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Abstract: Fault detection is an important issue in today’s distribution networks, the structure of
which is becoming more complex. In this article, a data-based Cauchy distribution weighting M-
estimate RVFLNs method is proposed for short-circuit fault detection in distribution networks. The
proposed method detects short circuits based on current and voltage measurements. In addition,
noises were added to the data to ensure the robustness of the method. The performance of the
method was examined in the RTDS RTS simulator using the IEEE 33-bus-bar system model with the
help of real-time simulations. The success rate of the proposed method is between 98% and 100%
for low-impedance (0 ohm) short-circuit faults, depending on the fault type. The success rate of
high-impedance (100 ohm) short-circuit faults, which are more difficult to detect, is between 80% and
92%, depending on the fault type.

Keywords: RVFLN; robust RVFLN; Cauchy-M estimate; IEEE 33-bus model

1. Introduction

In general, power systems consist of three main parts. These are the generation systems
where the electricity is produced, the transmission systems where the electricity is carried
from the production sites, and the distribution systems where the users are connected
to the grid [1]. Advanced technologies increase the power demand continuously and
uninterrupted power systems are important to satisfy this demand. However, entirely
uninterrupted power transmission is not possible. These power outages both cause energy
losses in systems and harm the country’s economy. For instance, according to the Council
of European Energy Regulator’s (CEER’s) report on power losses in 2020, 18 European
countries had distribution losses ranging from 2% to 9% between 2012 and 2018 [2]. The
Electricity Security report published in 2021 demonstrated that USA households suffered
from an immediate cost of 1590 dollars per kW because of power outages [3]. Therefore,
power outages should be quickly detected, classified and resolved. In power systems,
80% of faults occur in the distribution part [4]. Especially, distribution systems have
become very complex, with the connection of renewable energy sources, electric vehicles
and battery systems to them. Distribution networks are highly influenced by these new
elements included. Due to this complex network structure, it becomes complex to detect
the faults and difficult to locate them [5,6].

In the distribution networks, the outages are caused by different types of short-circuit
faults which are classified as symmetrical and asymmetrical faults. The symmetrical fault
that ensures the system’s stability is a three-phase (PPP) short-circuit fault. Although this
fault has a low probability to occur, it is the most severe short-circuit fault since it damages
the system equipment. Another fault type is asymmetrical faults that lead to instability in
the power system. Asymmetrical faults include two-phase-to-ground faults (2PP-G), single
phase-to-ground (1P-G) faults, and phase-to-phase (2P-P) faults. The faults that occur in
distribution networks are generally 70% single-phase-to-ground faults, 15% two-phase
faults, 10% two-phase-to-ground faults and 5% three-phase-to-ground faults [7–9].
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Protection system fuses, automatic reclosers, and over-current relays are used to
eliminate these failures in the distribution system [10–12]. Today, however, distribution
systems are constantly evolving with the inclusion of wind energy systems, photovoltaic
(PV) systems, biomass power plants and electric vehicles [6,13]. The traditionally passive
nature of distribution systems turns into an active network with the continuous inclusion
of new elements. This dynamic network structure brings it with many problems. These
problems cause loss of protection coordination and the blinding of some relays [5,13]. It
also causes severe damage to distribution networks due to high impedance fault (HIF) and
low fault current magnitudes [5,14]. In particular, the high impedance fault (HIF) is below
the limit that can be detected by over-current relays and fuses [15,16]. For example, [17], it
is stated that commercial over-current relays can only detect 50% to 60% of cases despite
efforts to develop devices to detect HIFs. Therefore, protection system fuses, auto-reclosers
and over-current relays no longer meet the requirement for safe and stable operation every-
time. A fast and accurate diagnostic method should be offered to increase the reliability of
distribution systems, reduce economic losses, and shorten the time needed by maintenance
personnel to search for faults.

Studies are available in the literature to resolve and classify faults. Fault detection is
generally classified into two groups, which are model-based methods and pattern recog-
nition methods. Model-based methods require a mathematical model that adequately
explains the processing system. The complexity of calculations increases as the size of the
power system network expands. The system fails to operate rapidly despite making an
accurate classification [8,18,19]. Pattern recognition methods require a sufficient amount of
historical process data. Intuitively, the task is defined with a set of mathematically express-
ible measurement data as a function between measurement and decisions. A mathematical
expression of the underlying physical process is not required. Therefore, it leads to faster
fault detection [8,18].

Fault detection with conventional machine learning classification methods has been
vastly explored in the literature. In [20–23], a decision tree method was used for fault
detection, but the method requires a great amount of training data and has a slow learning
process. Fault detection was performed by using artificial neural networks (ANN) in [24–28].
However, this method is inefficient, as the training takes longer and causes such problems as
over-fitting and under-fitting. In [29–31], support vector machines (SVMs) were used as the
fault detection method whose sensitivity to parameter selection, however, is a disadvantage.
As it is also a quadratics method, training times increase dramatically. Sparse Representation
[32] was used as a fault detection method but it had disadvantages such as limited computa-
tional power in large data, classification with limited memory, and considerable slowness.
In [33], although the Random Forest (RF) method was utilized for fault detection, it worked
quite slowly in real-time estimations. Faults were detected with K-Nearest Neighbor in [34].
However, sensitivity to noise and outliers were among the observed problems. In [9,35],
Extreme Learning Machine (ELM) was used for fault detection, but the conventional ELM
fails to train large data rapidly and efficiently due to its memory residence and high space
and time complexity. Fault detection was performed using Convolutional Neural Network
(CNN) in [36,37]. Training CNNs takes a very long time, particularly with large data-sets.
Special equipment (such as GPU) is usually needed to expedite the training process. In
[38–40], fault detection was performed with the long short-term memory (LSTM) method.
In LSTMs, easy over-fitting, longer training times, and sensitivity to random weight initial-
ization are some of the drawbacks. A convolutional sparse auto-encoder (CSAE) was used
in [41] for fault detection. As an automatic encoder learns to capture as much information
as possible instead of the required information, certain important information may become
lost, which is a disadvantage of this classification method.

Literature reviews have revealed that despite a large number of studies on short-
circuit faults, very few studies are available on the detection of high-resistance faults.
Including these studies, short-circuit fault detection studies generally disregarded the
sensor-induced noises. In these studies, a novel method grounded on random vector
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functional link networks (RVFLN) for fault detection in the distribution network was
proposed. This method worked by using current and voltage measurements. In order
to test the performance and accuracy of the proposed method, an IEEE 33-bus power
system was modeled in RTDS RTS (real-time simulator). In the resulting model, data
were retrieved from different faults. In addition, the noise was added to these data to
ensure robustness. In this study, 14 feature vectors were constructed from data considering
both high-resistance short-circuit faults and sensor-induced noises in order to differentiate
between fault conditions and normal operation. Such feature vectors were obtained from
recorded current and voltage measurements. Then, the Cauchy Distribution Weighting
M-Estimation RVFLNs (Cauchy-M-RVFLN) of the system was constructed. Finally, the
detection performance of faults occurring in various types and resistances was explored
with the trained Cauchy-M-RVFLN system. Results from the proposed method were
contrasted with those from leading classification methods available in the literature. The
contributions of this study are as follows:

1 In real-time studies, noise is an inevitable problem for sensors. If these noises in sen-
sors are disregarded, they may cause such problems as declassification, low accuracy,
and under-fitting in both signal processing and machine learning practices. Noise has
been disregarded in many studies in the literature ([18,19,21–32,34–40]). This study,
however, takes the noise effect into account.

2 Studies in the literature generally used Matlab for the implementation of the single-bus
distribution systems. Matlab simulations must be compared with real-time systems or
its stability analysis must be presented. In this proposed method, the 33-bus system
was implemented by using RTDS RTS (real time simulator). It is significant to use
the IEEE 33-bus system in that it is a small-scale but comprehensive structure that
encompasses virtually all of the features of real-time smart distribution systems.

3 The proposed Cauchy M-RVFLNs, thanks to the calculation method for random layers
and weights (non-use of LS), overcomes problems encountered by conventional meth-
ods such as back propagation and gradient descent, low accuracy with small datasets,
long learning times, great need for computational sources, quadratic programs and
noise sensitivity.

4 In [18–40], six previously unused novel features were constructed. These features con-
tributed to the fault detection accuracy by 10% in high-resistance short-circuit faults.

5 In [18–40], high-resistance short-circuit faults were assessed with other types of faults,
and an average accuracy ratio was provided. High-impedance faults were not gen-
erally detected separately in the studies. In this study, the detection accuracy of
short-circuit faults with different fault resistances has been presented separately.

The remainder of this paper has been edited as follows: In Section 2, we presented
feature extraction and model formulation of the Cauchy-M-RVFLN system. In Section 3,
we provided information on the 33-bus system simulated in RTDS. Section 4 contained
the experimental results and a statistical assessment of classification models. Finally, in
Section 5, the results were discussed.

2. Proposed Fault Detection Method

We will demonstrate how to construct new feature vectors grounded on the voltage
and current measurements of 33-bus system which was modeled in the RTDS simulator.
For real-time fault detection, the Cauchy-M-RVFLN model is proposed. In this model, the
Cauchy M estimate RVFLN method proposed by [42] for the estimation of molten iron
quality in iron production facilities is used. However, the Cauchy M RVFLN method has
not been used for fault detection in distribution systems. In this study, the success of this
method in fault detection has been examined.

2.1. Feature Construction

Data must be prepared to detect the faults in a power system and differentiate faults
from normal system operation. In the IEEE 33-bus power system modeled in RTDS, current
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and voltage data are retrieved from eight different buses n = 7, 8, 11, 14, 20, 21, 24, and
values are measured from each phase in these buses. Feature vectors were constructed
from these measured values. A total of 14 feature vectors listed in Table 1 were constructed
to contain different fault conditions. The initial four feature vectors (F1, F2, F3, and F4)
were used as current magnitude In(ϕi)t, voltage magnitude Vn(ϕi)t, current angle θIn (ϕi)t,
and voltage angle θVn (ϕi)t, respectively, to secure the applicability of the recommended
algorithm to power systems of different sizes and to abstain from parameter re-setting [43].
F5, F6, F7, and F8 serve to detect the immediate changes in current and current angle and
the immediate changes in voltage and voltage angle. F9, F10, F11, F12, F13, and F14 raw
measured data can be transformed into differential features through signal norms. The
appropriate signal attributes are achieved with three main signal norms, which are norms
1, 2, and infinity [44]. We calculated the 1-norm, 2-norm, and infinity norm (`1, `2 and
`∞-norms, respectively) for each row of the feature matrix to obtain vectors.

Table 1. Feature Vectors for Fault Detection.

Features Notation Formulation

F1 In(ϕi)t current magnitude
F2 Vn(ϕi)t voltage magnitude
F3 θIn(ϕi)t current angles
F4 θVn(ϕi)t voltage angles
F5 d/dt(In) Derivative of Current magnitude
F6 d/dt(Vn) Derivative of voltage magnitude
F7 d/dt(θIn) Derivative of current angles
F8 d/dt(θVn) Derivative of Voltage angles

F9 ‖Vn‖1
360

∑
j=1
|Sj|

F10 ‖Vn‖2

360

∑
j=1

(Sj)2

1/2

F11 ‖Vn‖∞ max |Sj|
j

F12 ‖In‖1
360

∑
j=1
|Sj|

F13 ‖In‖2

360

∑
j=1

(Sj)2

1/2

F14 ‖In‖∞ max |Sj|
j

2.2. RVFLN’s Model Establishment

The RVFLN Model was developed by Pao et al. as a single hidden layer feedforward
network in 1992 [45]. Its simple structure is shown in Figure 1. RVFLN has been successfully
used in several engineering techniques [42,46–50] for regression and classification purposes
since its development. The advantage of RVFLN is that the weights between the input
layer and the hidden layer are randomly appointed and do not need to be adjusted. The
output weights are calculated using the least squares method algorithm (LS). RVFLNs can
process the data in real time in most technical procedures.

ax = [a1, a2, . . . , axn]T ∈ Rn and bx = [b1, b2, . . . , bxm]T ∈ Rm can be, respectively,
defined as input and output vectors, and L can represent the hidden-node RVFLNs:

fL,x(ax) =
L

∑
j=1

ψjv(< zj, ax > +pj)x = 1, 2, . . . , M (1)

fL,x(ax) is the output of RVFLNs, zj ∈ Rn, j = 1, . . . , L is the hidden weighting matrix that
is randomly generated in a certain probability space and links the input layer to the hidden
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layer [42,48], ψj = [ψj1, ψj2, . . . , ψjm]T jth are the output weights that link the hidden node
to training output nodes, pj is the bias of hidden node jth < zj, ax > zj, ax denotes the
inner product of vectors, and v(·) is a non-linear activation function that satisfies one of the
following equations. ∫

R

v2(a)da < ∞ or
∫
R

[v′(a)]2da < ∞ (2)

Figure 1. RVFLNs structure.

Minimizing the error between actual output values and modal output values is essential
for the learning purpose of RVFLNs. That is, it needs to find ψj, zj and pj that satisfy the
following conditions.

L

∑
j=1

ψjv(< zj, ax > +pj) = bx, x = 1, 2, . . . , M (3)

which can be composed exactly as
Dψ = B (4)

D is the hidden output matrix, ψ represents the training output weighting matrix and B is
intended as the output matrix, which are particularly identified as:

D(z1, . . . , zL, a1, . . . , aM, p1, . . . , pL) =

D1
...

DM

 (5)

=


v(< z1, a1 > +p1) . . . v(< zL, ax > +pL)

...
. . .

...

v(< z1, aM > +p1) . . . v(< zL, aM > +pL)


MxL

(6)

Description 1. Random parameter intervals (zj, pj) should be chosen appropriately for the perfor-
mance of RVFLNs. In [48], Igelnik and Pao came up with a theoretical conclusion to determine
random parameter ranges. Because the parameters are estimated by trial and error, it is still difficult
to use the theoretical result proposed in [42,48] in real applications. In this study, we will adjust
parameter ranges from [−1, 1] to [−M, M] based on the experimental results, where M ∈ Z+.

Parameters (z1, . . . , zL, p1, . . . , pL) are randomly assigned to train the functionally
linked networks and detect the weight of the optimal outputs ψ̂:
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ψ̂ = arg min
ψ∈RLxm

∥∥Dψ− B
∥∥2 (7)

The solution LS is implemented, ψ̂ = D†B and D† = (DTD)−1DT is the generalized
Moore–Penrose inverse of the matrix D. Furthermore, the private solution ψ̂ = D†B has
the least norm. All of them are the LS solutions of Dψ = B.

M-Estimation-Robust RVFLNs Algorithm

The M-estimation suggested by Huber is the most widely used robust estimation
method [42,51–55]. Unlike LS, which uses the sum of squared differences between noticed
and calculated values as the objective function, M-estimation identifies a new objective loss
function for the residual error. The recommended RVFLNs algorithm with M-estimation
(M-RVFLNs) is identified as follows.

(1) One-Output M-RVFLNs:

m = 1, ψ, B in (4) can be simplified as

ψ = [ψ1, ψ2, . . . , ψL]
T
L×1, B = [b1, b2, . . . , bL]

T
M×1 (8)

Thus, the LS solution of (4) is given as ψ̂ = D†B = (DTD)−1DT and the corresponding
objective function is:

Q =
M

∑
x=1

r2
x =

M

∑
x=1

(bx−Dxψ)2 (9)

After the introduction of M-estimation for RVFLNs, the objective function of the
modeling residuals is changed to:

Q =
M

∑
x=1

ρ(rx) =
M

∑
x=1

ρ(bx −Dxψ) (10)

where ρ is an influence function of the residuals. The optimal outputs weight link ψ̂ of
M-RVFLNs can be determined as follows:

ψ̂ = arg min
ψ

M

∑
x=1

ρ(bx −Dxψ) = arg min
ψ

M

∑
x=1

ρ(rx(ψ) (11)

When the robust scale estimator σ̂ is introduced to (11), the form of ψ̂ can be expressed
as follows:

ψ̂ = arg min
ψ

M

∑
x=1

ρ(
bx −Dxψ

σ̂
) = arg min

ψ

M

∑
x=1

ρ(
rx(ψ)

σ̂
) (12)

Let ∂(
M

∑
x=1

ρ(
rx(ψ)

σ̂
))/∂ψ = 0 one can acquire

M

∑
x=1

ϕ(
rx(ψ)

σ̂
)DT

x ,
M

∑
x=1

ρ′(
rx(ψ)

σ̂
)DT

x = 0 (13)

Define the following weight factor:

ω(rx) , ϕ(rx)/rx (14)

If we solve the estimation equation shown in (13)

M

∑
x=1

ω(rx(ψ)/σ̂)× (bx −Dxψ)DT
x = 0 (15)
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This can be written precisely as

DTWDψ = DTWB (16)

The iteration formula of ψ̂ can be derived further:

ψ̂(k+1) = (DTW(k)D)−1DTW(k)B (17)

W is the weighting matrix with ωx, x = 1, 2, . . . , T as the diagonal elements, that is, W =
diag{wx}, and each ωx is the weighting factor defined in (14).

Description 2. The robust scale estimator σ̂ in (12) is of great importance for M-estimation. σ̂ is
determined as the median absolute deviation (MAD) around the median:

σ̂ = MAD/0.6745, MAD = mediani(|ri −median(ri)|) (18)

The statistical measure of dispersion that is less affected by the outliers in the dataset
than the standard deviation is defined as the MAD. The square of the distances from the
mean is obtained using the standard deviation. In this way, outliers can further influence
the model established for greater weightings of large deviations. MAD works better with
the Cauchy distribution [51].

(2) Multi-Output M-RVFLNs:

m > 1, M-RVFLNs have multiple outputs. Thus situated, ψ, B are clarified as:

ψ = [ψj1, . . . , ψjc, . . . , ψjm]

=

ψ11 . . . ψ1m
...

. . .
...

ψL1 . . . ψLM


L×m

,
j = 1, . . . , L

c = 1, . . . , m

(19)

and

B = [bx1, . . . , bxc, . . . , bxm]

=

 b11 . . . b1m
...

. . .
...

bM1 . . . bMm


M×m

,
x = 1, . . . , M

c = 1, . . . , m

(20)

The size of the weight factor matrix ω(rx(ψ)/σ̂) and B are consistent, both are M× n
sized, so that

ω =
[
w1 . . . ωxh . . . ωxm

]
=

 ω11 . . . ω1m
...

. . .
...

ωM1 . . . ωMm


M×m

(21)

The estimation equation explained in (15) cannot be formed in matrix form as in (16),
and the ψ̂ iteration formula becomes

ψ̂(k+1) = [ψ̂
(k+1)
j1 , . . . , ψ̂

(k+1)
jh , . . . , ψ̂

(k+1)
jm ]

= [(DTW(k)
x1 D)−1DTW|x1(k)bx1, . . . ,

(DTW(k)
xh D)−1DTW|xh(k)bxh, . . . ,

(DTW(k)
xmD)−1DTW|xm(k)bxm]

(22)

W = diag{wxh}c = 1, 2, . . . , m. The application of multi-output M-RVFLNs can be de-
scribed as follows:
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Step 1: ψ̂(0) is calculated by ψ̂ = D†B = (DTD)−1DTB;
Step 2: The residual vector r(0) is calculated according to ψ̂(0); afterwards, σ̂ is calcu-

lated by σ̂ = medianx(|rx −median(rx)|)/0.645 to acquire the standardized residual vector
(r̂)(0)/σ̂(0);

Step 3: Substitute the standardized residuals into the weighting ω(rx) , ϕ(rx)/rx, to
calculate each weighting factor, and also obtain the weighting matrix W(0);

Step 4: The ψ̂(0) . . . , ψ̂(k), ψ̂(k+1) is calculated iteratively [34]. If predictions of all the pa-
rameters are smaller than the particularized convergence conditions (

∣∣∣ψ̂(k+1)
jh − ψ̂

(k)
jh

∣∣∣/ψ̂
(k)
jh

< ε = 10−6 ), the final regression coefficients can be achieved as ψ̂M = ψ̂(k+1).

2.3. Cauchy Distribution Weighting M-RVFLNs

The M-RVFLN evaluates the contribution of each observation to the estimator by
weighting the outliers. Therefore, it is very important to decide on the weighting factor.
Outliers should be determined accordingly. In addition, the weighting method of the
Cauchy distribution is used in practical applications to solve the overfitting problems of
conventional methods and the problems in the selection of harmonic parameters.

(1) Definition of the Cauchy distribution method [56,57]:

The method of Cauchy distribution is the distribution that can be expressed virtually
to the stability and probability density function (PDF). A random variable set D has Cauchy
distribution if D has a perpetual distribution on R and its PDF is:

p(d; hc, kc) = kc/π(k2
c + (d− d2

c )), d ∈ R (23)

hc ∈ R, is the parameter specification of the location of the summit of the distribution, and
kc ∈ (0, ∞) It is explained as the scale parameter that gives half the width at half maximum.
Precisely, the max value of the Cauchy PDF is 1/πkc, which is at d = hc The farther d is
from hc, the smaller the value of p(d).

(2) Parameter determination method:

The feature of Cauchy distribution is emphasized by parameters kc and hc:

1. hc: is used to determine the roles of “outliers” and hc is the median value of the
modeling error ( hc = median(rx)).

2. kc : As shown in (39), Cauchy describes the characteristic of the PDF, its value needs
to be designated by the statistical properties of the modeling error distribution. If
the modeling error distribution is small, the value of kc should be huge. Otherwise,
kc must be small. It can be explained as a function of the inverse of the standard
deviation of the kc modeling error. Equation (24) explains:

kc =
1√√√√ M

∑
x=1

∥∥∥∥∥rx −
M

∑
x=1

rx

M

∥∥∥∥∥
2

/M

(24)

The flow chart of the proposed method is given in Figure 2. First, the properties were
obtained from the current and voltage vectors taken from the system. Then, the initial
weights of the RVFLN algorithm were randomly initialized. D was then calculated. Output
weights were calculated using the M-estimate method. The weights are updated according
to the Cauchy Distribution Weighting method until the condition in Step 4.
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Figure 2. Flow chart of the Cauchy Distribution M-estimate RVFLNs.

3. Case Studies

As a result of the introduction of energy sources into power systems, such as distributed
generators, renewable energy systems, distributed storage, and electrical equipment, power
systems have become more complex. Therefore, an expanded testing scale is required for
power system studies. The IEEE 33-bus system developed by Baran and Wu [58] is a small
but comprehensive structure that encompasses virtually all features of real-time intelligent
distribution systems. The IEEE 33-bus distribution test system is shown in Figure 3. The
IEEE 33-bus radial distribution system consists of thirty-three buses and thirty-two lines. All
bus-bars operate at a 12.66 kV voltage level. The maximum and minimum voltage limits for
all bus-bars are considered±5%. The network has a total power of 3.715 MW and 2.3 MVAR
connected to thirty-two bus-bars with different power factors. More detailed information can
be found in the articles [59–62]. The IEEE 33-bus system represents an advanced benchmark
for modern power distribution networks and is suitable for research needs with its suitable
reactive power compensation units, integration of one-phase generation, storage units,
balanced and unbalanced three-phase versions.
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Figure 3. IEEE 33-node distribution network.

In this study, the IEEE 33-bus system shown in Figure 3 was preferred because it is
a small but comprehensive structure that includes virtually all the features of intelligent
real-time distribution systems. Real-Time Digital Simulation Software (RTDS) is used to
apply new ideas and test existing ones before power system equipment is connected to
real systems. The Real-Time Simulation Software Package (RSCAD) simulation interface
using RTDS is designed for power system simulation. It contains a large number of power
system components in its library to simulate the RSCAD power system. Thus, it is possible
to create, control and analyze power systems and microgrids in real time [63,64]. The IEEE
33-bus power distribution system was modeled in RSCAD simulation software. Then,
current and voltage data were retrieved from eight different buses n = 7, 8, 11, 14, 20, 21,
24, and values are measured from each phase in these buses. Fault data, including three
single-phase ground fault (PG), three two-phase faults (PP), two two-phase ground faults
(PP-G), and three three-phase faults (PPP), were obtained considering the parameters in
Table 2.

Table 2. Fault dataset parameters.

Parameter Type Parameter Value Parameter Quantity

System Frequency/Hz 50± 5% 1
System Voltage/kV 12 1

Transition Resistance-ohm 0, 30, 50, 100 4

4. Real-Time Simulation Results and Discussion

Modern power and energy systems are characterized by distribution, transmission,
generation, storage, the massive integration of electrical equipment, and the interconnection
of renewable energy systems and consumers, resulting in an extremely complex structure.
In such a complex environment, advanced testing and validation methods are required
to efficiently validate the power systems and controls to support the transition to a clean
and sustainable energy system [65]. In the past, modeling was performed using traditional
phasor-based approaches. However, since phasor-based modeling tools are not able to
represent low-level inverter controls or capture the fast network dynamics during transient
conditions, good results could not be obtained. For modern power systems, EMT simulators
are increasingly preferred due to their ability to provide results over a wide frequency range.
In the present study, we used the RTDS (Real-Time Digital Simulator or RTS), which was a
real-time simulator originally developed in the 1980s [66,67].

4.1. Simulation Results

In this study, the IEEE 33-bus system model is simulated the RTDS Simulator. Fault
data with different fault resistances were obtained in this model. Then, fault types were
classified using these simulation data with the Cauchy-M-RVFLN Algorithm method. As
seen in Table 3, accuracy decreased as fault resistance increased. The method achieved the
lowest accuracy with 82% for a two-phase fault in 100 ohm fault resistance.
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Table 3. Accuracy rates according to fault resistance values.

1P-G 2PP-G 2P-P 3PPP

0 ohm 100% 100% 100% 100%
30 ohm 100% 100% 100% 100%
50 ohm 100% 96% 95% 98%
100 ohm 100% 94% 93% 97%

4.2. Robustness Simulation Results

In this study, the proposed method’s reaction was tested by adding different propor-
tions of outliers to the constructed datasets. Firstly, random samples in proportions of 0%,
5%, 10%, 15%, . . . , 50% were taken from the datasets acquired from the IEEE 33-bus system.
Then, outliers were obtained by preprocessing the target output. Outliers were introduced
to the target output B& = [b1, . . . , b4] of these selected normal samples, as shown in the
following equation:

bx,outlier = bx + sing× [rand(0, 1)(max(bx)−min(bx))] (25)

rand(0, 1) are random values ranging from (0,1). max(bi) and min(bi) re explained as the
maximum and minimum values of bi, respectively, under normal operating conditions.
To make the outliers more unbalanced in practical applications, the ratio of positive to
negative outliers in selected sample points is adjusted at a ratio of 2 to 1. Additionally, when
adding the positive outliers, the sign should be = 1, when adding the negative outliers, the
sign should be = −1. Unlike the training dataset, no outliers are added to the test dataset.
Datasets from the IEEE 33-bus system were used to test the robustness of the recommended
method against outliers. In addition, 20% of the samples were elected from the normal
training dataset, and the target output of these selected samples was preprocessed with the
formula:

bx,outlier = bx + α× sing× [rand(0, 1)(max(bx)−min(bx))] (26)

α = ranges from 0 to 5 in increments of 0.5 and serves to calculate the amplitudes of outliers.
Likewise, the ratio of outliers with positive and negative trends in selected sample points is
adjusted at a ratio of 2 to 1 to make the outliers more unstable. In addition, the test data set
does not contain any outliers.

In the present study, new datasets were generated by adding outliers as described to
the data previously processed in RTSD. The results of error classification accuracy using the
Cauchy-M-RVFLN algorithm are shown in Table 4. As shown in Table 4, very similar results
were found for noisy and noise-free data in the classification accuracy of the different types
of errors at different error resistances. The accuracy of the method decreased by about 2%
under noisy conditions. However, the accuracy of the method was high despite the added
noise, which shows that the method provides accurate results despite the noise and proves
its accuracy.

Table 4. Accuracy rates according to fault resistance values.

1P-G
without
Noise

1P-G
with

Noise

2P-G
without
Noise

2P-G
with

Noise

2P-P
without
Noise

2P-P
with

Noise

3PPP
without
Noise

3PPP
with

Noise

0 ohm 100% 100% 100% 95% 100% 94% 100% 98%
30 ohm 100% 95% 100% 88% 100% 85% 100% 96%
50 ohm 100% 94% 100% 86% 95% 82% 100% 92%
100 ohm 100% 92% 94% 85% 93% 80% 96% 90%



Energies 2023, 16, 252 12 of 18

4.3. Comparison with Common Machine Learning Methods

In this study, we generated new datasets as described by adding outliers to data
previously prepared in RTDS. According to this new dataset, the fault detection accuracy
of conventional machine learning methods CNN, LSTM, SVM, ELM, RVFLNs and Cauchy-
M-RVFLN used to detect faults in a distribution network was compared.

Figure 4 shows the fault detection accuracy of different methods for four different
fault types with different fault resistances. As seen in Figure 4a, the highest accuracy in
single phase-to-ground noise data was achieved with Cauchy-M-RVFLN. In case of a fault,
the accuracy decreased as the fault resistance increased, but this method’s accuracy was
high. The Cauchy-M-RVFLN method achieved 100% accuracy in 0 ohm fault resistance
and 92% accuracy in 100 ohm fault resistance. The RVFLN method achieved 93% accuracy
in 0 ohm fault resistance and 84% accuracy in 100 ohm fault resistance. The CNN method
achieved 93% accuracy in 0 ohm fault resistance, which was the second best result, and
80% accuracy in 100 ohm fault resistance, which was lower than that of the RVFLN method.
LSTM, SVM and ELM methods ranked 4th, 5th and 6th in terms of accuracy, respectively.

(a) (b)

(c) (d)

Figure 4. The Fault Detection Accuracy of Different Methods.

The highest accuracy was achieved with the Cauchy-M-RVFLN method in noise data
with two phase-to-ground faults (Figure 4b). The Cauchy-M-RVFLN method performed
fault detection with 94% accuracy in 0 ohm fault resistance, while the RVFLN method,
which produced the closest results, detected the faults with 82% accuracy. The Cauchy-M-
RVFLN method performed fault detection with 80% accuracy in 100 ohm fault resistance,
while the RVFLN method, which had the closest results, detected the faults with 78%
accuracy. For this fault type, fault classification accuracy was the highest with CNN, LSTM
SVM and ELM methods, respectively, following the said two methods.
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The highest accuracy was achieved with the Cauchy-M-RVFLN method in noise
data with two-phase faults (Figure 4c). The Cauchy-M-RVFLN method performed fault
detection with 94% accuracy in 0 ohm fault resistance and 80% accuracy in 100 ohm fault
resistance. The Cauchy-M-RVFLN method performed the classification with 14% higher
accuracy than the RVFLN method, which achieved the closest classification accuracy. CNN,
LSTM, SVM and ELM methods had accuracy below 80%.

The highest accuracy was achieved with the Cauchy-M-RVFLN method in noise
data with three-phase faults (Figure 4d). The Cauchy-M-RVFLN method performed fault
detection with 98% accuracy in 0 ohm fault resistance and 90% accuracy in 100 ohm fault
resistance. The RVFLN method achieved 85% accuracy in 0 ohm fault resistance and 80%
accuracy in 100 ohm fault resistance. CNN and LSTM methods achieved 84% accuracy in 0
ohm fault resistance and 80% accuracy in 100 ohm fault resistance. SVM and ELM methods
demonstrated an accuracy ratio below 80%. In all fault types and all fault resistance
values, the Cauchy-M-RVFLN method had higher classification accuracy than the other
compared methods. The accuracy decreased as the fault resistance increased, but this
method’s accuracy was still high. The method delivered a classification performance with
approximately 10% higher accuracy than the RVFLN method, which achieved the closest
classification accuracy.

4.4. Comparison of Computational Efficiency

As given in Table 5, noise-added data were compared in CNN, LSTM, SVM, RVFLNs
and Cauchy-M-RVFLN in terms of fault detection, training time and testing time. Although
the training time of the proposed method was lower compared to RVFLN, the accuracy
was high.

Table 5. Comparison of train/test time.

Training Time (s) Testing Time (s)

Cauchy-M-RVFLN 0.0470 0.0050
RVFLN 0.00221 0.0050
CNN 0.247 0.576
LSTM 0.645 0.743
SVM 0.898 0.974
ELM 0.453 0.664

5. Comparison with Previous Studies

The proposed method was compared with other studies in the literature. As shown in
Table 6, this study is more valuable than other publications due to the use of 14 different
data inputs. In addition, the proposed method used a IEEE 33-bus system, while a single-
bus system was utilized in most of the systems to generate simulation data. Studies in
the literature were based on simulation data, but our study was conducted on a real-time
simulator (RTDS). While most of the publications disregarded the noise values, this study
also included the noise data. Considering all these parameters, we can say that this study
stands out as it simulated real systems and demonstrated high accuracy.

In this paper, fault types in distribution systems were detected and classified by using the
Cauchy-M-RVFLN method. Different from other studies in the literature, this study provided
classification accuracy for each fault resistance. In the literature, an average classification
success result is given for all fault resistance values. No studies were available that included
high fault resistance values. In case of faults with high resistance, fault detection becomes
more difficult, and the accuracy of methods decreases in high resistance values.
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Table 6. Compared with Other Studies in the Literature.

Topology Data Acquisition Implementation Algorithm Effect of Noise Accuracy (%) Disadvantages

[9] Single transmission
line model 3-phase currents input MATLAB Simulink Summation-Wavelet ELM,

Summation-Gaussian ELM Noise was disregarded 98.22 Cannot train big data quickly
and efficiently

[32]

(1) Three-phase
double-ended system
(2) MMC-based
back-to-back HVDC system

3-phase currents input PSCAD software Group sparse representation Different noise values
were considered 96.92

Classification with limited
memory and slows down
significantly

[34] A five-bus power system 3-phase currents input
and square of currents

MATLAB simulation data
were used

k-Nearest Neighbor
algorithm (k-NN) Noise was disregarded 98 It is affected by noises

[37] 33-node distribution
network

3-phase currents and
voltages data

MATLAB simulation data
were used ACNN Noise was disregarded 95.80 Large datasets take a long

time to train

[41] Single transmission
line model

3-phase currents and
voltages data

MATLAB simulation data
were used

Convolutional sparse
autoencoder (CSAE)

Different noise values
were considered 92.22 Important information

may be lost

[43] Four-machine two-area test
power system

4 features input
(current, current angle,
voltage, voltage angle)

MATLAB simulation data
were used LSTM method were used Noise was disregarded 96.71

Easy overfitting, longer
training times and sensitivity
to random weight
initialization

[68] Single transmission
line model

3-phase currents signals
were used

MATLAB simulation data
were used SVM classifiers Noise was disregarded 98.5 It is affected by noises

[69] Single transmission
line model

3-phase current and
voltage data

MATLAB simulation data
were used CNN Noise was disregarded 99.99 Large datasets take a long

time to train

[70] Single transmission
line model

3-phase currents signals
were used

MATLAB simulation data
were used k-means clustering Different noise values

were considered 99.50 It is affected by noises

Proposed
method

33-node distribution
network 14 different data input RSCAD, RTDS simulator Cauchy-M-RVFLN Different noise values

were considered 89.94
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Studies in the literature, on the other hand, were conducted for zero or low fault
resistances. Even though it may seem that studies in the literature had successful results,
these achieved results were only for faults with 0 or low resistance. In the present study,
accuracy was assessed separately for each fault resistance. In the table above, we proposed a
total of 14 features, six of which were not in the literature. The classification was performed
according to these features. A 33-bus system was modeled in RTDS to experiment with the
method and retrieve data. In the model, data were obtained in realistic working conditions
by taking modern distribution systems into consideration. The real-time nature of the model
increased its accuracy. Sensor-induced noise was generally not considered in studies on
the detection of short-circuit faults. In studies [20,30,51], the noise was taken into account.
However, in these studies, single-bus systems were used. In the present study, results were
obtained on a realistic model by considering both high-resistance short-circuit faults and
sensor-induced noises.

6. Conclusion and Future Works

In this paper, data were obtained for three single-phase-to-ground faults, three two-
phase-to-ground faults, three phase-to-phase faults and one three-phase short-circuit faults
in 0 ohm, 10 ohm, 50 ohm and 100 ohm short-circuit fault resistances in the IEEE 33-bus
power system modeled in RTDS. The Cauchy-M-RVFLN method was presented for the
detection of short-circuit faults with different types and resistances. In order to test the
method’s accuracy, data obtained from the system modeled in RTDS were used. Moreover,
random noise was added to achieve more realistic data. Six new features were constructed
for the detection of short-circuit faults with high fault resistances. These features con-
tributed to increasing the detection accuracy of high-impedance short-circuit faults by 10%.
In the classification based on data retrieved from RTDS, a classification accuracy of over
90% on average was achieved for all types of faults and resistances. It was observed that
the accuracy slightly decreased as the fault resistance increased during a fault condition.
In a later classification with added noise to simulation data, the accuracy decreased by
2%. In this study conducted with a multiple-bus real-time simulator, the success rate was
high considering different types of faults and resistances. In the second section of this
paper, comparisons were made with similar studies using different classification algo-
rithms. Noise-added simulation data were used in this comparison. It was detected that
the Cauchy-M-RVFLN method demonstrated very high accuracy results in different fault
conditions. In addition, the proposed method had much higher training and testing speeds
than other methods.

Since the features are normalized in the proposed algorithm, it can be successfully
applied to transmission systems. The algorithm we propose provides both the short-circuit
fault detection of transmission lines and the detection of high-impedance short-circuit
faults that are difficult to detect. In addition, these fault types should be analyzed in order
to use the proposed method in the detection of transformer and generator faults. The use
of these recommended features in transformer and generator failures will provide a lower
success rate compared to distribution and transmission networks. Therefore, it is necessary
to extract new features for transformer and generator fault detection.
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