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Abstract: Electric power systems have experienced the rapid insertion of distributed renewable
generating sources and, as a result, are facing planning and operational challenges as new grid
connections are made. The complexity of this management and the degree of uncertainty increase sig-
nificantly and need to be better estimated. Considering the high volatility of photovoltaic generation
and its impacts on agents in the electricity sector, this work proposes a multivariate strategy based
on design of experiments (DOE), principal component analysis (PCA), artificial neural networks
(ANN) that combines the resulting outputs using Mixture DOE (MDOE) for photovoltaic generation
prediction a day ahead. The approach separates the data into seasons of the year and considers
multiple climatic variables for each period. Here, the dimensionality reduction of climate variables
is performed through PCA. Through DOE, the possibilities of combining prediction parameters,
such as those of ANN, were reduced, without compromising the statistical reliability of the results.
Thus, 17 generation plants distributed in the Brazilian territory were tested. The one-day-ahead PV
generation forecast has been considered for each generation plant in each season of the year, reaching
mean percentage errors of 10.45% for summer, 9.29% for autumn, 9.11% for winter and 6.75% for
spring. The versatility of the proposed approach allows the choice of parameters in a systematic way
and reduces the computational cost, since there is a reduction in dimensionality and in the number of
experimental simulations.

Keywords: photovoltaic forecasting; principal component analysis; design of experiments; artificial
neural networks

1. Introduction

The increase in the share of renewable energies in the electricity matrix around the
world is a demand of economic, social and environmental interest [1]. The broad per-
spectives for the use of fossil fuels reinforce the potential of these resources to supply
electricity [2]. Authors in [3] cite solar energy as the main focus for investors in recent years.
In this context, to deal with unexpected changes in weather conditions and to carry out a
rigorous control and management of solar energy in smart systems, it is necessary to adopt
photovoltaic (PV) energy generation prediction models. The effectiveness of these models
impacts system efficiency and safety, and the measurements provide reliable information
for energy customers and suppliers [4].

However, several authors point out that the meteorological factors and the distribution
networks’ infrastructure conditions are aspects that strongly influence the efficient use
of solar energy as an alternative source [5]. The influence of some meteorological factors
was tested in several studies, which reinforced the urgent need to propose methods for
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monitoring phenomena and robust forecasting models [6]. There are several methodologies
for predicting solar irradiance, the most common being analytical, stochastic, empirical,
statistical models and artificial neural networks [6].

Artificial neural networks have been widely used to predict photovoltaic power gener-
ation [7]. Some research has pointed out the advantages of big data analysis for renewable
energy forecasting [8].Works [9–11] present predictive solutions based on supervised or
unsupervised machine learning. For this sake, such as the integrated autoregressive moving
average model, pattern sequence prediction and artificial neural network (ANN) models
are discussed.

The PV output power prediction model developed by [7] was applied for short-term
prediction, specifically, one hour ahead. In this case, the authors used the extreme learning
machine (ELM) algorithm. For day-ahead photovoltaic output power prediction, the
researchers tested the model using daily average solar radiation (W/m2), wind speed (m/s),
ambient and module temperature (◦C). The ELM-based model was compared with two
other models, one using support vector regression (SVR) and the other using ANN. The
results showed that the ELM presented greater precision and less computational time in
the short-term prediction of daily and hourly photovoltaic output power.

To improve the ELM, [12] implemented a new model called expanded ELM (EELM)
for photovoltaic energy forecasting. EELM breaks new ground by allowing automatic
selection of hidden layer number and random input weights. However, the higher ex-
trapolation capabilities of the EELM have only been demonstrated for a forecast horizon
of less than 1 h. Based on the research works mentioned above, the effectiveness of a
photovoltaic power generation prediction model can be made even more accurate through
experimentation with viable scenarios. According to [13], machine learning methods are
very effective for predicting photovoltaic energy generation, given the non-linear nature of
the variables. However, the authors indicate that combined methods should be adopted in
order to capture the stochastic characteristic of solar irradiance and the high variability of
measurements. Therefore, the main objective of this work is to propose a multivariate strat-
egy based on design of experiments (DOE), principal component analysis (PCA), artificial
neural networks (ANN) that combines the resulting outputs using Mixture DOE (MDOE)
for photovoltaic generation prediction a day ahead.

DOE is a statistical optimization tool in which each experimental run is a test and
allows the investigator to discover some information about a process or system [14]. Subse-
quently, the best configurations observed in the DOE approach are maintained, through
a cluster analysis, to form a combined forecast. An ensemble forecast tends to improve
the results of individual [15] models. The proposed combination considers that a mixture
analysis calculates the definition of the set weights. Finally, the combined result obtained
is analyzed to determine if it has equivalence with the original dataset. This analysis is
performed using the confidence ellipse for the data at a 95% confidence level.

2. Literature Review

The intermittent nature of solar generation brings operational challenges to the electri-
cal system, which compromises the quality and security of supply, and can lead to voltage
fluctuations and harmonic distortion [16]. One way to deal with this problem is to define
accurate predictions [17].

The work developed by [18] proposed a method for predicting photovoltaic generation
using a hybrid model that combines signal decomposition, artificial intelligence models,
deep learning models and swarm optimization model. The performance of the proposed
system is not discussed if the amount of data increases.

The model proposed by [19] investigates the performance of LSTM, convolutional,
and hybrid convolutional–LSTM networks on residential photovoltaic generation data. The
evaluation metrics were used to compare the results with a decomposable time series fore-
casting model known as Prophet, considering different time scales. The author considers
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forecasts individually and does not mention whether the combination of results improves
the performance of forecast models.

The authors at [20] have pursued a multivariate approach, based on the convolutional
neural network (CNN) that considers the use of climate variables in the forecasting process.
The results, at the end of this computation, are combined to improve the final output.
However, the elucidated model does not offer tools to the analyzer to indicate which
variables/parameters may interfere with the forecast results.

In some cases, finding variables that can help the forecasting process can be a chal-
lenging task. From the work developed by [21], it is interesting to observe the use of
satellite images to compose the input data of the forecast models. The proposal is based
on convolutional long short term memory network (Conv–LSTM) and extreme gradient
boosting (XGBoost). However, the authors do not explore the combined prediction and
dimensionality reduction of the data (since satellite images require more computational
space compared to textual data).

The combined forecast, based on scenarios, was explored in [22] and showed better
results compared to the use of individual models. Even so, the work does not discuss how
the parametric variation of the models influences the result, nor does it present a model for
reducing the dimensionality of the data.

Clustering of climate data by season of the year was considered in [23] using the
Fuzzy C-Means (FCM) algorithm for one-day-ahead forecasting. The model based on least
squares support vector machine (LSSVM) outperformed other forecasting models. The
work does not consider the combined forecast.

An approach based on gated recurrent unit (GRU), random forest was compared with
the results of LSTM and RNN, using daily and monthly data [24]. The results achieved are
interesting, but the work does not consider the seasonal separation of the data and does
not allow the analyzer to verify which parameters influence the forecast result.

The research carried out in [25] proposes an approach for clustering regions and
forecasting photovoltaic generation, which lists locations with better viability for the
installation of photovoltaic panels. A probabilistic method combined with machine learning
models for forecasting photovoltaic generation is considered to be more suitable for the
study horizon and data discretization, which is monthly. A study was carried out in Mexico
in regions with meteorological and topographic variability, finding that the points with
the highest solar incidence are not always the points that promote the highest yield of
energy generation.

Artificial neural networks using the Levenberg–Marquardt training algorithm were
considered in the research conducted by the authors in [26]. The selected meteorological
variables include temperature, relative humidity, solar irradiance and wind speed. Keeping
the angle definitions, the study showed promise. However, the authors do not detail how
the parametric variation of the forecast model impacts the results.

The very short-term forecast conducted by [27] analyzes the data forecast with dis-
cretization varying from minute to minute related to the cloud accumulation indicator. In
this study, the authors highlighted the use of neural networks and random forest models.
The data considered in this study are not subjected to dimensionality reduction and the
parametric configuration of the models is not detailed.

A study conducted by [28] analyzed the performance of a regression network and
particle swarm optimization model for a dataset from a plant located in Brazil. The time
horizon considered was one day ahead with hourly discretization. The model parameters
were statically defined and the impact of their variation on the prediction results was not
considered.

The key contributions of this research, trying to fill these gaps, are summarized in:

• Reduce the dimensionality of climate data to facilitate the capture by machine learning
models of the intrinsic non-linearity of these time series, and mitigate possible noise
that may exist in the data.
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• Group similar days using cluster analysis technique to compose the forecast. This also
reduces the amount of data finished by the machine learning model.

• Parameterize the execution of the experiment using the DOE statistical tool, which
reduces the search space, saving computational resources and time without losing
statistical reliability.

The scientific community has turned its eyes to the various deep learning models [29]
and their example-based training applications. Some variations of these algorithms can
be mentioned, such as long short term memory networks (LSTMs), convolutional neural
networks (CNNs), radial basis function networks (RBFNs), multilayer perceptrons (MLPs).

LSTMs are a specialization of recurrent neural network (RNN) that preserve informa-
tion over a period of time, learning and storing that information whose interdependence
is observed, being widely used in time series forecasting problems. The multiple layers
of CNNs have filters that enable performing convolution operations and are especially
useful for extracting features from data. RBFNs have the versatility to solve classification,
regression and prediction problems because they are feedforward-type networks, which
means input, hidden and output layers are present and the activation functions are a radial
basis type. MLPs are also a type of feedforward network where input and output layers are
fully connected, so weights and bias are calculated and activation functions are applied to
compute the result. Table 1 shows a brief analysis of the application of these models recently.

Table 1. Some recent applications of deep learning models.

Author and Year Models Analysis Theme

Peng et al. (2022) [30] LTSM Electricity consumption forecasting and
petroleum products consumption

Arvanitidis et al. (2022) [31] MLP-based hybrid solution Load forecasting

Haghighat (2022) [32] MLP and Markov chain Predict the number of future patients and
deaths related to COVID-19

Yuan et al. (2022) [33] CNN Medical image segmentation

Satyanarayana et al. (2022) [34] CNN Vehicle detection for traffic management

Khalifani et al. (2022) [35] RBF, MLP and, CNN Prediction of sunflower grain yield under
different climatic conditions.

Yang et al. (2023) [36] RBF-NN combined with an ensemble model Predict the topological nature of gas-liquid
mixtures in chemistry

3. Proposed Methodology

The proposed methodology is summarized in Figure 1, and essentially uses DOE,
PCA and ANN. The methodological process of this work is based on research [37]. The
authors encourage the application of this model due to its versatility, which reduces
the computational effort and tends to produce good results. To facilitate the reader’s
understanding, each topic that composes the steps of this process is detailed.

The proposed methodology’s application helps operate active distribution networks
and emerging transmission systems, since the operator is informed about the actual gen-
eration availability in the next time window. Thus, generation and system configuration
adjustments are possible, enabling the utilities to provide a reliable service.

In addition to the use of DOE, this work introduces the use of principal component
analysis to reduce the dimensionality of climate data, with minimal loss of information, for
training the machine learning model.
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3.1. Data Collection and Preparation

An essential step that precedes data analysis is collecting and preparing time series.
This data is often difficult to obtain due to the data protection policy of local generation
plants [38], which can compromise advances of photovoltaic generation forecasting. The en-
tire forecasting process can be compromised if this step is not seriously considered [39]. This
step covers correcting missing data, normalizing data, adjusting data resolution and group-
ing data [40]. Real photovoltaic generation data were used from the PVOutput.org [41]
repository, with the daily resolution, except for the data from the generation plants of the
cities of Machado and Passos, which were acquired from the Federal Institute of South of
Minas Gerais IFSULDEMINAS.

Seventeen generating units are considered in this study; each one has a different
generation capacity and is geographically separated throughout the Brazilian territory. The
reason for choosing these units was due to the availability and quality of data in the time
horizon of the study. Missing or null data were disregarded.

The climatic data were obtained through the National Institute of Meteorology (IN-
MET) [42], considering the weather stations closest to the previously selected photo-
voltaic generation plants, covering sixteen parameters: instantaneous temperature (◦C),
maximum temperature (◦C), minimum temperature (◦C), instantaneous humidity (%),
maximum humidity (%), minimum humidity (%), instantaneous precipitation (◦C),
maximum precipitation (◦C), minimum precipitation (◦C), pressure instantaneous (hPa),
maximum pressure (hPa), minimum pressure (hPa), wind speed (m/s), wind direction (◦),
wind gust (m/s) and radiation (KJ/m2).

In order to facilitate the identification of each photovoltaic generation plant, and their
respective climatic data, the closest city to that measurement point was considered and
these characteristics are listed in the following Table 2:
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Table 2. Detailing of photovoltaic generation plants.

PV Plant
(City Name) State System Size

(kW)
Data Range

Period
PV Plant

(City Name) State System Size
(kW)

Data Range
Period

Aracaju Sergipe 7.370 2020–2021 Machado Minas Gerais 365 2018–2020

Bagé Rio Grande
do Sul 10.600 2017–2018 Marabá Pará 5.940 2019–2021

Barbalha Ceará 1.100 2019–2021 Marília São Paulo 5.500 2017–2021

Barueri São Paulo 12.100 2018–2021 Nioterói Rio de
Janeiro 5.775 2019–2021

Belo
Horizonte Minas Gerais 7.200 2019–2021 Passos Minas Gerais 180 2019–2021

Brasilia Distrito
Federal 4.950 2018–2021 Primavera do

Leste Mato Grosso 16.640 2019–2021

Itajaí Santa
Catarina 2.200 2016–2019 Rio Grande Rio Grande

do Sul 3.640 2017–2021

Ituporanga Santa
Catarina 27.00 2020–2021 Rio Negrinho Santa

Catarina 4.960 2017–2021

Ji-Paraná Rondônia 2.295 2019–2021

The data series was divided into seasons, since each one presents different characteris-
tics that can be relevant factor for the success of a more accurate forecast. The increase or
decrease in the efficiency of the panels can be influenced by environmental factors in the
region, such as wind speed, humidity, dust, temperature, among others [43], justifying the
segmentation by season. In Brazil, summers are hot and humid, with a predominance of
rain in several regions, while winter causes drought and cold. From Figure 2, it is possible
to identify these periods throughout the months of the year.
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Therefore, when it comes to photovoltaic generation, the panels can gain or lose
efficiency due to numerous uncontrollable factors, related to the season [44], such as
the accumulation of dust, predominance of clouds over the generation area, cooling of
solar cells, etc. The separation of data into seasons aims to mitigate these effects so that
the forecast model does not suffer from the inconsistencies that can be generated in the
training process.

Since each photovoltaic generation plant has different generation capacity, and the
climatic data have different measurement units, two ways of normalizing the data were
considered, placing them in a feasible scale for the optimization process through algorithms
of machine learning.

The first, which uses the maximum and minimum values of time series, rescales the
data within the interval between 0 and 1 and is observed in Equation (1), where “yi” is the
observed value, “min(Y)” the minimum value of time series and “max (Y)” the highest
value [45]:

ŷi =
yi −min(Y)

max(Y)−min(Y)
(1)

The other normalization technique, known as standardization or Z-Score method, uses
the mean and standard deviation of the series itself, making the normalized value centered
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around the mean with unit standard deviation [46]. The standardization calculation is
performed according to the Equation (2), where “yi” is the observed value, “µ” is the mean
and “σ” the standard deviation.

ŷi =
yi − µ

σ
(2)

3.2. Hierarchical Cluster–Grouping of Similar Days

After dividing the data series into seasons, the hierarchical clustering technique was
used to group the days with certain similarity levels. These grouping methods initially
consider each data point (or object) as a group [47]. Then, similar objects begin to coalesce to
form groups. Figure 3, in a simplified way, schematizes the separation of the six data points
into groups and structures the minimalist representation of the respective dendrogram.
The distance between the groups that form is calculated by the linkage method, which in
this work considered the following two: Complete and Ward.
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The Complete linkage method, also known as the furthest neighbor, calculates the
maximum distance between an object in a given cluster and another object belonging to
another cluster. In general, the diameter of the formed groups tends to have similar sizes.
The Complete method was chosen because it performs well in certain cases [48] and is
represented by Equation (3), where “D(x, y)” is the distance between the clusters “x” and
“y” and “x[i]” symbolizes an object “i” in the cluster “x” [49].

D(x, y) = maxij{D(x[i], y[j])} (3)

Ward’s linkage method minimizes the sum of squares within each cluster, and the
distance between these clusters is calculated by the sum of squared deviations from the
points to the centroids. In this case, each group tends to have the same number of objects.
The choice of Ward’s method to compose the experiments of this work was because that
it demonstrates good separability between groups and consistency [50]. Equation (4)
calculates the Ward’s distance, where “|y|” represents the number of objects present in
cluster “y”, and so on.

D(x, y) =

√
|y|+ |z|

|y|+ |z|+ |w|D(y, z)2 +
|y|+ |w|

|y|+ |z|+ |w|D(y, w)2 − |y|
|y|+ |z|+ |w|D(z, w)2 (4)

3.3. Principal Component Analysis (PCA) for Dimensionality Reduction

PCA is a multivariate tool widely used in the literature [51]. It reduces the dimensional-
ity of the dataset, to an uncorrelated set, known as principal components, that may explain
the whole original set. It can separate out information that is redundant and random. The
representation of the variance of the data tends to be in the first components (where the
first component has the maximum explanation compared to the other components [52] and
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so on). The noise tends to be in the last components, that is, the principal components are
uncorrelated linear combinations [53] of the original variables weighted by the eigenvalues.

According to [54], it can be described briefly by considering n observation vectors
y1, y2, . . . , yn and the respective mean vector y (where the ellipsoid axis origin will be). The
change to the origin y is described yi − y. Rotating the axis centered on the mean results in
principal components, which are uncorrelated. The rotation movement multiplies each yi
by an orthogonal matrix A, according to Equation (5):

zi = Ayi (5)

If A is orthogonal, then A′A = I, and the distance to the origin remains the same, as
observed in Equation (6):

z′izi = (Ayi)
′(Ayi) = y′iA

′Ayi = y′iyi (6)

The rotation transforms yi to a zi point, keeping the same distance from the origin.
The calculation of matrix A allows the discovery of the axes of the ellipsoid, making z = Ay
uncorrelated. In this way, the sample covariance matrix of z, Sz = ASA′ is desired to be
diagonal, as in Equation (7):

Sz = ASA′ =


s2

z1 0 · · · 0
0 s2

z2 . . . 0
...

...
...

0 0 · · · s2
zp

 (7)

where S is the covariance matrix of y1, y2, . . . , yn. Since λi′s are the eigenvalues of S
and C an orthogonal matrix in which the columns are the normalized eigenvectors of S,
diag

(
λ1, λ2, . . . , λp

)
= C′SC = D. The transpose of matrix C is the orthogonal matrix A

that diagonalizes S, as shown in Equation (8):

A = C′ =


a′1
a′2
...

a′p

 (8)

so that ai is the normalized ith eigenvector of S. The principal components are represented
by the variables z1 = a′1y, z2 = a′2y, . . . , zp = a′py in z = Ay. The diagonal elements of
ASA′ are eigenvalues of S. This makes the eigenvalues λ1, λ2, . . . , λp of S the variances of
the principal components zi = a′iy, as described in Equation (9):

s2
zi = λi (9)

Since the eigenvalues are the variances of the principal components, the expression of
percentage of explanation by the first k components is used:

Variance explanation proportion =
λ1 + λ2 + . . . + λk
λ1 + λ2 + . . . + λp

(10)

Reducing the dimensionality of meteorological data, for training machine learning
models, avoids overfitting and allows the original data to be replaced by this new dataset,
reduced, but retains most of the original information [55].

The application of the PCA method extends to problems in different areas and has
contributed to interesting solutions. For example, recently, some authors [56] have pro-
posed a variation of the PCA combined with the modified affinity propagation clustering
algorithm (called PCA-MAP) to classify tourist preference information. It is also worth
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mentioning the work by [57] that explores day-ahead carbon price prediction using PCA
combined with several machine-learning methods, providing dimensionality reduction
from 37 variables to only 4.

This work considers data dimensionality reduction in two specific cases, depending on
the methodological process, defined by the consideration, or not, of the meteorological variables.

Figure 4 exemplifies the structure of the data collected, with each line representing a
measurement day and each column representing an observed variable. The first column
consists of the photovoltaic generation data. The others (2 to 17) comprise the climatic vari-
ables. The PCA is applied, when the climatic variables are considered in the experimental
run, in columns 2 to 17 of Figure 4.

Energies 2023, 16, 369 9 of 32 
 

 

This work considers data dimensionality reduction in two specific cases, depending 
on the methodological process, defined by the consideration, or not, of the meteorological 
variables.  

Figure 4 exemplifies the structure of the data collected, with each line representing a 
measurement day and each column representing an observed variable. The first column 
consists of the photovoltaic generation data. The others (2 to 17) comprise the climatic 
variables. The PCA is applied, when the climatic variables are considered in the experi-
mental run, in columns 2 to 17 of Figure 4.  

 
Figure 4. PCA is applied to reduce the climatic variables of columns 2 to 17. Source: own authors. 

On the other hand, when the experimental process does not consider the climatic 
variables, but only the photovoltaic generation variables, a data restructuring is necessary. 
In this case, the data stacking process for model training is exemplified in Figure 5. Here, 
six generation days before the observed measurement day are chosen. These six days will 
compose the training data referring to that observed day, as observed in Figure 5 “A” 
(green) and “B” (yellow) markings. As one walks through the generation data structure, 
the sliding window forms new training data for the measurements of subsequent days. 
Finally, the PCA is applied to this dataset (columns 2 to 7). The region highlighted in red 
is disregarded in this situation because it has many null cells, which represents noise for 
the prediction model. 

Thus, when the climatic variables are considered, there is a reduction of 16 observa-
tions. When only the photovoltaic generation is considered, there is a formation of six 
variables for dimensionality reduction. 

Figure 4. PCA is applied to reduce the climatic variables of columns 2 to 17. Source: own authors.

On the other hand, when the experimental process does not consider the climatic
variables, but only the photovoltaic generation variables, a data restructuring is necessary.
In this case, the data stacking process for model training is exemplified in Figure 5. Here, six
generation days before the observed measurement day are chosen. These six days will com-
pose the training data referring to that observed day, as observed in Figure 5 “A” (green)
and “B” (yellow) markings. As one walks through the generation data structure, the sliding
window forms new training data for the measurements of subsequent days. Finally, the
PCA is applied to this dataset (columns 2 to 7). The region highlighted in red is disre-
garded in this situation because it has many null cells, which represents noise for the
prediction model.

Thus, when the climatic variables are considered, there is a reduction of 16 observa-
tions. When only the photovoltaic generation is considered, there is a formation of six
variables for dimensionality reduction.
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3.4. Artificial Neural Networks (ANN) Parametrization

There are numerous situations in which using of artificial neural networks is satis-
factory [58], such as pattern recognition, classification, fault detection and PV generation
forecasting [59]. Since the photovoltaic generation prediction problem has, in essence, non-
linear characteristics, machine learning models try to efficiently capture these variations
and present them in the output [60], but with the premise that there is no model in the
literature that performs well in all cases. ANNs were chosen in this work because of their
superior performance compared to other machine learning models [61].

Essentially, an ANN is made up of three layers [62], in its minimal architecture. The
first layer is known as data input. This layer may contain one or more neurons. The second
layer, known as the intermediate (or hidden) layer, may not be unique and has several
neurons set by the analyzer, independent of the number chosen for the first layer. Finally,
there is the last layer, or output layer, where the results are obtained after the training and
testing process.

Neurons are present in all layers and constitute the network’s architecture, and can be
added (or removed) from each layer as it fits well (or poorly) to the problem at hand. The
anatomy of a neuron shows that it receives an input, computes the weights relative to that
input, and returns the result via an activation function [63]. The training process consists
of transferring information from one layer to another, by optimizing the adjustment of
weights in the neurons, until a condition is reached. Equation (11) expresses, in a simplified
way, the mathematical modeling of this calculation:

z = f (b + x·w) = f

(
b +

n

∑
i=1

xiwi

)
(11)

where ‘z’ is the network output, ‘b’ the bias value, ‘x’ the input information, ‘w’ the related
weight and ‘n’ the total number of inputs.

The definition of parameters that optimize the functioning of the ANN is not imme-
diate, and often there is no consensus regarding certain choices, such as the number of
layers and the number of neurons in each layer [64]. Some authors consider the choice
of parameters by trial-and-error [65] and not in a systematic way. The ANN parameters
considered in this work were based on [66] and [67] research and are detailed in the next
section, which presents DOE as a statistical tool for reducing the parametric search space.
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3.5. Factorial Design of Experiments (DOE)

It is noticed in the literature, a vast record of the use of DOE, such as for parametric
calibration of prediction models [68], to choose the training set [69] and also applied param-
eter optimization in manufacturing simulations [70]. The DOE, through the composition of
its statistical tools, allows the relationship between cause and effect to be systematically
identified, which can lead to a solution that optimizes the process. In general, there is a
choice of factors and levels, response variables, the structure of the experimental design
and the execution itself [14]. The logic of choice is intrinsically linked to the type of study.

Full or fractional factorial designs, usually with two levels, are well accepted by the
industry [71]. Full factorial designs consider all possible combinations, which generates a
search space with a dimension of 2k, where k is the number of factors. It is understood that,
by increasing the number of factors (even their respective levels), full factorial design leads
to an extremely high number of experimental runs, which can generate high costs and high
time demands [72]. Thus, this study considers a two-level fractional factorial design due to
the natural limitations of a simulated experiment, which are the scarcity of computational
resources and time.

Figure 6 shows a schematic representation to clarify the potential of DOE, which
allows the analyzer to restrict the parametric search space to factors that potentially lead to
the solution of the problem. Scanning the entire search space implies a high computational
and time cost. Thus, based on references (from the literature, for example), it manages to
reduce this search space to a specific set of parameters, which naturally does not guarantee
the optimal solution, but it allows having an idea of this adjustment and how the factors
interact with each other.
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Figure 6. Room analogy: The analyzer knows there is a resource and time constraint to scan the
entire room for the potential optimal parametric match. However, based on previous experience (or
previous research) he knows that there is a reduced search region that could lead to a good solution
to the problem (not necessarily the optimal one). Source: own authors.

A lot of data, both from photovoltaic generation and climate, as well as the number
of parameters from the machine learning models that can be combined, challenge the
processing power of current computers, which is limited [40]. When referring to research
involving computer simulation, there is usually many data and/or parameters involved.
In order to mitigate the computational cost of the experiments of this work, the DOE
was considered to reduce the parametric search space as it is an effective tool for this
purpose [73].

The quality of reducing (or increasing) the depth of this search using DOE is measured
in terms of confounding and is summarized in the experiment’s resolution. When there
is a shortage of resources to carry out the experiments, in addition to choosing the levels
of factors, the DOE allows the reduction of experimental runs, maintaining the statistical
reliability [72] of these runs. As shown in Figure 7, this work considered level IV resolution,
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since at this level the main effects are considered without confusion with the interactions of
two factors.
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This research considered 11 factors in the experimental architecture, being separated
into five factors related to the time series and six factors associated with the artificial
neural network. The versatility of the experimental design, related to the essence of
the photovoltaic generation prediction problem, allowed the choice of factors and their
respective levels to be based on previous works [67], and one of these works also considers
this object of study [37]. Knowing that there are numerous combinations of factors and
that each factor has numerous levels, this search space becomes reduced when using DOE
and, in this way, the analyzer can make changes in the factors or levels and understand
the impact that this change has on the quality of the results. Table 3 summarizes each
factor considered.

Table 3. DOE Factors and Levels.

Category DOE Factors DOE Level Values Variable Type Description

Time Series
Factors

(A) Number of
principal
components

2

Integer

In this work, from the second component, a
representativeness of more than 80% of the
variance of the original data was observed.

Thus, the use of the first 2 or 3 main
components is tested.

3

(B) Considers use of
climate variables

True

Boolean

In some cases, the use of climatic variables
may not be interesting and should be tested.
This is usually due to several factors, such as
the distance from the weather station to the

generation plant, dust on the panels, etc.

False

(C) Cluster linkage
method

‘Ward’

String

Here, similar days (based on weather
variables) are grouped together to compose

the training. Appropriate clustering methods
are tested.

‘Complete’

(D) Number of
clusters

3

Integer

The classification into 3 or 4 clusters aims to
identify the groupings of characteristics that
best perform the forecast model: sunny, rainy

(cloudy), dry (dust) and/or humid.
4

(E) Normalization
method

‘Standardization’

String

In this case, normalization processes are being
tested that make use of (1) mean and standard
deviation and (2) maximum and minimum to
equalize data in terms of their scales, without

distorting or losing information. Thus, the
values approximate the learning functions of

the model.

‘Min-Max’
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Table 3. Cont.

Category DOE Factors DOE Level Values Variable Type Description

ANN Factors

(F) Number of
hidden layers

1 Integer The number of hidden layers is usually one or
two, with zero or three layers being little used.2

(G) Multiplication
factor for the
number of units per
layer

1.5

Double

Although there is no definition of optimal
neural network architecture, this work

considers the definition of the number of
neurons in the intermediate layer based on
the following formula: (K × (N + 1)), where

N is the number of inputs, and K = 1.5, 2.
Here, the value of K is associated with the

levels of this factor.

2

(H) Learning rate
0.1

Double
The learning rate defines the size of the step
that the model takes in the search space. In

this case, 0.1 and 0.9.0.9

(I) Number of
epochs for training

100 Integer
The number of epochs defines the number of
iterations that the model will process during
the training step. Here, it is checked whether
a low number (100) or a high number (400)
are sufficient to produce good prediction

results.

400

(J) Training
algorithms

‘Scaled Conjugate
Gradient’

String

Updating the neural network weights and
bias is a very important step and is performed
by a training algorithm. Two were chosen to

compose the prediction process: “Scaled
Conjugate Gradient” and
“Levenberg–Marquardt”.

‘Levenberg-Marquardt’

(K) Transfer
function

‘Symmetric
sigmoid’

String

Commonly known as an activation function,
a transfer function plays the role of

computing the output from one layer of the
network to the layer immediately following it.

‘Radial basis’

3.6. Mixture Design of Experiments (MDOE) for Defining the Ensemble Weights

Combining forecasts is to try to achieve better performance against the forecasters
when considered individually [74]. The literature reports an empirical benefit of this
combination in improving the forecast results [75]. Thus, this work uses Mixture DOE to
combine the prediction results. Specifically, a mixing experiment considers finding the
optimal proportions for each ingredient, that is, in the prediction problem, this proportion
is identified by the weights wi and the factors represent the ingredients of this analogy.

Here, the combined value (which is taken as an answer) depends only on the weights
(proportion of ingredients) and not just on the factors themselves. According to [76], the
weights wi are non-negative, expressed as fractions of the mixtures, whose sum of all
q factors (ingredients) must be unity, as described in Equation (12):

q

∑
i=1

wi = w1 + w2 + . . . + wq = 1.0 (12)

Considering an example with three factors, or ingredients, there is a graphic represen-
tation of this arrangement as a triangle, as seen in Figure 8. The vertices are considered
pure mixtures, because at these points the values of the weights of the other factors are
null [14]. As the number of factors increases, the geometric representation also changes.
For example, when considering four factors, the representation is given by a tetrahedron.
Several factors greater than or equal to five are feasible, but there is no longer any possibility
of visual representation.
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The metrics for evaluating and defining the weights is based on the mean absolute
percentage error (MAPE), which has already been used in recent forecasting works [77],
and on the root mean squared error (RMSE), which penalizes errors of greater magnitude,
for comparison purposes. The error calculation is obtained as shown in Equation (13), for
MAPE, and in Equation (14), for RMSE:

MAPE =
1
N

N

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100 (13)

RMSE =

√√√√ N

∑
i=1

(ŷi − yi)
2

N
(14)

so that yi is the actual measurement value of the photovoltaic generation, ŷi is the predicted
value and N corresponds to the number of predicted points.

Figure 9 details the pseudocode that automates the prediction process described
in the previous topics. The implementation of this algorithm took place through the
Matlab software.
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4. Case Study

Since, in Brazil, photovoltaic generation represents the largest share of renewable
energy growth [78], this case study considered seventeen photovoltaic generation plants
located in different regions of the country. The forecast was performed one day ahead,
considering each season of the year, that is, at the end of the execution of the experiments,
there were four forecasts for each generation plant (one for each season of the year). The
forecast day was chosen randomly, given that the time interval of each generation plant
did not always coincide (due to lack of data, for example).

The number of principal components, as a DOE factor, can be considered one of
the key items in this research, as it leads to a reduction in the dimensionality of climatic
variables. The levels vary between 2 and 3, which means that sometimes two components
were used to train the model, and sometimes three components were used. The reduction
in dimensionality implies a small loss of information. Thus, it is interesting to present the
accumulated percentage of the variance at each level, for each city (generation plant).

From Figure 10, it is observed that the variance explanation of the climate variables,
for each generation unit and considering each season of the year, is above 60%, with an
approximate average of 75% of total explanation. For this graphical demonstration, the
‘MaxMin’ normalization process was used.

When considering three components, a natural increase in the explanation of the
variance of climatic variables is perceived, which is shown in Figure 11. In this case, the
percentage of explanation accumulated is above 75% for all generation plants and seasons,
with an approximate average of 85% of explanation for all seasons. This means that if three
components are used, there is a greater representation of the data set, which implies more
information for adjustment and training of the forecast model. The idea is precisely to test,
using the DOE statistical tool, if there is interference in the prediction results when an extra
component is considered (or not).
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4.1. Experiment Preparation Stage

All generation data were acquired from the pvoutput.org [41] repository, except for
two photovoltaic generation plants, Machado and Passos, whose data were provided by
the Federal Institute of Education, Science and Technology of South of Minas Gerais -
IFSULDEMINAS. In order to facilitate the collection of this data, in an automated way, a
script was implemented in the Java programming language that makes a request to the
repository and download the data series with daily discretization, organizing them by
generation plant. It is important to highlight a limitation that was observed in relation to
the availability of data: there are more than 17 generation plants available in the repository,
but many of them do not have the respective climate information, which was acquired
from another database, the National Institute of Meteorology.–INMET [42].

The data collection stage was challenging, as much of this information had missing
data, with noise and often without public access. Thus, since meteorological stations are
dispersed throughout the Brazilian territory, they do not always coincide with being close
to a given photovoltaic generation plant or even with the availability of climatic data,
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which reduces the number of experimental cases. In addition to the fact that climate data
is not available for all generation plants (and vice versa), there is also the challenge of
synchronizing measurement periods: often there is generation data for a range of dates,
but there is no information weather forecast for the same period. When this happens, that
time interval must be discarded. This is a reason why it was not possible to consider the
same forecast day (respecting the season) for all generation units.

After eliminating missing data and synchronizing the date periods, the data was
separated into seasons so that the training of the forecast model took place only with the
specific data of that season. This process was considered because it is believed that each
season of the year has its own characteristics, which can affect energy generation. For
example, excess dust due to dry weather, or even the passage of clouds in periods of rain,
can change the behavior and correlation of the data.

4.2. Day Ahead Forecasting by Season

The forecast is performed for each generation plant, taking one day ahead per season.
With the DOE matrix, as in Table 4, all 32 experimental runs must be executed, which
essentially translates the parametric variation in the search space. For each experimental
run, the artificial neural network is re-initialized, in order to avoid interference in the results
from one experimental run to another.

Table 4. Structure of the DOE experimental matrix.

RUN
Time Serie Factors ANN Factors

A B C D E F G H I J K

1 2 True Ward 3 Standardization 1 1.5 0.1 100 Scaled Conjugate
Gradient

Symmetric
sigmoid

2 3 True Ward 3 Standardization 2 1.5 0.1 400 Levenberg–
Marquardt

Symmetric
sigmoid

3 2 False Ward 3 Standardization 2 2 0.1 100 Scaled Conjugate
Gradient Radial basis

4 3 False Ward 3 Standardization 1 2 0.1 400 Levenberg–
Marquardt Radial basis

5 2 True Complete 3 Standardization 2 2 0.9 400 Scaled Conjugate
Gradient

Symmetric
sigmoid

6 3 True Complete 3 Standardization 1 2 0.9 100 Levenberg–
Marquardt

Symmetric
sigmoid

7 2 False Complete 3 Standardization 1 1.5 0.9 400 Scaled Conjugate
Gradient Radial basis

8 3 False Complete 3 Standardization 2 1.5 0.9 100 Levenberg–
Marquardt Radial basis

9 2 True Ward 4 Standardization 1 2 0.9 400 Levenberg–
Marquardt Radial basis

10 3 True Ward 4 Standardization 2 2 0.9 100 Scaled Conjugate
Gradient Radial basis

11 2 False Ward 4 Standardization 2 1.5 0.9 400 Levenberg–
Marquardt

Symmetric
sigmoid

12 3 False Ward 4 Standardization 1 1.5 0.9 100 Scaled Conjugate
Gradient

Symmetric
sigmoid

13 2 True Complete 4 Standardization 2 1.5 0.1 100 Levenberg–
Marquardt Radial basis

14 3 True Complete 4 Standardization 1 1.5 0.1 400 Scaled Conjugate
Gradient Radial basis

15 2 False Complete 4 Standardization 1 2 0.1 100 Levenberg–
Marquardt

Symmetric
sigmoid
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Table 4. Cont.

RUN
Time Serie Factors ANN Factors

A B C D E F G H I J K

16 3 False Complete 4 Standardization 2 2 0.1 400 Scaled Conjugate
Gradient

Symmetric
sigmoid

17 2 True Ward 3 Min–Max 1 1.5 0.9 100 Levenberg–
Marquardt Radial basis

18 3 True Ward 3 Min–Max 2 1.5 0.9 400 Scaled Conjugate
Gradient Radial basis

19 2 False Ward 3 Min–Max 2 2 0.9 100 Levenberg–
Marquardt

Symmetric
sigmoid

20 3 False Ward 3 Min–Max 1 2 0.9 400 Scaled Conjugate
Gradient

Symmetric
sigmoid

21 2 True Complete 3 Min–Max 2 2 0.1 400 Levenberg–
Marquardt Radial basis

22 3 True Complete 3 Min–Max 1 2 0.1 100 Scaled Conjugate
Gradient Radial basis

23 2 False Complete 3 Min–Max 1 1.5 0.1 400 Levenberg–
Marquardt

Symmetric
sigmoid

24 3 False Complete 3 Min–Max 2 1.5 0.1 100 Scaled Conjugate
Gradient

Symmetric
sigmoid

25 2 True Ward 4 Min–Max 1 2 0.1 400 Scaled Conjugate
Gradient

Symmetric
sigmoid

26 3 True Ward 4 Min–Max 2 2 0.1 100 Levenberg–
Marquardt

Symmetric
sigmoid

27 2 False Ward 4 Min–Max 2 1.5 0.1 400 Scaled Conjugate
Gradient Radial basis

28 3 False Ward 4 Min–Max 1 1.5 0.1 100 Levenberg–
Marquardt Radial basis

29 2 True Complete 4 Min–Max 2 1.5 0.9 100 Scaled Conjugate
Gradient

Symmetric
sigmoid

30 3 True Complete 4 Min–Max 1 1.5 0.9 400 Levenberg–
Marquardt

Symmetric
sigmoid

31 2 False Complete 4 Min–Max 1 2 0.9 100 Scaled Conjugate
Gradient Radial basis

32 3 False Complete 4 Min–Max 2 2 0.9 400 Levenberg–
Marquardt Radial basis

The experiments were performed in an automated way, whose algorithm was imple-
mented in the Matlab®language. Thus, the average MAPE of each season of the year is
included in Table 5, for all the experimental runs defined above.

Main effects plots allow the analyzer to visualize the parameters that may be influence
the forecast positively (or negatively). Thus, the flexibility of analyzing forecasts by season,
in terms of the parameters that most influence the entire process, stands out as one of the
advantages of this methodology. Considering the average MAPE of each season of the year
as a DOE response, the main effects of this execution can be identified. Here, the vertical
axes of the graph show the average variation of the MAPE error, while the levels of each
factor are distributed on the horizontal axes, i.e., in the case of photovoltaic forecasting, the
smaller the error, the better the parameter level is. Figure 12 grouped four graphs, with
Figure 12A showing the main effects of autumn, Figure 12B the main effects of winter,
Figure 12C the main effects of spring and Figure 12D the main effects of summer.

Autumn, represented by Figure 12A, presented interesting characteristics regarding
the choice of some parameters, emphasizing the number of main components, which three
adjusted well; the number of hidden layers was set to two; and the training algorithm was
‘Levenberg–Marquardt’. The other parameters, with a smaller variation in the error, such
as the normalization method, verify that ‘minMax’ fits well; the use of climatic variables,
in this case, had little effect on the results; the linkage method for day groupings was
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‘complete’; the number of groups for cluster formation was four; the number of units per
layer two; learning rate with little variation from one parameter to another; the number of
epochs remained at 100; and the transfer function with little variation in error. Autumn
was the only season of the year that differed from work expectations in terms of the use of
climate variables.

Table 5. Forecast results in terms of their mean errors (MAPEs) after each experimental run, separated
by season.

RUN
AUTUMN WINTER SPRING SUMMER

MAPE STD RMSE MAPE STD RMSE MAPE STD RMSE MAPE STD RMSE

1 17.62 3.79 12,263.43 15.63 3.11 8260.91 15.19 3.70 12,152.80 14.22 1.68 14,254.12
2 15.72 2.23 15,443.84 15.50 3.19 16,272.15 9.71 1.46 7220.57 13.76 0.86 6403.48
3 15.30 1.68 6380.93 16.21 0.83 4474.02 17.35 3.06 8783.22 20.21 2.12 10,089.92
4 19.14 2.22 7502.31 15.40 1.34 7912.06 16.26 2.09 8126.95 14.24 2.97 9140.32
5 14.99 1.61 13,006.54 13.30 1.18 13,618.22 11.42 0.78 5404.76 15.36 1.06 6724.76
6 12.90 2.14 4836.03 14.70 3.54 8730.40 10.25 0.57 4824.22 16.66 3.15 8711.77
7 17.89 1.35 10,530.33 19.15 2.43 11,293.21 20.20 2.64 14,654.62 19.79 3.46 9184.13
8 16.56 1.77 11,666.71 15.86 1.42 5673.78 17.11 2.94 6551.62 17.43 2.14 7953.46
9 17.35 1.72 14,602.11 14.86 1.59 6600.87 11.50 1.25 10,166.35 16.75 0.99 6877.91

10 17.23 1.89 13,261.40 15.15 1.32 8403.91 10.35 1.48 5647.03 13.51 1.96 4540.48
11 19.28 3.74 5959.83 14.99 2.03 5872.06 17.50 2.55 8885.20 19.69 5.34 6767.52
12 20.26 2.30 8321.50 16.62 3.25 7128.63 16.81 1.35 10,393.82 16.17 1.50 3965.89
13 15.95 1.21 14,034.62 15.19 1.03 7798.53 9.21 1.46 2201.11 14.54 1.96 4670.43
14 18.10 2.09 13,662.72 12.97 2.13 4370.27 10.78 2.36 5959.56 14.49 1.14 7609.56
15 21.06 1.60 6738.31 18.55 1.06 11,564.00 16.59 2.83 10,795.95 20.05 5.16 5891.62
16 14.18 2.00 5268.02 15.84 2.22 18,227.70 16.77 1.67 6107.37 17.89 2.35 5984.99
17 17.94 2.31 15,591.69 15.32 0.67 9394.71 15.43 1.86 10,950.43 13.91 1.17 7316.57
18 18.55 1.76 15,593.04 18.51 3.33 9347.63 13.38 3.30 10,720.13 14.08 1.97 6016.78
19 18.90 3.78 14,039.15 15.57 1.49 5352.14 15.13 2.48 27,076.63 17.57 3.51 7604.86
20 16.21 2.96 7857.95 13.79 2.98 10,584.67 16.35 4.79 13,525.24 15.13 3.02 6991.80
21 16.57 4.10 13,374.72 12.94 1.32 7301.32 11.91 2.36 4723.39 14.09 0.96 6419.93
22 18.68 2.56 10,408.75 13.92 2.23 7818.65 12.20 1.35 10,344.39 18.00 2.10 5413.27
23 18.24 3.41 10,499.89 18.19 2.10 9826.84 14.94 2.50 5507.09 17.13 1.69 5186.42
24 15.44 2.85 13,108.17 14.64 1.73 16,531.05 15.40 2.46 6547.30 16.59 1.09 6435.07
25 19.52 4.93 9591.13 15.84 2.45 10,140.82 13.02 4.98 3574.75 17.09 1.83 4861.03
26 17.31 3.24 13,190.46 15.54 1.96 6309.35 13.40 2.02 4600.17 14.55 1.96 12,418.08
27 14.47 2.82 6813.66 14.63 1.90 6355.71 16.69 1.38 9268.76 18.41 3.67 7354.37
28 15.67 1.99 5208.39 12.18 1.66 6179.75 16.31 2.46 15,539.29 16.65 1.73 6176.84
29 15.73 2.75 5886.52 13.90 2.19 6529.49 10.66 3.64 8935.84 13.23 1.54 7726.71
30 18.65 1.82 20,267.83 13.93 2.73 6838.97 9.41 2.19 4919.52 12.72 1.88 10,035.81
31 13.03 1.32 3687.30 18.45 1.16 8025.35 19.38 2.03 7661.17 19.63 2.57 9823.96
32 12.34 1.66 4441.24 15.11 1.03 10,272.18 14.63 3.41 13,610.07 20.75 3.45 8556.00

On the other hand, winter, represented by Figure 12B, emphasizes the use of climatic
variables in the forecast, with significant interference in the error variation. The normal-
ization method that best fitted for this season was also ‘minMax’; the linkage method
represented little variation in error; the number of clusters was four; the number of main
components was three; the number of hidden layers two; the number of elements per layer
hardly changes the error, as well as the number of epochs and the transfer function; the
training algorithm was ‘Levenberg–Marquardt’.

In the same way, spring, represented by Figure 12C, promotes greater emphasis on the
use of climate variables in the forecasting process, having good representation in error. In
general, parameters like normalization method point to ‘minMax’, like the previous ones;
hidden layers 2; and ‘Levenberg–Marquardt’ training algorithm. The other parameters exert
little influence on the forecast error, considering this season of the year.

Last but not least, summer, represented by Figure 12D, also highlights the use of
climate variables in the forecasting process, contributing to the reduction of error. As in the



Energies 2023, 16, 369 20 of 30

other seasons of the year, the normalization method was kept as ‘minMax’ as indicated to
reduce the error. The binding method for forming the groups of similar days was ‘Ward’;
The number of main components three; the number of neurons per layer 1.5 (according to
the multiplication equation explained in the previous section); and symmetric ‘sigmoid’
transfer function. The other parameters not mentioned have little influence on the error
when varied.

As expected from this investigation, most of the results indicate that the use of climatic
variables, with at least three principal components in dimensionality reduction, contributes
to the forecast error reduction.
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4.3. Ensemble Forecasting

The motivation of the combination is to produce more accurate results than the best
forecast components, considered individually. Thus, the combination of the prediction
results used the Mixture DOE statistical tool to find the ideal weights so that the ensemble
could be formed. Before, it was necessary to define how many factors (ingredients) would
participate in this mixture. For this, the forecast results of each experimental run, initially
processed, were classified according to the MAPE. Eight groups were chosen through
cluster analysis, which uses the Ward linkage method with Euclidean distance. From
these eight prediction groups, the one-way analysis of variance using Tukey’s comparison
procedure was performed, so that only the group(s) with the smallest MAPEs, statistically
different from the others, were chosen.

Figure 13 presents the interval plot that relates MAPEs by the groups. The group that
statistically differed from the others and had the lowest MAPE was chosen. In the case of
the forecast related to autumn, shown in Figure 13A, the results belonging to the ‘7’ group
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were chosen, which were three elements. The winter season, indicated by Figure 13B,
revealed two statistically equal groups with lower MAPE, ‘4’ and ‘7’, with the total of these
two groups having four elements. Spring identified the group numbered ‘2’ in Figure 13C,
which had five elements favorable to the combination, and summer classified the group
numbered ‘8’ in Figure 13D as the group with the lowest MAPE, having three elements.
Thus, the formation of the Mixture DOE is a function of the number of elements (factors or
ingredients) to be combined. In this case, each factor represents the weight that optimizes
the combination and aims to reduce the total MAPE.
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Table 6 summarizes the weight combinations for three elements. Here, the average
MAPEs are presented for the autumn and summer seasons. Specifically, for autumn, the
weights that best fitted the forecasts were (0.333, 0.333, 0.333) with a mean MAPE of 9.29%
and a standard deviation of 7.23. For the summer, the combination of weights that best
fitted the forecasts was (0.00, 0.50, 0.50), with a mean MAPE of 10.45% and a standard
deviation of 7.34.

Table 7 lists the combinations of weights for the day’s forecast whose season is winter.
This table presents four elements that participate in this combined forecast. The weights
that make this mixture ideal are given by (0.00, 0.00, 0.50, 0.50) with an average MAPE of
9.11% and standard deviation of 5.55.
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Table 6. Mixture DOE arrangement considering three elements to be combined. Results for autumn
and winter are listed.

Definition of Weights AUTUMN SUMMER

w1 w2 w3 Mean Std RMSE Mean Std RMSE

1.000 0.000 0.000 11.81 14.69 8460.70 11.56 6.57 3761.88

0.000 1.000 0.000 10.68 7.02 3455.29 10.85 8.52 5336.96

0.000 0.000 1.000 10.26 8.57 3652.13 10.99 7.15 6303.67

0.500 0.500 0.000 9.68 7.96 4688.76 10.79 6.30 3829.44

0.500 0.000 0.500 10.18 8.42 5077.97 11.08 5.67 4512.14

0.000 0.500 0.500 10.15 7.10 3300.25 10.45 7.34 5531.15

0.333 0.333 0.333 9.29 7.23 3912.76 10.73 5.96 4473.37

0.667 0.167 0.167 10.18 10.09 5961.57 11.14 5.59 3811.88

0.167 0.667 0.167 9.50 6.67 3270.18 10.62 7.33 4766.44

0.167 0.167 0.667 9.46 7.51 3525.27 10.75 6.36 5326.18

Table 7. Mixture DOE arrangement considering four elements to be combined. Results for winter are
listed.

Definition of Weights WINTER

w1 w2 w3 w4 Mean Std RMSE

1.000 0.000 0.000 0.000 12.69 9.57 10,385.48

0.000 1.000 0.000 0.000 12.14 8.56 3540.22

0.000 0.000 1.000 0.000 10.18 7.19 7697.59

0.000 0.000 0.000 1.000 10.62 8.16 4545.09

0.500 0.500 0.000 0.000 10.13 7.16 6627.48

0.500 0.000 0.500 0.000 10.27 7.85 9002.24

0.500 0.000 0.000 0.500 10.24 6.11 5188.97

0.000 0.500 0.500 0.000 10.20 6.89 5219.78

0.000 0.500 0.000 0.500 9.77 5.79 3030.92

0.000 0.000 0.500 0.500 9.11 5.55 4093.82

0.333 0.333 0.333 0.000 9.92 6.43 6905.68

0.333 0.333 0.000 0.333 9.55 5.01 4460.84

0.333 0.000 0.333 0.333 9.48 5.73 5879.64

0.000 0.333 0.333 0.333 9.60 4.59 3656.41

0.250 0.250 0.250 0.250 9.49 4.78 5121.77

0.625 0.125 0.125 0.125 10.43 6.92 7679.59

0.125 0.625 0.125 0.125 10.29 5.95 4154.70

0.125 0.125 0.625 0.125 9.82 5.28 6333.55

0.125 0.125 0.125 0.625 9.11 6.01 3524.42

Table 8 lists the weights for the spring day forecast. Since there are now five elements
to combine, the table naturally grows. The ideal combination of these elements is given
by the weights (0.00, 0.00, 0.333, 0.333, 0.333) with a mean MAPE of 6.75% and a standard
deviation of 6.47.
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Table 8. Mixture DOE arrangement considering four elements to be combined. Results for spring are
listed.

Definition of Weights SPRING

w1 w2 w3 w4 w5 Mean Std RMSE

1.000 0.000 0.000 0.000 0.000 9.09 5.97 5375.06

0.000 1.000 0.000 0.000 0.000 9.96 6.21 5865.79

0.000 0.000 1.000 0.000 0.000 7.79 7.95 1911.04

0.000 0.000 0.000 1.000 0.000 7.47 6.41 2405.00

0.000 0.000 0.000 0.000 1.000 9.11 6.19 3509.90

0.500 0.500 0.000 0.000 0.000 9.08 6.01 5559.79

0.500 0.000 0.500 0.000 0.000 8.02 6.36 3143.83

0.500 0.000 0.000 0.500 0.000 7.18 6.31 2681.28

0.500 0.000 0.000 0.000 0.500 8.40 6.03 4327.25

0.000 0.500 0.500 0.000 0.000 7.70 6.20 3257.93

0.000 0.500 0.000 0.500 0.000 8.33 5.76 2873.90

0.000 0.500 0.000 0.000 0.500 9.52 5.44 4568.76

0.000 0.000 0.500 0.500 0.000 6.96 6.76 1967.43

0.000 0.000 0.500 0.000 0.500 6.86 6.53 2335.71

0.000 0.000 0.000 0.500 0.500 7.91 5.94 2230.48

0.333 0.333 0.333 0.000 0.000 8.05 5.97 3925.49

0.333 0.333 0.000 0.333 0.000 7.94 6.06 3595.62

0.333 0.333 0.000 0.000 0.333 8.76 5.92 4789.12

0.333 0.000 0.333 0.333 0.000 6.89 6.64 2247.16

0.333 0.000 0.333 0.000 0.333 7.51 6.10 3186.68

0.333 0.000 0.000 0.333 0.333 7.40 6.30 2916.67

0.000 0.333 0.333 0.333 0.000 7.30 6.15 2288.46

0.000 0.333 0.333 0.000 0.333 7.75 5.85 3289.61

0.000 0.333 0.000 0.333 0.333 8.59 5.40 3053.61

0.000 0.000 0.333 0.333 0.333 6.75 6.47 1984.66

0.250 0.250 0.250 0.250 0.000 7.35 6.23 2930.91

0.250 0.250 0.250 0.000 0.250 7.97 5.77 3769.22

0.250 0.250 0.000 0.250 0.250 8.03 5.97 3543.74

0.250 0.000 0.250 0.250 0.250 7.00 6.31 2488.77

0.000 0.250 0.250 0.250 0.250 7.47 5.91 2547.88

0.200 0.200 0.200 0.200 0.200 7.45 6.06 3019.06

0.600 0.100 0.100 0.100 0.100 8.11 5.95 4140.78

0.100 0.600 0.100 0.100 0.100 8.64 5.82 4363.38

0.100 0.100 0.600 0.100 0.100 7.02 6.78 2172.83

0.100 0.100 0.100 0.600 0.100 7.09 6.29 2010.39

0.100 0.100 0.100 0.100 0.600 8.11 5.89 3239.70

When one of the weights is null, it indicates that that respective element does not
contribute to the formation of the ensemble and can be discarded, since the multiplication
by zero is zero. A geometric representation of each combination can be visualized using
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the triangle (for three elements) and the tetrahedron (for four elements). Five or more
elements are feasible, but the geometric representation is more difficult to see. From this
perspective, Figure 14 presents the representation of the ideal point of a combination of
forecasts for each season of the year, except spring (which has five weights). Autumn and
summer appear in Figure 14A,C, respectively, through the triangle and winter in Figure 14B,
through the tetrahedron.
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Figure 14. Adjusted weight combination that configures the smallest forecast errors for the seventeen
generation plants, separated by season: (A) Autumn—(0.33, 0.33, 0.33); (B) Winter—(0.0, 0.0, 0.5,
0.5); (C) Summer—(0.0, 0.5, 0.5) and spring, which is not plotted because the combination elements
contained 5 factors (hard to see): (0.0, 0.0, 0.33, 0.33, 0.33). Source: own authors.

As each generation plant has a photovoltaic generation capacity different from the
others, forecasted values may vary in scale. This phenomenon is also observed during
the calculation of the RMSE, which penalizes higher errors in its metric. Therefore, the
actual values and the predicted values are shown in Table 9. The lowest values in scale are
observed in Machado and Passos, respectively, and the highest values in scale are observed
in Ituporanga.

Table 9. Predicted values and actual generation values for each generation plant, grouped by season.

Autumn (kWh) Winter (kWh) Spring (kWh) Summer (kWh)

Forecast Real Forecast Real Forecast Real Forecast Real

Aracaju 23,966.9 25,100.0 37,126.3 41,400.0 42,642.3 43,118.0 34,683.0 36,403.0

Bage 36,250.4 28,229.0 40,877.2 46,476.0 39,031.7 41,862.0 22,631.5 22,844.0

Barbalha 3101.9 3168.0 3371.6 3014.0 3970.1 3159.0 23,961.9 20,956.0

Barueri 47,669.9 45,977.0 53,013.0 46,942.0 47,681.3 54,056.0 37,575.8 38,812.0

Belo Horizonte 28,805.3 24,957.0 18,224.7 15,512.0 16,866.0 18,754.0 16,146.4 13,701.0

Brasilia 20,120.9 18,225.0 22,514.6 22,032.0 15,121.7 15,478.0 15,899.9 15,984.0

Itajai 8384.9 9402.0 8033.4 7605.0 9712.8 9520.0 8755.7 9720.0

Ituporanga 68,829.9 58,946.0 107,354.5 117,897.0 168,483.8 168,432.0 119,304.8 135,011.0

Ji-Parana 9808.7 10,432.0 8177.1 7366.0 10,764.1 11,961.0 7405.9 7480.0

Machado 220.4 257.7 311.6 312.0 245.3 254.3 172.0 197.7

Maraba 25,813.7 24,615.0 26,053.5 28,083.0 24,613.9 24,486.0 12,448.9 15,569.0

Marilia 22,322.1 24,250.0 21,858.0 21,542.0 26,387.1 28,331.0 20,681.1 20,174.0
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Table 9. Cont.

Autumn (kWh) Winter (kWh) Spring (kWh) Summer (kWh)

Forecast Real Forecast Real Forecast Real Forecast Real

Niteroi 23,489.4 23,360.0 17,769.2 15,130.0 28,390.5 29,550.0 25,353.6 23,490.0

Passos 251.7 242.6 249.2 247.8 315.0 276.0 242.7 207.9

Prim. Leste 54,816.4 46,617.0 58,563.1 51,203.0 76,454.9 75,619.0 67,369.0 80,916.0

Rio Grande 8773.2 9258.0 15,973.9 18,324.0 20,349.2 18,887.0 19,782.9 17,510.0

Rio Negrinho 22,120.3 23,390.0 30,433.1 33,236.0 30,766.4 28,696.0 23,055.2 30,180.0

These forecasted values were compiled into a chart (Figure 15) where each red dot
represents a forecast value for one day ahead for each generation plant. The yellow dots
indicate the actual generation values. Charts are grouped by season.
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The map in Figure 16 displays the final, combined forecast for each photovoltaic
generation plant and its respective MAPEs. The highest numerically observed values of
the MAPEs were 28.4% (autumn—Bagé) and 23.6% (summer—Rio Negrinho). On the
contrary, the numerically lower values for each season were 0.1% (winter—Machado and
spring—Ituporanga), 0.5% (autumn—Niterói and spring—Niterói), 0.6% (winter—Passos)
and 0.9% (summer—Bagé). The season with the lowest overall average was spring, possibly
because it is less subject to uncontrollable factors, such as movement of clouds, dust, etc.



Energies 2023, 16, 369 26 of 30
Energies 2023, 16, 369 27 of 32 
 

 

 
Figure 16. Error intensity map by season: the results displayed are the minimum MAPEs found for 
each generation plant, after the process of combining the results. The maps were generated using 
the JavaScript language, through the open source library jQuery MAPAEL [79]. Source: own au-
thors. 

There are studies that use different databases of regions with different characteristics 
from each other. For purposes of comparison with the works developed in the existing 
literature, the results that use the MAPE metric associated with machine learning models 
and hybrid models are perceived in an average error range of 10% to 15%, approximately. 
These values were obtained from [80], which investigated about 180 papers related to 
photovoltaic generation forecast published in the last fifteen years. Therefore, the results 

Figure 16. Error intensity map by season: the results displayed are the minimum MAPEs found for
each generation plant, after the process of combining the results. The maps were generated using the
JavaScript language, through the open source library jQuery MAPAEL [79]. Source: own authors.

There are studies that use different databases of regions with different characteristics
from each other. For purposes of comparison with the works developed in the existing
literature, the results that use the MAPE metric associated with machine learning models
and hybrid models are perceived in an average error range of 10% to 15%, approximately.
These values were obtained from [80], which investigated about 180 papers related to
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photovoltaic generation forecast published in the last fifteen years. Therefore, the results
found in the case study of this work were optimized from the average error of seventeen
generation plants, analyzed together. These results are consistent with the study proposed
by [80].

5. Conclusions

This work presented a photovoltaic generation prediction methodology, whose ver-
satility allows the analyzer to identify the parameters that most interfere with the results.
As the main contribution, the reduction of dimensionality of meteorological data in this
process is highlighted. Keeping the levels of explanation of the variables, the reduction of
the data set using PCA explained the variance of seventeen climatic variables, reducing
them to two or three variables, with a satisfactory degree of average explanation around
75–85%.

It was experimentally found that the combined forecast produced better results when
compared to the best forecasters, considered individually. The case study covered 17 gen-
eration plants located in different regions of the Brazilian territory, and the parametric
evaluation considered all these plants together. The smallest mean errors found for the
combined seasonal forecast were 9.29% and standard deviation 7.23 for autumn, 10.45%
and standard deviation 7.34 for summer, 9.11% and standard deviation 5.55 for winter and
6.75% and standard deviation 6.47 for spring. Since the amount of climate data and photo-
voltaic generation tends to increase, future work should explore other heuristic methods
besides ANNs to verify the fit to the data, which can be different for different regions.

Therefore, this article presents a methodological proposal that promotes advances in
the studies and practice of adopting one-step-ahead prediction models based on machine
learning for short-term predictions. Specifically, the one-day-ahead time horizon was
considered. Faced with the challenge of guaranteeing greater precision, the proposed
model brings contributions insofar as it reduces training time and computational costs, and
optimizes hyperparameters of the algorithms and models complex temporal characteristics.

Furthermore, the choice of forecasting methods based on artificial intelligence and not
strictly on traditional statistical methods allowed the reproduction of non-linear behaviors
more accurately. It is also worth mentioning the theoretical contribution of this research in
several fields of knowledge. The multidisciplinary bias of the study, involving statistics,
engineering and data science, brings advances in different areas.

Limitations of this study include, since heuristic methods are considered: there is no
guarantee of obtaining the optimal forecasting solution, as well as uncontrollable factors
(such as dust deposited on the panels, damaged sensors, lack of data, etc.) that can lead to
inconsistent predictions.
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