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Abstract: In this paper, we present a detailed analysis of the possibility of using unsupervised
machine learning techniques for reservoir interpretation based on the parameters obtained from
geophysical measurements that are related to the elastic properties of rocks. Four different clustering
algorithms were compared, including balanced iterative reducing and clustering using hierarchies,
the Gaussian mixture model, k-means, and spectral clustering. Measurements with different vertical
resolutions were used. The first set of input parameters was obtained from the walkaway VSP
survey. The second one was acquired in the well using a full-wave sonic tool. Apart from the study
of algorithms used for clustering, two data pre-processing paths were analyzed in the context of
matching the vertical resolution of both methods. The validation of the final results was carried
out using a lithological identification of the medium based on an analysis of the drill core. The
measurements were performed in Silurian rocks (claystone, mudstone, marly claystone) lying under
an overburdened Zechstein formation (salt and anhydrite). This formation is known for high
attenuating seismic signal properties. The presented study shows results from the first and only
multilevel walkaway VSP acquisition in Poland.

Keywords: machine learning; oil and gas; exploration; seismic; geophysics; well

1. Introduction

Currently, oil exploration requires a comprehensive analysis and the highest standards
both at the stage of data processing and at the stage of geophysical and reservoir inter-
pretation. The search for smaller and smaller oil and gas deposits, as well as increasing
environmental pressure, forces the optimization of acquisition techniques, which, in turn,
translates into an increased effort toward the next stages (data processing and geophysical
interpretation) of the subsurface identification process. The use of new data processing
techniques, including anisotropy analysis or dedicated processing techniques for data re-
processing, is becoming a new standard [1–3]. It has been proved that anisotropy analysis
is crucial even for static calculation [4,5], and also that structure-oriented processing can
give new, valuable information about deep layers [6]. The need for new techniques at the
stage of interpretation is also noticeable. Intensive research has been carried out in order to
find new solutions or develop existing solutions. One option is to use machine learning
(ML) and artificial intelligence (AI). Information from different profiling can show new,
valuable divisions of the rock complexes, which are hard to distinguish using the classical
approach. The oil and gas industry is entering a new era of digital transformation. The use
of ML and AI is a core foundation of this new path. Combining them with a dedicated
processing approach can be a game-changer for modern and future exploration, allowing
for reducing exploration costs and environmental hazards.
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ML is a powerful automatic computing tool based on numerical and logical operations
that is able to learn from examples or find hidden patterns in datasets [7,8]. Regarding the
most common and also basic principles, ML can be divided into supervised and unsu-
pervised learning. In the supervised one, the data are labeled and the prediction is made
based on input and output datasets. In other words, the output is known as a priori to
create a model, and then the model is used with the new input data for making predictions.
Unsupervised ML does not need labeled data and output datasets to make a model as
this type of learning is based only on the input dataset. Unsupervised learning is used
for labeling data. One example of unsupervised learning is clustering. There are many
clustering algorithms available in popular ML libraries of Python or R.

In this paper, we studied the use of unsupervised ML for clustering based on walka-
way VSP and sonic log data for improving reservoir interpretation. Data were collected
in Northern Poland as a part of a bigger project focused on shale gas exploration [9,10].
The walkaway VSP data were very noisy. The four different processing schemas were inves-
tigated to obtain the best possible results. In this paper, we used P-wave inclination angles
from a 4 km offset range obtained from data processed according to the flow published in [3].
The inclination angles are characterized by very small errors (in a window with a width
approximately equal to the wavelength). We also used anisotropy parameters—Alkhalifah
and Tsvankin’s anellipticity coefficient η [11] and Thomsen’s anisotropic coefficient δ [12]—
obtained from walkaway VSP measurements using the P-wave only inversion method
introduced by [13]. A detailed study of the calculation of these parameters can be found
in [9]. Besides walkaway VSP measurement-based parameters, we also used sonic log delay
times and the Poisson ratio with lithology identifier (calculated from sonic). Our motivation
was to check if the clustering based on measurements associated with the elastic properties
of rocks can be used in reservoir interpretation in the case of shale gas exploration. We
examined four different algorithms available in the scikit-learn library [14]. As the evalua-
tion of the clustering process is not a trivial task, we used the core lithology interpretation
for the results evaluation. However, this is not the only difficulty and unknown in these
studies. Besides clustering evaluation and cluster numbers setting, there is also a problem
associated with different scales of walkaway VSP and well-log measurements. We checked
both cases—downscaling (from a lower to higher resolution) VSP measurements (step
15 m) to a sonic-log resolution (0.1 m) and upscaling (from higher to lower resolution)
the sonic-log measurements to the walkaway VSP step. In the case of downscaling, the
distances between successive points are reduced, whereas, in the case of upscaling, these
distances are increased. Without detailed research, it is difficult to say which will bring
better results. On the one hand, a larger number of observations should have a positive
effect on the clustering process, but on the other hand, borehole profiling is characterized
by significant noise and requires smoothing in order not to introduce an excessive amount
of outliers.

The paper contains a brief description of the local geology (Section 2). In Section 3, a
detailed explanation of clustering algorithms, together with metrics that can help to decide
the number of clusters, is described. Section 4 consists of an explanation of processing
techniques and geophysical measurements used for feature dataset preparation. Addition-
ally, a discussion about the problem of combining the resolutions for sonic and borehole
seismic activity is presented. In Section 5, the well W-1 case study results are shown. An
interpretation of the clustering results is presented in Section 6 and then, in the final part
(Section 7), the paper is summarized and concluded.

2. Region Characterization

Presented data were acquired in 2016 in Poland as a part of a shale gas exploration
project called “Polish Technologies for Shale Gas”. Walkaway VSP data acquisition was
performed during very harsh weather conditions in November. The W-1 project was
located in the Northern Poland Kashubian Lake District [15]. It is also a part of the Eastern-
European Precambrian Platform. A more detailed description is the central-western part
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of the Baltic Syneclise, located at the eastern side of the Łeba elevation [16]. The terrain
morphology is mainly related to glacial processes. The young glacial nature of the moraine
plateau with frequent frontal hills (with an absolute height of nearly 160 m measured depth
from ground level (MDGL) as well as a relative height of approximately 30 m) and many
glacial gutters (often with lakes) is common in the studied area. The main river in this
region is the Wierzyca river, where numerous peat-boggy depressions are present [3]. On
the crystalline rocks, Permo-Mesozoic and Lower Paleozoic structural complexes occur.
Deposition starts with alluvial sediments (with alluvial fans) of the Żarnowiec formation
(Lower Paleozoic). Along with Lower and Middle Cambrian sediments, they are counted
as one big meso-sedimentary complex. The presence of Upper Cambrian rocks is very
rare as, in general, they are incredibly eroded. Ordovician and Silurian rock complexes
are placed directly on the Cambrian layers. Both hold many breaks initiated by changing
conditions between erosion and sedimentation periods. Zechstein’s formation of evap-
orites rocks is a part of the Upper Permian complex. These rocks are known for their
properties, which are a significant obstacle in the geophysical recognition of rocks lying
beneath them [9]. The Mesozoic series starts with Lower Triassic sediments of sandstone,
claystone, and mudstone. Carbonate intercalations often occur in this series. Directly over
these rocks, the Muschelkalk is present (Middle Triassic). It consists of dolomite, marl,
and limestone. Cretaceous deposits are located successively. Lower Cretaceous consists
of marly limestones and glauconite sandstones, whereas Upper Cretaceous consists of
marls. Miocene formations represent tertiary rock sediments (mostly marly clays and
sand silt). Quaternary rocks are exemplified by gravel sediments and glacial sand with
frequent pebbles [17]. In the W-1 survey region, the three main sealing complexes were
distinguished. Ludlow and Pridoli complexes are made of claystone and silt with an
extremely low permeability and porosity. The Zechstein sealing complex is very thick—in
some places, the thickness is over 400 m. This formation is built of anhydrite and salt with
a very high P-wave velocity (average 6000 m/s). The location of the W-1 well and the
velocity model used for the seismic depth migration is shown in Figure 1.

Figure 1. Location of W-1 well (blue rectangle) together with tectonic units and initial velocity model
used for seismic depth migration ([9] modified).

3. Unsupervised Machine Learning Methods

Clustering is an example of an unsupervised ML scheme relying on grouping datasets
on clusters based on the similarity between particular points. Clustering is one of the core
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features of ML [18], but also of AI [19], data mining [20], and even in compression [21].
There are many different clustering methods created for different purposes, including
memory optimization, consisting shapes, similarity measurement metrics, etc. [22]. In this
paper, four popular clustering methods were studied: balanced iterative reducing and
clustering using hierarchies (BIRCH), the Gaussian mixture model (GM), k-means, and the
spectral clustering (SPCL) method.

3.1. BIRCH Clustering

BIRCH is an unsupervised clustering method that is known not only for its suitability
for dealing with big datasets but also for its little sensitivity to noise in the data [23]. This
method can be easily scalable as the compressed representation of the input dataset is
utilized by using the clustering feature tree (CFT). Each clustering feature (CF) can be
linked with summarized statistics that can be easily and dynamically implemented with
the new data. Scalability is indisputability a feature that clearly separates this algorithm
from the other algorithms analyzed in this paper. In the multi-level process, the BIRCH
algorithm first accumulates input data into a tree structure whose size is significantly
reduced compared to the original data. The lean data representation from the first step is
used for clustering in the second step. The main contribution of BIRCH is a flexible logic
for aggregating the data so that an informative representation is retained even when the
size is substantially reduced [24].

• Step 1 First scan. In this step, the whole dataset examination is performed to create
the initial CFT.

• Step 2 Reorganization of the initial CFT if it is too long.
• Step 3 Adapted agglomerative global hierarchical clustering is performed to create

sub-clusters.
• Step 4 This is an optional step that allows for other scans to improve and redefine the

current structure.

Besides scalability and noise reduction advantages, the BIRCH also has disadvantages.
One of the main disadvantages is that BIRCH works fine with clusters with shapes close
to hyper-spherical as the radius is used for the clusters’ border regulations. The BIRCH
algorithm was an inspiration for many others, such as data bubbles, CluStream, two-step
clustering, and DenStream. In 2006, the BIRCH approach won the Time Award in the
SIGMOD test [24]. Undoubtedly, this approach, due to its easy scalability even with very
limited resources, may be a good option when multiple logs with a high vertical resolution
and sampling are considered for clustering.

3.2. Gaussian Mixture Model Clustering

Gaussian distribution, which is also called normal distribution, is the probability
distribution broadly used for scientific purposes when random continuous variable mod-
eling is considered. Starting from a very simple one-dimensional example, the Gaussian
distribution is defined according to Equation (1):

N (x|µ, σ2) =
1√

(2πσ2)
e−

(x−µ)2

2σ2 (1)

where x is a variable with a real value, µ is the simple mean of all observations, and σ2 is
variance. For the case where the mean is equal to 0 and variance is equal to 1, the symmetry
axis of the distribution is the vertical y-axis. For a more complex case, in D-dimensional
space, the Gaussian distribution for vector ~x is defined as in Equation (2):

N (~x|~µ, Σ) =
1√

(2π)D

1
|Σ| e

− (~x−~µ)T (~x−~µ)
2Σ (2)



Energies 2023, 16, 493 5 of 25

where Σ represents the covariance matrix (dimension D × D), ~µ is the mean vector (D-
dimensional), and |Σ| denotes the determinant of the covariance matrix. Although the
Gaussian distribution is one of the most often used for analytical purposes, due to its
symmetry, it is not suitable for multimodal data characterized by complex density regions
as it is extremely challenging to capture the frame of superposition of two or more Gaussians
with a single Gaussian distribution. To overcome this limitation, mixture distribution is
used. This probabilistic model was described by [25] and the study was expanded in the
following years [26,27]. The technique used for unsupervised machine learning clustering
is based on the probability model and is called the Gaussian mixture (GM) model. This
method is based on the expectation-maximization technique for the determination of
ellipsoidal clusters based on probability density estimates. Each superposition of the
k-Gaussian probability distributions, which is, in fact, the linear combination of these
distributions, can be described as p(~x) according to Equation (3):

p(~x) =
K

∑
k=1

πkN (~x|~µk, Σk) (3)

where ~µk is a mean of each Gaussian component in a mixture, Σk is its covariance, πk repre-
sents the mixing coefficient, and they sum up to 1 for normalized Gaussian components
of p(~x). When p(~x) ≥ 0, N(~x|~µk) ≥ 0 for all k and ∑K

k=1 πk = 1, mixing coefficients can be
described by probabilities and the margin density can be calculated using Equation (4):

p(~x) =
K

∑
k=1

p(k)p(~x|k) (4)

Considering N observations ~X = {x1, . . . , xN} that are identically distributed and
independent, the likelihood function is given by Equation (5):

ln p(~X|π, µ, Σ) =
N

∑
n=1

ln(
K

∑
k=1

πkN (~xn|~µk, Σk)) (5)

Indeed, the presented situation for mixed Gaussians is appreciably more complicated
than the situation for a single Gaussian distribution. However, the use of the natural
logarithm function in Equation (5) prevents statistical underflow for many numbers of
relatively small probabilities. A calculation of this likelihood has no form of analytical
solution, but, rather, it is an iterative optimization solution [28,29]. To overcome this
computation problem (for finding maximum likelihood models for latent variables) the
expectation-maximization algorithm can be used [30]. The typical EM algorithm after [31] is:

• Step 1 Initialization for µk, Σk, πk and evaluation of the initial likelihood.
• Step 2 This is the expectation step where the responsibilities are evaluated using the

parameters’ values from the previous step.
• Step 3 This is the maximization step where the processes of parameter re-estimation

are performed with the use of responsibilities from the expectation step.
• Step 4 Likelihood evaluation—if the convergence measure is satisfied, the algorithm

ends; if not, another loop starting from step 2 is performed until the criterion is
satisfied.

3.3. K-Means Clustering

K-means is a non-probabilistic approach based on a simple calculation of squared
Euclidean distance values [32]. For a given a priori number of clusters, the inner-cluster
distance between points is minimized, whereas the distances between points in different
clusters are maximized. Let us consider data points P1, . . . , PN in a D-dimensional space.
Our goal is to group them into a given M number of clusters. To measure the distance,
the D-dimensional vectors’ set ~vm for the range m = 1, ..., M needs to be set. These vectors
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are related to cluster centers. The k-means goal is to find data points and correspond
vector sets to them where the squared distance value is the smallest. The similarity E is the
Euclidean distance calculated according to Equation (6):

E =

√√√√ D

∑
k=1

(Pi,k − Pj,k)2, (6)

where i = 1, . . . , N and j = 1, . . . , N. Similar to the GM model, k-means also uses the
EM approach for assigning dataset points into particular clusters. The typical algorithm
after [31] is:

• Step 1 Random M centroid initialization.
• Step 2 This is the expectation step where the distance computation between each data

point and each centroid is calculated. Points are assigned to the closest cluster.
• Step 3 This is the maximization step where the mean for each cluster is calculated and

then the centroids are updated.
• Step 4 The number of iterations is checked to see if it is reached or if there is no

difference in cluster assignment. If it is reached, it is the end of the algorithm; if not,
step 2 is carried out.

K-means is one of the most popular clustering algorithms due to its easy implementa-
tion and very high performance [33]. However, there are also a couple of disadvantages.
The first is related to the clusters number that needs to be set a priori. It is often difficult to
set up optimal cluster numbers without knowledge of the data’s nature. Secondly, while
a particular data point is at a similar distance to more than one cluster, there is no option
to handle the problem of uncertainty. Thirdly, clusters could be very unsatisfactory if
non-linear decision boundaries are present in the dataset.

3.4. Spectral Clustering

This is a frequently used method of clustering with a solid theoretical foundation.
According to the study in [34], three main advantages of SPCL can be stated. The first
is related to the mentioned solid foundation based on the algebraic theory of spectral
graphs. The second advantage is associated with the possibility of the determination
of a very complex cluster’s structure. Finally, the third one is related to computation
complexity. The computation time for SPCL is polynomial. Opposite to k-means and GM,
SPCL can easily handle datasets with a non-convex structure without collapsing into the
local minimum or maximum [35]. In this type of clustering, there is no need to scan the
structure of the dataset globally, which can be an advantage in the case of parallelism [36].
As mentioned before, the basics of this clustering algorithm are algebraic spectral graph
theory. Clusters are created in a line with a graph partitioning process. First, the undirected
graph is created with all dataset points counted as a vertex. The similarity measure between
points is the weight of the edge linking the two vertexes. Typical SPCL algorithm after [37]:

• Step 1 Calculation of the similarity matrix S. An undirected, weighted graph is used as
the whole dataset representation. Each vertex represents data point K and the weighted
value M at the edge connection is used for the similarity measurement. The undirected
weighted graph U(K, M) is created according to the similarity measurement between
points (it is a graph partitioning problem). The adjacency matrix is used as graph
information representation.

• Step 2 Calculation of the diagonal matrix D. The similarity between each point and all
other points is represented by Dii = Si0 + Si1 + Si2 + · · ·+ Sii

• Step 3 Calculation of the non-normalized Laplace matrix L = D− S. Each row of the
matrix L contains information about both similarities between points and the sum of
all similarities. This allows for preserving information in the graph.

• Step 4 Eigenvalues calculation. In this step, the p-smallest eigenvectors of the Laplace
matrix are found and then the corresponding eigenvalues are calculated.
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• Step 5 Creation of orthogonal matrix O, D = OT LO using vectors obtained in previ-
ous step.

• Step 6 Performance of clustering over normalized row vectors obtained in the previous
step using k-means.

For SPCL, many different cut-off criteria were introduced to overcome the minimum
cut criterion limitation (only for a simple, convex distribution). Also currently in use are the
ratio-cut, max-min-cut, ratio-cut, multiway-normalized-cut, normalized-cut, and others [34].

3.5. Validation of the Number of Clusters

The estimation of the optimal number of clusters is neither easy nor unambiguous.
There are many different techniques used to specify the optimal value of a cluster based on
internal, external, or relative techniques [38].

3.5.1. Silhouette Coefficient

We used the silhouette coefficient (SC) Equation (7), which shows the similarity
between particular points within the particular cluster to the points in this cluster and how
much they differ from points in other clusters. The silhouette coefficient range is from −1
to 1, where −1 indicates the worst number of clusters, and 1 indicates the best number [39].
SC is calculated according to this formula [14]:

SC =
b− a

max(a, b)
(7)

where

SC—Silhouette coefficient;
a—The mean distance between the point and other points inside the cluster;
b—The distance between a point and the nearest cluster (to which this point does not
belong).

3.5.2. Davies–Bouldin Index

The Davies–Bouldin index (DB) is based on the similarity between clusters that are
supposed to have a data density that is decreasing with the distance from a vector char-
acteristic of the particular cluster. This method was described by Davies and Bouldin in
1979 [40]. A better result is obtained for clusters that are characterized by a lower dispersion
and greater distance between clusters. On the graph, the values that are closer to zero
represent the optimum number of clusters. It should be remembered that the index is
overstated for convex clusters compared to clusters characterized by a different structure,
and the use of the distance measure forces the limitation to the Euclidean space. The DB is
calculated using Equation (8):

DB =
1
k

k

∑
i=1

max
i 6=j

si + sj

dij
, i = 1, . . . , k (8)

where,

DB—Davies-Bouldin index;
si—Cluster diameter—the average distance between the i-cluster centroid and points in
this cluster;
sj—Cluster diameter—the average distance between the j-cluster centroid and points in
this cluster;
dij—The distance between i and j cluster centroids.

3.5.3. Calinski–Harabasz Index

The Calinski–Harabasz index (CH) is called the variance ratio criterion and was
introduced by [41]. The basic criterion for calculating this index is the ratio between the
total dispersion within a given cluster and between clusters. Dispersion here is specified as
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a summed squared distance. This index is very fast to calculate and gives higher values for
separated and dense clusters. Let us consider k clusters over the W dataset (with size nW).
The CH can be calculated [14,41] using Equation (9):

CH =
t(Bk)

t(WIk)
× nW − k

k− 1
(9)

where

t(Bk)—The trace of the covariance matrix (between groups);
t(WIk)—The trace of the covariance matrix (within the cluster).

Let us define the cluster q with the set of points Pq. The center of the cluster is PCq,
the center of W is CW , and the number of points in the q cluster is pq. To understand this
score better, Bk is given by Equation (10) and WIk is given by Equation (11):

Bk =
k

∑
q=1

pq(PCq − CW)(PCq − CW)T (10)

WIk =
k

∑
q=1

∑
x∈Pq

(x− PCq)(x− PCq)
T (11)

3.6. Inertia Analysis

Inertia allows for the measurement of body resistance to moving it around a particular
point. In clustering, the inertia of a particular point refers to the sum of squared distances
in Euclidean space with respect to their mass center. Increasing the mass of the points and
also the distance will result in an increase in inertia. For the X point cloud, the total inertia
can be described as TI(X) using Equation (12) [42]:

TI(X) :=
n

∑
i=1

wi‖xi − cm‖2 (12)

where

cm—The center of mass defined as ∑k
i=1 wixi;

xi—The i-point;
wi—The weight of the i-point.

Computing this measure with a different number of clusters gives a graph where the
transition zone from vertical to plateau is visible. The point of transition indicates the
optimal number of clusters.

3.6.1. Bayesian Information Criterion

For clustering methods evaluation, the information criterion can be used for the
estimation of the optimal number of clusters. The Bayesian information criterion (BIC) is
an example of one of them. The BIC penalty is data-independent; however, it is dependent
on the number of mixture components. As a consequence, the highest number of possible
components can be indicated by this method. On the other hand, it has been proved
that BIC gives consistent results [43]. For ML pipelines, the BIC can be calculated using
Equation (13) and Laplace approximation of model marginal likelihood p(~y|G), where
samples of a finite mixture distribution are stored in ~y = {y1, . . . , yn} [44].

BIC(G) = −2 log p(~y|G)−O(n−
1
2 ) (13)

3.6.2. Domain-Based Interpretation

Unsupervised ML techniques are used for finding hidden patterns in data [45]; how-
ever, specific domain-based knowledge and good data recognition can help with the
evaluation of model parameters [46]. The two main branches of domain-based validation
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can be described for the exploration of oil and gas needs. The first one is related to the
conclusions from the previous, standard investigation (seismic processing, interpretation,
and geological structures analysis), and the second is related to the statistical analysis of in-
put parameters. In many papers, domain-based knowledge was the important factor when
clustering was considered [47,48]. The authors of [49] proposed the use of mudlogs, core
data, other well-logs data, and even region studies about stratigraphy for the validation of
ML clusters. Geophysical measurements are the physical response of the rock mass, so it
is natural and correct to analyze the results of clustering in the context of the geological
structure. The use of various types of measurements of the same wave field, differing in
the type of acquisition or the range of source parameters, allows for the observation of
macro and micro responses of the rock medium. Clustering can overcome the difficulty
in defining the numerical relationship between these parameters. The second mentioned
branch is related to a statistical analysis of data. The analysis of distributions and patterns
allows for getting acquainted with the general population distribution in advance. Stan-
dard techniques of exploratory data analysis (such as kernel density estimation, box plots,
swarm plots, and others) can be used [50].

4. Geophysical Methods Characterization
4.1. W-1 Well Dataset

The dataset consists of parameters calculated from the walkaway VSP survey and
sonic log measurements. Observations were made in a vertical well located in the north of
Poland as a part of Polish technologies for a shale gas project. The aim was to obtain clusters
based on measurements based on the elastic wave field measured in different scales to
refine and update information on the P-wave velocity model.

4.1.1. Walkaway VSP Measurment

In the case of VSP studies, the sources of elastic waves are located on the Earth’s
surface at certain distances from the borehole, along with the profile. The receiver or
receivers are located inside the borehole and usually record the field of P-waves and shear
waves (Figure 2).

Figure 2. Walkaway VSP measurement.

The walkaway VSP measurement in the W-1 well allowed for simultaneous registration
in ninety-six BSR 3-C receivers (Oyo Geospace Company). It was the first walk-away
measurement in central Europe [9]. Geophones were spaced in a vertical well with a step
equal to 15 m. The probe was positioned in the Silurian complex—the first geophone was
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placed at a depth of 2400 m and the last receiver at a depth of 3825 m MDGL. A total of 480
shot points (SP) were performed along a 12 km profile, with up to 8 sweeps performed on
each shot point. The sweep frequency was 6–120 Hz, the length was 16 s, and the recording
time was 4 s. Inclination angles obtained from 31 different offsets were used according
to Table 1 (where absolute (abs) offsets are listed). The average inclination (avg incl) for
a particular shot point is a simple average calculated over all 96 receivers. Using the P-
wave-only inversion method, the in situ anisotropy parameters were calculated: Alkhalifah
and Tsvankin’s anellipticity coefficient η [11] and Thomsen’s anisotropic coefficient δ [12].
Parameters were inverted only from the P-wave waveform for 94 depth points.

Table 1. List of shot points with their offsets and average polarization angles used for clustering.

SP Number abs offset [m] avg incl [deg]

SP 1010 177 3.98

SP 1020 262 5.34

SP 1030 347 6.27

SP 1040 440 7.82

SP 1050 533 8.97

SP 1060 630 12.09

SP 1070 730 14.22

SP 1080 830 15.19

SP 1090 930 16.67

SP 1100 1030 16.89

SP 1110 1130 16.79

SP 1120 1231 20.04

SP 1130 1332 22.78

SP 1140 1430 23.17

SP 1150 1530 23.19

SP 1160 1630 24.99

SP 1170 1730 26.14

SP 1180 1835 30.92

SP 1190 1927 34.51

SP 1200 2077 36.87

SP 1210 2280 38.11

SP 1220 2377 40.67

SP 1230 2479 42.29

SP 1240 2479 42.29

SP 1250 2732 43.89

SP 1260 3034 46.77

SP 1270 3232 47.76

SP 1280 3430 49.73

SP 1290 3630 54.05

SP 1300 3830 54.02

SP 1310 4032 58.87
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4.1.2. Borhole Sonic Measurment

The dipole sonic tool is able to measure velocities of P-, fast, and slow shear waves
directly in the well. Sources and receivers are distributed on one device (Figure 3). Due
to higher wave frequencies than those emitted in VSP, it is possible to obtain a relatively
higher measurement of the vertical resolution. On the other hand, the range is limited to a
small zone around the borehole [51].

Measurement points were carried out with a step equal to 0.1 m. The Full Wave sonic
tool was used, so it was possible to calculate VP (P-wave velocity), VSX (sonic wave velocity
from the horizontal X-component), and VSY (sonic wave velocity from the horizontal Y-
component) using measured delay times: the delay time of the compressional P-wave
(DTP), the delay time of the slow shear wave (DTSS), and the delay time of the fast
shear wave (DTSF). We also calculated the shear anisotropy from the sonic acoustic
log according to Equation (14), Vr, which is a parameter used as a lithology identifier
(Equation (15)), and also the Poisson ratio according to Equation (16). The ratio of VP to
VSX was additionally calculated as one of the input parameters.

Figure 3. Sonic measurement.

ANIAcoustic =
DTSS− DTSF

DTS
(14)

where

DTSS—The delay time of the slow shear wave;
DTSF—The delay time of the fast shear wave;
DTS—The average delay time of the shear wave.

Vr =
< VP, log >

VSX
(15)
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where

Vr—The lithology identifier;
VSX—The sonic wave velocity from the horizontal X-component;
< VP, log >—The sonic P-wave velocity.

ν =
V2

r − 2
2V2

r − 2
(16)

where

ν—The Poisson ratio from the sonic tool;
Vr—The lithology identifier.
The sonic tool measurements consisted of an observation of 12,751 depth points.

4.1.3. Resolution for Clustering

Choosing the appropriate sampling step for clustering when using parameters of
different resolutions is a difficult task. The receivers for walkaway VSP measurements were
placed in the well every 15 m, while the measuring step for the sonic tool was 0.1 m. In this
case, there are two possible ways of proceeding: upscaling well-logs to the walkaway VSP
resolution (experiment 1) or downscaling the walkaway VSP measurements to the well-logs
resolution (experiment 2).

1. Experiment 1—All parameters were adjusted to the resolution of the walkaway VSP
measurements in W-1. This allowed for a significant data reduction and, consequently,
for an acceleration of the computational time. On the other hand, fewer points can
sometimes have a negative impact on clustering results. The upscaling of well-logs
is not a trivial task, and is an interpretation procedure. This will filter out minor
variations and leave only the main lithological changes. For this purpose, smoothing
filters, Backus averaging, or blocking in the intervals can be used. In this case, the sonic
log parameters’ values on the walkaway VSP receiver depth point were calculated as
a simple average calculated in the window with a length equal to the P-wavelength
centralized on this depth point. A total of 92 observations were obtained for 45
different parameters, which gave a dataset consisting of 4140 data points.

2. Experiment 2—All parameters were adjusted to the resolution of the sonic log mea-
surements in W-1. In this case, the number of observations was significantly im-
proved, but, on the other hand, the computation time was also significantly increased.
The cubic interpolation method was used for upscaling the walkaway VSP measure-
ments. This procedure is much easier to perform than downscaling the well-log
measurements. In experiment 2, sonic log measurements were smoothed using a
Savitzky–Golay polynomial filter with a window length equal to 650 samples and a
polynomial order of 3. We chose this filter because of its ability to cope with noise,
which is undoubtedly present in the profiling of borehole geophysics. This is also a
well-established method cited more than 3800× [52]. In this case, a total of 12,751 ob-
servations were obtained for 45 different parameters, which gave a dataset consisting
of 599,291 data points.

It can be easily noticed that Experiment 2 has almost 140× more data points than
experiment 1. This undoubtedly affects the computation time and therefore the cost of
the whole process. However, does it have an impact on the final results of the cluster-
ing? Can the obtained differences be acceptable within the required accuracy? It should
be added that the observations were made in almost homogeneous Silurian sediments.
A lithological profile based on the analysis of the drill core was used as a reference point.
A final interpretation of the obtained results was carried out in the context of the complex
knowledge of the investigated region, which includes conclusions from the 3D seismic
study, microseismical observation, and general classic reservoir interpretation. In both
experiments, data were standardized as the significant differences between very small
values of anisotropic parameters and high values of velocities were present. This procedure
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allowed us to avoid the artificial domination of measurements with high values compared
to other ones. The preprocessing of data was performed using the Python scikit-learn
package [14].

5. W-1 Case Study
5.1. Features Description

Correct data preparation is an important step. Removing outliers, reconciling units,
scales, and standardization are essential for proper grouping 45. Different elastic parameters
were used as the input for clustering tests using BIRCH, GM, k-means, and SPCL algorithms.
These parameters were standardized (using Standard Scaler from sklearn.preprocessing
library [14]) as their ranges were significantly different. The full list of parameters with
their initial values and units in which they were determined is presented in Table 2. It is
worth mentioning that the results of machine learning techniques are dependent on the
quality of the input data. In this case, despite the extremely difficult acquisition of the
VSP and the poor quality of the initial data, thanks to the processing techniques [3], it was
possible to obtain high-quality features. For the given depth range, there were no missing
values. Due to the measurement specification, as well as the domain shift, outliers were
mostly eliminated using a smoothing filter.

Table 2. Input parameters used for clustering with their measurement range

Walkaway VSP Data Well-Log Data

Parameter Range Parameter Range

Inclinations—31 different
offsets [DEG] [1.75, 70] DTSX [us/ft] [110, 173]

δ [−0.002, 0.0005] DTSY [us/ft] [110, 170]

η [−0.007, 0.02] DTP [us/ft] [63, 86]

VP from inversion [m/s] [3600, 4600] VSX [m/s] [1743, 2700]

VP from zero-offset [m/s] [3550, 4580] VSY [m/s] [1775, 2800]

VP [m/s] [3500, 4800]

VP/VSX [1.5, 2.2]

Vr [1.7, 2.1]

PR [0.25, 0.35]

ANIAcoustic [0.01, 0.03]

5.2. Number of Clusters

To select the optimal number of clusters, the following metrics were calculated: inertia
(SSE—as the sum of squared errors), silhouette coefficient (SC), Davies–Bouldin index
(DB), Calinski–Harabasz Index (CH), and Bayesian information criterion (BIC). They were
calculated for the k-means algorithm for both scenarios: walkaway VSP resolution (Figure 4)
and sonic resolution (Figure 5). As we were looking for the best clusters to correct the
initial velocity model, the maximum considered number of clusters was 30. In general
values over 20, they would be difficult to interpret, as well as too small for the dominant
seismic wavelength. We were looking for a rapid change in the SSE plot, maximum or local
maximums in the SC and CH, the local or global minimum for the DB, and the minimum
on the BIC curve. For the walkaway VSP resolution (Figure 4), it is clearly visible that BIC
indicates that the number of clusters is equal to 8, as this is the global minimum for the
function in the analyzed range. The CH global maximum is for n = 4; however, the local
maximum can also be observed for n = 8, 12, 16, 24. The DB shows local minimums on
the graph for n = 4, 8, 12, 16, 22, 24, 28. The SC also indicates that the number of clusters
is equal to 4, 8, 12, or 16. The SSE is hard to interpret, but we can assume that 4 or 8 will
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be a good choice based on this metric. For sonic resolution (Figure 5), the BIC does not
give a clear answer as to the number of clusters. The DB shows clearly that the optimal
number can be 4, 8, 12, or 16. Based on the CH and SC, the best choice would be 4, 8,
and 16. The shape of the SSE for sonic resolution is very similar to the one obtained for
the walkaway VSP resolution. By analyzing all of these metrics as a whole, assuming
no number greater than 20, the following numbers of clusters—4, 8, 12, and 16—were
selected for this specific geological target for a further analysis and interpretation of the
model results.

Figure 4. Metrics for cluster number validation for walkaway VSP resolution dataset (inertia analysis—
SSE—blue line; silhouette coefficient—SC—green line; Davies–Bouldin index—DB—yellow line;
Calinski–Harabasz Index—CH—red line; Bayesian information criterion—BIC—pink line.
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Figure 5. Metrics for cluster number validation for sonic log resolution dataset (inertia analysis—
SSE—blue line; silhouette coefficient—SC—green line; Davies–Bouldin index—DB—yellow line;
Calinski–Harabasz Index—CH—red line; Bayesian information criterion—BIC—pink line.

6. Clustering Results
6.1. Four Clusters

The results obtained for the four clusters are very similar to the initial velocity model
used for depth migration. For this model, the four-velocity complexes were divided along
the probe length.

For the walkaway VSP resolution (Figure 6), the bottom of the first (blue) and third
(green) layer is at the same depth for BIRCH, GM, and k-means, whereas, for SPCL, the
first layer is very thin and the bottom of the third layer is at a lower depth compared to
the other methods; however, it is at the same depth as the bottom of the claystone layer
determined by core analysis. The most similar models are obtained from BIRCH and k-
means, with small differences at a depth of 2775 m. Interestingly, the k-means model shows
a stratification in this place (above potentially saturated marl). For all models, the last layer
is the thicker one.

For the sonic resolution (Figure 7), BIRCH and k-means models are again very similar.
SPCL effectively gives only three clusters that are in line with the model obtained for the
walkaway VSP resolution. The top of layer 3 for all methods is almost at the same depth of
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2775 m MDGL. The bottom of this layer for BIRCH, GM, and KM is also at a similar depth:
3225 m MGDL. For SPCL, the bottom of that layer is at the same depth as for the walkaway
VSP resolution (3070 m MDGL).

Figure 6. Walkaway VSP resolution clustering models for a number of clusters equal to 4 with
lithology from well core (with lines). Clustering methods: BIRCH—balanced iterative reducing and
clustering using hierarchies, GM—Gaussian mixture model, k-means, and SPCL—spectral clustering.

Figure 7. Sonic tool resolution clustering models for a number of clusters equal to 4 with lithology
from well core (with lines). Clustering methods: BIRCH—balanced iterative reducing and clustering
using hierarchies, GM—Gaussian mixture model, k-means, and SPCL—spectral clustering.
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6.2. Eight Clusters

For both resolutions—walkaway VSP (Figure 8) and the sonic one (Figure 9)—consistent
models were obtained with small but important differences. The models obtained from
the dataset with the walkaway VSP resolution (Figure 8) in general diversify the marly
claystone layer in honor of marl and claystone. The thickness of the first three layers is
similar for all models. Layers 4 (red) and 7 (pink) show the greatest diversity in terms of
thickness. Similar results for these layers are obtained in the pairs of SPCL–BIRCH and GM–
k-means. What is important is that the GM and k-means showed clusters within potentially
saturated layers (depth of 2900 m MDGL and 3400 m). The sonic resolution models
(Figure 9) for BIRCH, GM, and k-means are very consistent. The significant difference
begins only at a depth of 3225–3525 m MDGL. The SPCL model is also quite similar to the
others; however, a clear division within lithological types is noticeable. For BIRCH, GM,
and k-means, the division on marl and claystone in both marly claystone layers is again
visible. Only the models from GM and k-means showed a potentially saturated layer, with
a depth of around 3400 m MDGL; however, k-means gives slightly more balanced and
accurate results here.

Figure 8. Walkaway VSP resolution clustering models for a number of clusters equal to 8 with
lithology from well core (with lines). Clustering methods: BIRCH—balanced iterative reducing and
clustering using hierarchies, GM—Gaussian mixture model, k-means, and SPCL—spectral clustering.
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Figure 9. Sonic tool resolution clustering models for a number of clusters equal to 8 with lithology
from well core (with lines). Clustering methods: BIRCH—balanced iterative reducing and clustering
using hierarchies, GM—Gaussian mixture model, k-means, and SPCL—spectral clustering.

6.3. Twelve Clusters

The number 12 is similar to the number of layers determined from the core analysis
in the Silurian complex. For the walkway, the VSP resolution (Figure 10) results are
similar to those obtained with n = 8. For all four models, the clusters are quite similar, but
the difference for SPCL is again the greatest. For the walkaway VSP resolution, the last
cluster for all models starts at a depth of 3450 m MDGL which is the boundary between
different Silurian epochs. GM, k-means, and SPCL are sensitive to the thin saturated marly
claystone layer (between 2850 and 2925 m MDGL), whereas BIRCH does not divide this
layer. The second potentially saturated layer is not properly divided in all models (too
thick). For sonic resolution (Figure 11), the models are far less consistent with the walkaway
VSP resolution than they were for n = 4 and n = 8; however, there is still a good similarity
between them within the sonic measurement step. BIRCH and k-means here are very
similar. The model obtained with BIRCH is the most homogeneous, while the k-means
show many local thin clusters. SPCL and GM are similar at depths of up to 3075 m MDGL.
The internal differentiation of the first marly claystone layer is important here. SPCL shows
a thin cluster below the bottom of the second saturated marly claystone, whereas BIRCH
and k-means showed that this layer was too thick. On the other hand, the GM model
matches with the top and bottom of this layer exactly. Again, in no scenario in terms of
resolution and for any model can we see a clusters’ separation for depths greater than
3500 m MDGL.
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Figure 10. Walkaway VSP resolution clustering models for a number of clusters equal to 12 with
lithology from well core (with lines). Clustering methods: BIRCH—balanced iterative reducing and
clustering using hierarchies, GM—Gaussian mixture model, k-means, and SPCL—spectral clustering.

Figure 11. Sonic tool resolution clustering models for a number of clusters equal to 12 with lithology
from well core (with lines). Clustering methods: BIRCH—balanced iterative reducing and clustering
using hierarchies, GM—Gaussian mixture model, k-means, and SPCL—spectral clustering.
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6.4. Sixteen Clusters

Models for 16 clusters are more difficult to interpret. The differences between walka-
way VSP (Figure 12) and sonic (Figure 13) are higher than for n = 4, n = 8, and n = 12. On the
other hand, models within a particular resolution are consistent. All four walkaway VSP
resolution models show an internal division of the first marly claystone layer, similar to that
obtained for the sonic resolution when n = 12. The first layer of saturated marly claystone
is divided among all four models; however, the GM, k-means, and SPCL show that this
layer can be divided into thinner ones. Very good results (again for all four models) are ob-
tained for the top of the claystone and marly claystone layer (depth of 3075 m MDGL). The
walkaway VSP resolution models show that there is no gradual transition from claystone to
marly claystone, but this complex has a clear separation layer at a depth of 3150 m MDGL.
For all four models, the second saturated marly claystone layer is thicker than that from
the core analysis. For GM and k-means, there is a thin cluster at a depth of 3252 m MDGL.
For sonic resolution (Figure 13), the GM and k-means models show a significantly greater
variation at depths below 3075 m MDGL, whereas BIRCH and SPCL appear to show more
major variations. Again, the marly claystone layer shows greater internal differentiation
compared to the core analyses, but of a slightly different nature than those obtained for the
walkaway VSP resolution. The k-means algorithm shows the best separation of potentially
saturated layers, but within the profile from 2400 to 3350 m MDGL, it is almost identical to
the model from GM. Neither method shows any differentiation below a depth of 3500 m
MDGL, even though, based on the drill core, a thin layer of marl and dolomitic claystone
was separated there within two claystone complexes.

Figure 12. Walkaway VSP resolution clustering models for a number of clusters equal to 16 with
lithology from well core (with lines). Clustering methods: BIRCH—balanced iterative reducing and
clustering using hierarchies, GM—Gaussian mixture model, k-means, and SPCL—spectral clustering.
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Figure 13. Sonic tool resolution clustering models for a number of clusters equal to 16 with lithology
from well core (with lines). Clustering methods: BIRCH—balanced iterative reducing and clustering
using hierarchies, GM—Gaussian mixture model, k-means, and SPCL—spectral clustering.

7. Discussion

The paper analyzes the possibility of using unsupervised machine learning to detail
information on the rock medium with the use of elastic wavefield measurements. Data from
the first and experimental acquisition of walkaway VSP in Poland were used. Based on
these measurements, detailed in situ anisotropy, polarization, and velocity parameters were
obtained. They were an important element of clustering. Measurements in the borehole
with a dipole acoustic tool were also used. Consequently, 45 input parameters for clustering
were obtained.

Walkaway VSP and sonic measurements are characterized by different resolutions
resulting from various source frequencies, ranges, and measurement depth steps. The prob-
lem of finding a common data sampling resolution for clustering was one of the challenges
of this work. The higher resolution of the well-log measurements provides more informa-
tion, but, at the same time, it is more affected by noise. The presence of noise negatively
affects the results of clustering. On the other hand, a larger data set should produce better
results for methods based on probability analysis. Unsupervised machine learning aims
to provide new, unknown information about the object, so it is difficult to decide which
resolution is better without additional studies.

Another challenge was to determine the optimal number of clusters. This is not an
easy task. It is often based on the analysis of the distance between clusters, and the selection
of the appropriate minimum or maximum among many local ones is highly subjective.
That is why it is important to analyze the obtained model based on domain knowledge
and on slightly more objective criteria, such as the BIC, which often produce one global
minimum; therefore, the choice is objective.

Using the knowledge of the geology of the region, knowledge from other geophysical
surveys, and knowledge of what the main purpose of the study is (improving the velocity
model), a detailed analysis of the results was carried out in order to determine the final
clustering model. One of the main factors determining the choice of the optimal model was
the model’s ability to determine potentially saturated layers.
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The models obtained for n = 4 show similarities with each other. Most of the elastic
boundaries determined by clustering are at similar depths. A particularly high accuracy is
visible for the fourth complex determined by clustering. The most significant differences
between the walkaway VSP and sonic models are visible for the third complex. The greater
similarity of models was obtained for sonic resolution. The extent of the separated com-
plexes coincides with the main velocity complexes designated for seismic migration. There
are also correlations with the main lithological types. None of the tested algorithms were
able to identify potentially saturated layers. Therefore, none of the models for n = 4 were
selected as the most optimal.

According to the BIC, the number of clusters equal to eight is the most suitable as the
initial model parameters. The results are consistent for all clustering methods. The number
eight is also optimal in terms of these specific observations. It provides a good balance
between over-splitting and provides new information based on the field of elastic waves.
For the VSP resolution, a clear similarity between GM and k-means is visible. The SPCL
and BIRCH models did not divide the saturated marly layer, which is their disadvantage.
With such a number of clusters, methods based on CF-trees and algebraic graph theory
seem to tend to over-generalize the model and omit some important details. On the other
hand, probabilistic and vector quantization methods successfully distinguished the most
significant Silurian intervals. The clusters obtained for data with a higher vertical resolution
gave worse results. None of the analyzed algorithms recovered information about the first
saturated layer, and, in the case of the second, its position was different depending on the
depth. This situation is also reflected in the value of the BIC. For lower-resolution data,
the minimum on the curve was visible, whereas this was not the case for for well-log data.
Therefore, the GM eight-cluster model in the VSP walkaway resolution is recommended as
the most suitable for further work on the velocity model for surface seismic.

The analysis of the metrics for the number of clusters equal to 12 was ambiguous.
Unlike the values 4, 8, and 16, some of them (CH and SN) did not indicate this number as
optimal. For n = 12, the algorithms did not cope well with the determination of saturated
layers, except for the GM, SPCL, and k-means methods for the walkaway VSP resolution
(for the first saturated layer). The number of clusters being 12 thus appears to be the least
appropriate choice for both sonic and walkaway VSP data resolution.

Sixteen-cluster models for both resolutions and for all tested algorithms give satis-
factory results. The separation of saturated layers was mostly obtained. In many places,
the boundaries of the layers for different methods coincide, which proves that the models
are compatible. However, the models for SPCL exhibit a slightly greater generalization,
which may be helpful for typical lithological analyses, whereas the GM and k-means models
have much greater detail, which may be useful for borehole geophysics analyses. Models
for the VSP resolution seem to work well for the whole depth range. The GM and k-means
models for the hole resolution in the lower parts of the Silurian rocks are characterized by
greater layer fragmentation.

8. Conclusions

Our research has shown that clustering is a useful tool that allows us to obtain new
information about a geological medium using data from walkaway VSP and sonic tool
logs. The optimal selection of clusters based on internal metrics is ambiguous. Knowledge
about the region and other additional available information allow for a better selection
of the optimal number of clusters based on previously predefined numbers (based on
statistical metrics). The problem of different research resolutions is important. Depending
on whether the parameters will be upscaled or downscaled, different results of clustering
will be obtained. Depending on the chosen method, they will be more or less significant.
In the context of cluster analysis, for the velocity model correction, the smaller number
of clusters and the lower resolution of walkaway VSP tests proved to be more useful.
However, in the case of more precise analyses of fine layers, a greater number of clusters
and an analysis at a higher sonic measurement resolution seem to be better. The least
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optimal results were obtained with the BIRCH method. The SPCL method showed a good
relationship with the main lithological types and was resistant to local anomalies. The best
results were obtained for the GM method when n = 8 and k-means when n = 16.
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