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Abstract: This paper presents a four-stage DC/DC converter with high precision and a small ripple
utilized in an electronic power conditioner (EPC). The galvanically isolated four-stage topology
contains four cascade connections: a buck circuit, a push–pull circuit, a power converter, and a
voltage regulator. The push–pull switches, as well as the diodes in the output-side rectifier, operate in
zero-voltage switching (ZVS) and zero-current switching (ZCS) modes at both switch off and switch
on, which helps increase the efficiency. The maximum efficiency of the converter can reach 94.5%.
The buck circuit and voltage regulator operate in a two-stage closed-loop condition and, thus, the
precision is greater than 0.02%. Due to the voltage regulator, the ripple is less than 1 V when the
output voltage reaches 7000 V.
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1. Introduction

Space traveling wave tubes amplifiers (STWTAs) [1], as the most important compo-
nents of satellite systems, are mainly used to amplify the power of microwave signals [2].
An STWTA consists of a traveling wave tube (TWT) [3] and an electronic power conditioner
(EPC) [4]. The TWT is a microwave vacuum electronic device [5]. The microwave signal can
be amplified via energy exchange between electron injection and electromagnetic waves [6].
The main function of the EPC is to generate the high voltage required by the TWT via
high-frequency and high-voltage power conversion technology [2,4,7].

The key performance indicators of the TWT, such as the phase shift, third-order
intermodulation, and saturation gain, are directly affected by the voltage of the helix [1,8].
To ensure the working states and performance indicators of the STWTA, the high-voltage
precision of the helix provided by the EPC should be greater than 0.05% [9]. Therefore, the
high precision of high-voltage conversion becomes an important indicator of the EPC [10].
As the power supply of satellites come from solar energy conversion, whose efficiency
is only approximately 28%, and the STWTA consumes 70% to 90% of DC energy, high
efficiency also becomes a requirement of the EPC [2,5,11].

In recent years, EPC’s main research has focused on topology studies, which is catego-
rized into single-stage power conversion and multi-stage power conversion [12,13]. The
single-stage converters include buck, boost non-isolated topologies, and forward, flyback,
push–pull, half-bridge, full-bridge, and other topologies. The multi-stage converter consists
of two or more of these topologies. The topology described in [14] is a boost-based, non-
isolated transformation topology. Compared with non-isolated topology, the advantages
of an isolated topology are as follows: isolation protects the system from high voltages
and currents caused by line surges or ground loops. The ground potentials in parts of a
satellite are not equal, so ground currents are generated between systems. Without isolation,
this current can introduce noise into the system, reduce measurement accuracy, and even
destroy system components. The authors of [15] describe the difference between buck and
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boost topologies in many aspects. For example, to achieve the same ripple of inductor
current, the boost topology needs more inductance than the buck, but the rms current
through the inductor is much less than that of the buck, with the buck topology requiring a
large and expensive capacitor to smooth the discontinuous input current. The buck and
boost topologies are shown in Figure 1, and if a short-circuit fault occurs in the power
switch (the red one) of the buck circuit, it does not affect the power supply; however, if
the same fault happens in the boost circuit, the power supply will be short-circuited. In
addition, the comparison of isolated topology characteristics is shown in Table 1.
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Table 1. Comparison of isolated topology characteristics.

Forward Flyback Push–Pull Half-Bridge Full-Bridge

Voltage stress 2 Vin 2 Vin 2 Vin Vin Vin

Current stress Iin Iin Iin 2 Iin Iin

Number of switches 1 1 2 2 4

To date, the major STWTA manufacturers in the world include the Tesat company
in Germany [16–18], Thales company in France [19–21], and L-3 company [22,23] in the
United States. The high-voltage precision of the EPC developed by L-3 is the best, reaching
0.03%. The ripple of the high voltage is approximately 1 V. The EPC developed by the
Tesat company has a high efficiency that reaches 92.8%. Furthermore, in [24], an inductor-
inductor-capacitor (LLC) resonant topology is proposed, with maximum efficiencies of
93.4% achieved at the output power of 5000 W, although the precision and the ripple of
output voltage are not revealed. The authors of [25] describe the development of an 18 kV,
30 kW power supply for a pulsed current load whose output ripple is less than 0.01%, with
the disadvantage of this design being the efficiency did not reach 90%.

Motivated by the above analysis, the high precision, small ripple of the output high
voltage and the high conversion efficiency are difficult to be realized at the same time.
Thus, an isolated four-stage DC/DC high-voltage converter is presented in this paper. This
four-stage DC/DC converter topology enjoys the following advantages:

1. The output high voltage can be controlled with a high accuracy of greater than 0.02%;
2. The ripple of the output high voltage is less than 1 V at voltages reaching 7000 V;
3. The efficiency of the converter can reach up to 94.5%.

The block diagram of this topology is shown in Figure 2.
As shown in Figure 2, the four-stage DC/DC high-voltage converter consists of a

buck circuit, a push–pull circuit, a power converter, and a voltage regulator. The bus
voltage in the satellite is transformed into a high voltage for the TWT through this four-
stage converter.

The content of this paper starts with Section 2, which introduces the principle and the
calculation of key parameters. Section 3 presents the experimental results of laboratory
prototype. Section 4 describes the advantages and disadvantages of this topology, and the
areas for improvement. Finally, conclusions are drawn in Section 5.
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2. Principle Introduction and Calculation of Key Parameters
2.1. Principle Introduction

A four-stage DC/DC high-voltage converter is proposed in this paper, with the topol-
ogy of the schematic circuit depicted in Figure 3.
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Figure 3. Topology of the four-stage DC/DC high−voltage converter.

In Figure 3, Q3, Q4, D1, Lb, and Cb form the first stage of transformation, an interleaved
dual-driver buck circuit, where Q3 and Q4 are interleaved switches, D1 is the fly-wheel
diode, and Lb and Cb are the inductance and capacitance, respectively, of the buck circuit.
The switches Q1 and Q2 form the second stage of transformation: a push–pull circuit,
where DQ1 and DQ2 are the body diodes of Q1 and Q2, respectively, and CQ1 and CQ2 are
the parasitic output capacitance. The power transformer T and the doubler rectifier circuit
form the third stage of conversion, where Lp is the equivalent primary leakage inductance,
Do1, Do2, Co1, and Co2 are the voltage-doubling rectifier diodes and capacitances, and Co is
the filter capacitor. Switch Q5 and high-precision operational amplifier U1 form the fourth
stage of transformation, i.e., a low-dropout regulator (LDO).

When Q1 and Q2 are both turned off, the equivalent circuit diagram is shown in
Figure 4. On the primary side, part of the energy in Lb charges the capacitor Cb, while the
other part flows through Lp, Lm, CQ1, CQ2, and D1 sequentially, and then returns to Lb. On
the secondary side, the current flows through Q5, Ro, Co1, and Co2 to form a loop. There
is no energy exchange between the primary side and the secondary side. In Figure 4, the
green, blue, and purple arrows indicate the direction of current flow on the primary side,
the red arrows indicate the direction of current flow on the secondary side.
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Since there is no energy exchange between the primary side and the secondary side,
the voltage across Cb can be considered constant, with the equivalent circuit of Figure 4
depicted in Figure 5.
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Therefore: {
V − Lm1

di1
dt + M di2

dt −
1

CQ1

∫
i1dt = 0

V − Lm2
di2
dt −M di1

dt −
1

CQ2

∫
i2dt = 0

(1)

As Lm1 = Lm2 = Lm and CQ1 = CQ2 = CQ, then, neglecting the effect of the leakage
inductance, it is M = Lm, so that yields:

i1 = −i2 (2)

Combining (1) and (2):

V − 2Lm
di1
dt
− 1

CQ

∫
i1dt = 0 (3)

The solution of (3) is:

i1t =
Im√

2cosψ
cos(ωt + ψ)ω =

1√
2LmCQ

Im =
1
2

V
Lm

TON (4)

When Q1 is turned on, energy transfers from the primary side to the secondary side,
with the equivalent circuit diagram shown in Figure 6. In Figure 6, the green and blue
arrows indicate the direction of current flow on the primary side, the red arrows indicate
the direction of current flow on the secondary side.
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According to KCL,
ILb = ICb + ILp (5)

Hence,
ILb
Cb

=
ILp

Cb
+ LP

d2
ILp

dt2 (6)

whose solution is:
ILpt = ILb − ILb0 cos(ωt + ϕ)

ω = 1√
LpCb

(7)

The equivalent circuit diagram when Q2 is turned on is depicted in Figure 7. In
Figure 7, the green and blue arrows indicate the direction of current flow on the primary
side, the red arrows indicate the direction of current flow on the secondary side.
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ure 7, the green and blue arrows indicate the direction of current flow on the primary side, 
the red arrows indicate the direction of current flow on the secondary side. 
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Figure 7. The equivalent circuit diagram when 𝑄  is turned on. Figure 7. The equivalent circuit diagram when Q2 is turned on.

When the transformation enters the steady state, the ratio of input and output
voltage is:

Vo =
4DVinNs

Np
−VQ5_DS (8)

where

D is the duty cycle of interleaved switches;
Ns is the number of turns on the secondary side of the transformer;
Ns is the number of turns on the primary side of the transformer;
VQ5_DS is the pressure drop setting value of the MOSFET in the LDO module.

In the high-voltage conversion process, the loss of the switch tubes accounts for a large
part. To achieve high efficiency, the switch tubes of the second-stage converter (push–pull
circuit), which are connected to the third-stage converter (main power converter), should
implement a soft switching process, namely, zero-voltage switching (ZVS) and zero-current
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switching (ZCS), at both switch off and switch on, and the rectifier diode in the voltage-
doubling rectifier circuit should achieve ZCS to reduce the loss in the switching process.

In this design, the buck circuit and push–pull circuit use the components themselves
to generate resonances to achieve soft switching without the need for additional resonant
components. The capacitance in the buck circuit Cb and the leakage inductance of the main
power transformer Lp are fully utilized to form a resonant cavity.

After the first three levels of transformation, the output voltage is actually a high DC
voltage with an AC component, and the peak value of the AC component is approximately
10 V. The existence of this AC component will seriously affect the phase shift, third-order
intermodulation, saturation gain, and other performance indicators of the TWT, so this
high voltage cannot be directly used to power the TWT. The LDO module is used to reduce
the AC component so that the high voltage becomes a purer DC voltage. The principle
of the fourth-stage converter LDO is shown in Figure 8. In Figure 8, red arrows indicate
feedback paths of LDO.
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When Vout drops due to load changes or other reasons, the voltage across the series
divider resistor R2 will also drop, and then the voltage at point A drops. The voltage at
point A is compared with Vre f , and the error amplifier will reduce the output so that the
voltage at G decreases, the voltage Vs does not change, and the voltage difference

∣∣Vgs
∣∣

then increases. The output current Iout increases, and this increase will make Vout rise,
completing feedback control so that Vout returns to the normal voltage. By selecting and
screening high-precision resistors to precisely control the divider ratio of two series resistors
R1 and R2, the output voltage can be accurately controlled. In this design, the Vre f is fixed,
but if it changes, the divider ratio of R1 and R2 can be adjusted to change the noninverting
input of the operational amplifier to keep the output of the operational amplifier constant,
while the MOS tube operates in the linear region to ensure that the output voltage does
not change.

2.2. Calculation of Key Parameters

According to the actual conditions in EPC applications, the input voltage Vin = 30 V DC,
the output voltage Vo = 7000 V DC, the load power Po = 130 W, and the switching frequency
f = 100 kHz. The calculation of key parameters is as follows.

A resonant cavity is formed between Cb and Lp, and the resonant frequency is the
switching frequency.

f =
1

2π
√

LpCb
= 100 kHz (9)



Energies 2023, 16, 389 7 of 12

Depending on how the transformer is wound, Lp may differ, and adjusting Cb can
achieve the switching frequency requirements. The lamination winding method is adopted
for the main power transformer in this case, and the test result of the leakage inductance
Lp is 0.6 µH.

Therefore, the buck capacitance can be calculated as:

Cb =
1
f 2

1
4π2Lp

= 4.2 µF (10)

The inductance of the buck circuit can be calculated as:

Lb =
Vb(1− D)

Kind Ib f
= 78.6 µF (11)

where Vb is the output voltage of the buck circuit, with Vb = 22 V;
D is the duty cycle of interleaved switches;

D =
1
2

Vb
Vin

= 36.67% (12)

Kind is the ripple current rate, with Kind = 0.3 generally; and Ib is the root mean square
(RMS) current of the buck output,

Ib =
Po

Vb
= 5.91 A (13)

The number of turns on the primary side of the transformer can be calculated as:

Np =
Vin

K f f BW Ae
(14)

where

K f is the waveform factor of the square wave, with K f = 4.0;
f is the switching frequency, with f = 100 kHz;
Bw is the magnetic flux density, in which the TPW33-UYF36 series is adopted as the

type of magnetic core, with Bw = 150 mT;
and Ae is the effective cross-sectional areas of the core, with Ae = 130.98 mm2.

Therefore, Np = 4.16 and an integer value is taken, that is, N1 = N2 = 5.
The number of turns on the secondary side of the transformer is:

Ns =
NpVo

Vin
= 583.4 (15)

Taking an integer value, N3 = 584.

3. Experimental Validation

According to the above principle and the parameter calculation, a prototype of a
four-stage converter is fabricated. The input voltage Vin = 30 V DC, the output voltage
Vo = 7000 V DC, the load power Po = 130 W, and the switching frequency f = 100 kHz.

A laboratory prototype of the four-stage converter was fabricated, as shown in Figure 9.
There are four power switches in the converter, with two switches used as interleaved
dual-driver in the buck circuit and the other two switches used in the push–pull circuit.
The main uses of Schmitt triggers are waveform shaping, transformation, comparison, etc.
All of the control signals are processed in CPLD.
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The voltage and current waveforms of the second-stage push–pull switches of the
prototype are presented in Figure 10.
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Figure 10 shows that the voltage waveform at the DS terminal of the push–pull
switches Q1 and Q2 is approximately a trapezoidal wave, and the current waveform
flowing through the switches is close to a sine wave, without obvious voltage spikes or
current overshoots. ZCS and ZVS can be realized at both turning on and off. The voltage
stress of the switches in the push–pull circuit is:

Vp−p = 2Vb = 46 V (16)

The peak current of the switches is:

Ip−p =
Po

Vb
+

Po

Vb
cos−1cot

(To f f − Ton)
2 f 2π

2
= 12.6 A (17)

where f is the operating frequency of dual interleaved drivers, To f f is the off time of the
switches, and Ton is the on time of the switches.

After the first three stages of conversion, the voltage flows into the fourth-stage
converter LDO, as shown in Figure 11 (VMOS−D), and the ripple is approximately 10 V.
With a 1000:1 high-voltage probe of oscilloscope (which the maximum measurement voltage
can reach 15 kV), the test value of the output high voltage after passing through the LDO
module obtained by an oscilloscope is also shown in Figure 11 (Vo). According to the test
result of Vo (inside the red dashed box), the output high voltage is 7000.4 V DC.
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Figure 11. LDO input voltage ripple (VMOS−D and test value of the output high voltage (Vo).

The test value of the output high voltage obtained by a digital multimeter is shown in
Figure 12. The digital multimeter performs measurements with a 1000:1 probe, so the test
value is 7.00011 V DC.

The test values of both the oscilloscope and digital multimeter are 7000 V, indicating
that the output voltage accuracy of this four-stage DC/DC converter is greater than 0.02%.

When the output high voltage is 7000 V, the high-voltage ripple is approximately
0.8 V, as shown in Figure 13, indicating that the voltage ripple is greatly reduced after the
fourth-stage LDO conversion, with the ripple less than 1 V.
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Since the LDO module, the output high voltage does not change while the input
voltage differs, with the efficiency calculated as follows:

η =
Pout

Pin
=

Vout Iout

Vin Iin
=

7000× Iout

Vin × Iin
(18)

where Vin and Iin can be read from the DC input power supply and Iout is measured by
stringing into a multimeter.

Figure 14 shows the efficiency test of this four-stage converter. In Figure 14a, with
a full load, the efficiency is tested at different bus input voltages, which indicates that
the lower the bus input voltage is, the higher the potential efficiency. The bus voltage
on a satellite is usually 25~40 V DC, and the efficiency of this four-stage converter can
reach 94.5%. In addition, Figure 14b shows the efficiency results for different loads when
the input voltage is 25 V, with the graph suggesting that the heavier the load, the higher
the efficiency.
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4. Discussion

The four-stage DC/DC high-voltage converter is composed of a buck circuit, a push–
pull circuit, a power converter, and an LDO regulator, with the first three stages of conver-
sion being typical switching power conversion, which is characterized by high efficiency.
However, the working principle of the LDO is to apply an excess voltage that is higher
than the set value to the switch to form a DS voltage drop and to simultaneously make the
switch work in the linear region to achieve the voltage regulation function; thus, the loss
of the switch will increase and the efficiency will be relatively low. In subsequent work,
an approach for improving the conversion efficiency of the LDO will be studied to further
improve the efficiency of the EPC. Additionally, the switches of the first-stage converter
operate in hard-switching mode, and a method for higher efficiency of the buck circuit will
be researched.

5. Conclusions

This paper investigated the research status of EPC and showed that it is difficult to
meet high accuracy, small ripple, and high efficiency at the same time. Therefore, in order to
achieve high accuracy, small ripple, and high efficiency, a four-stage DC/DC high-voltage
converter topology is proposed in this paper, with the advantages of the converter verified
through the experimental results of a prototype, which proves that this converter topology
has the following characteristics:

1. The output high voltage can be controlled with a high accuracy of greater than 0.02%;
2. The ripple of the output high voltage is small, less than 1 V at voltages up to 7000 V;
3. The power switches in the push–pull circuit can realize ZVS and ZCS at both turning

on and off, with the efficiency of the converter reaching 94.5%.
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