecture of EEWS Process via IoT and ML

The need for an EEWS is unavoidable to preserve human lives. The ability to quickly
determine the characteristics of an earthquake is critical in disaster management and
earthquake risk mitigation. To mitigate an earthquake disaster, these characteristics can be
sent using current technologies such as the IoT network, mobile network, global positioning
system (GPS), and social media.

Figure 3 shows an entire EEWS that involves several administrations contributing to
alleviating the earthquake disaster. Based on these administrations, the EEWS will have full
statistics about hospitals, railways, fire departments, ambulances, airports, etc. Indeed, this
proposed system integrates IoT systems, cloud systems, social networks, different utilities,
and cellular networks. The system works in two phases. The first is a pre-disaster stage
in which the ML models are involved to pinpoint the primary wave onset. This process is
very beneficial for risk mitigation such as fast switching off to nuclear plants, electricity
generators, etc. The second phase is after the disaster occurrence where the target is to
mitigate/reduce the consequences of the disaster. For example, using such an integrated
system facilitates accurate statistics about the afflicted people, buildings, utilities, and areas
affected by the disaster. Accordingly, an effective evacuation plan can be executed.

Such a system needs an adaptive and intelligent solution that is capable of resolving
complex problems in a short period. Among the span of the existing current methodologies,
ML can play a significant key role in those interconnected administrations involved in
achieving effective EWS. ML is a promising tool that does not be affected by the data type,
format, length, etc.
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Fire Departments

Hospitals

Stadiums

CM

CM

Ambulance

CM

CM

CM

CM CM CM

CM Gas Stations

Railways

Airports

Factories

Disaster Recovery 
System (Master)

CH

Monitoring Seismic 
Activities

Disaster Recovery 
System (Slave)

Cloud 
System

Mobile network

Social 
media

Figure 3. General diagram for a comprehensive EWS.

Indeed, the distributed entities presented in Figure 3 and utilized for achieving a
robust EEWS, are monitored as real-time applications. Therefore, data transfer back and
forth from these entities should be accurately analyzed and estimated. Hereafter, the ML
models are employed in this important role to pinpoint the current status of each entity and
to even estimate for a specific period. Afterward, those entities can be efficiently utilized
before, during, and after earthquake disasters. In other words, such a process can contribute
to earthquake disaster management, risk mitigation, and evacuation plans. Accordingly,
the better the ML model developed, the more effective EEWS. Figure 4 indicates the
interconnection between railways as a specific entity involved in the entire EEWS process
and the data analysis as well as the investigation conducted by ML via the IoT system. More
particularly, the seismic activity is observed and then transferred to the data processing
stage using an ML model along with the railway information of the disaster location via
the IoT system to perform the required analysis and to take the appropriate decision/(s) to
be sent back to the railway system for action.

IoT systemIoT systemIoT system

Monitoring Seismic 
Activities RailwaysRailways

EEWS alarm 

Disaster management

Risk mitigation

EEWS alarm 

Disaster management

Risk mitigation

EEWS alarm 

Disaster management

Risk mitigation

Data processed by ML models

Training, testing, 
and validation

Data processed by ML models

Training, testing, 
and validation

Cloud

IoT sensorIoT sensor

Figure 4. A sample of IoT-ML interconnection for EEWS.
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7. Applications of ML for Earthquake Waves

Due to the fast booming of ML and its reliability in solving complex problems, it
can provide an effective and adaptive solution for the following open areas of the earth-
quake field:

• Picking: this means accurately pinpointing the onset of the primary wave that precedes
the strong and destructive wave. In this regard, CNN, capsule network, and LSTM
have played significant roles, with sufficient accuracies of 98.6%, 97.64%, and 98.8%,
as presented in [82,96,97], respectively.

• Denoising: this denotes splitting the real events from the noise wave. Indeed, the
noise represents all types of waves except the ones generated from an earthquake.
In [98,99], the authors developed a deep denoiser using supervised AE models. The
models achieved an accuracy between 85.5 and 98.9%. Another model relied on CNN
for denoising by considering the signal-to-noise ratio (SNR) as an indicator of the
model performance [100].

• Noise and Microseismic Discrimination: this represents accurate classification between
the noise and the real events of very low magnitudes. In [101], an SVM model
succeeded in discriminating between noise and microseismic waves with an accuracy
of 92% for noise and 95% for microseismic waves.

• Clustering: this distinguishes areas based on the density of earthquakes, earthquakes
magnitudes, etc. In [2], the authors utilized affinity propagation methodology for area
clustering in which the SNR was employed to evaluate the model. Other efforts used
both deep AE and deep scattered network for the same target, as in [102,103].

• Magnitude Estimation: this means determining the observed event magnitude. It
is worth mentioning that calculating the magnitude of earthquakes can contribute
to the analysis and implications for active tectonic structures [104]. Indeed, AE,
CNN, RNN, and SVM proved beneficial in earthquake magnitude estimation. The
supervised models have been evaluated using MSE and standard division, as studied
in [31,105,106].

• Phase Detection: this provides information about the received signal component,
whether primary wave or secondary wave. Phase detection have been studied by
some researcher in the literature. In [107], the authors proposed a CNN model that
achieved an accuracy of 99.8%. Moreover, general software has been developed based
on deep learning, as in [108].

• Peak Ground Acceleration Estimation: this addresses the maximum acceleration that
could happen at a specific location. The PGA is an essential parameter that can be used
for building codes. In [109], an ensemble learning model was utilized for estimating
the PGA parameter, as the model was evaluated by ROC curves. Furthermore, the
same parameter was computed by gradient boost [110].

• Peak Particle Velocity: this reflects the maximum velocity of the moving particles of an
existing quarry blast. In this regard, many research efforts have been exerted relying
on different ML models such as DT, SVM, ANN, etc. The performance of these models
has reached valuable accuracy between 95 and 99.7% as studied in [36,111,112].

• Earthquakes and Quarry Blasts Discrimination: this denotes the classification between
the wave generated by an earthquake and the one generated by a quarry blast. This
critical application of ML in seismology has been properly investigated in the literature
context, as in [1,113,114]. These models have developed several models such as
XGB, CNN, ANN, etc., which achieved a discrimination accuracy range between
89 and 100%.

• Urban Planning Extension: ML can also play a significant role in estimating the
increase in population and the consequent desired urban extension. In [115], the
authors developed an ML model using multi-linear and nonlinear models for the
extent of the population and PGA estimation.
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8. Conclusions and Main Challenges

In this paper, various essential aspects of IoT-based EEWS relying on ML were pro-
vided to manage the earthquake disaster and to alleviate its consequences for preserving
human lives. More particularly, we started with a brief discussion on the IoT system that
plays a significant role in EEWS. Then, the survey portrayed a category of linear and non-
linear ML models and addressed the metrics utilized for evaluating these models, targeting
the ones involved in seismology. The paper also presented a taxonomy addressing the
significant ML and IoT potentials for EEWS. Moreover, a generic integrated system using
IoT was proposed in which ML can analyze different types of data formats observed by the
EEWS entities. Finally, for a reliable EEWS, the ML models should be efficiently trained on
an integration of different data types to be able to fit different areas of interest. Moreover,
the used ML models for observations of earthquake parameters should be estimated by
several evaluation metrics.

It is worth mentioning that EEWS based on IoT and ML would face various challenges,
where we focus on the main challenges as follows. Some constraints should be accurately
investigated such as data rate, energy efficiency, and high computational capabilities to fit
the ML intelligence. Moreover, the use of ML for seismology is challenging as no unified
model can be used for different geological areas. Last but not least, the high density of IoT
devices needs an evolution of ML models to handle the system complexity.
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