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Abstract: Frequency, tie-line power, and the terminal voltages of synchronized generators must all
be kept within prescribed limits to ensure the stability of an interconnected power grid through
combined automatic generation control (AGC) and automatic voltage regulator (AVR) loops. Thermal
power plants, electric vehicles, and renewable energy sources—including solar and wind, geothermal,
and solar thermal power plants—form the two-area integrated power system in present research.
A new cascade controller named the cascaded proportional integral derivative (PID) and fractional-
order PID (CPID-FOPID) controller is proposed for the first time, whose performance is compared
with the PID and FOPID controller. The results show that the proposed cascade controller outperforms
PID and FOPID in delivering superior dynamic characteristics, including short settling times and
low oscillation amplitudes. A new metaheuristic algorithm named the coot algorithm was applied to
optimize the parameters of these controllers. The suggested controller outperforms FOPID in the
combined AGC and AVR problem under uncertain conditions (random load disturbance, variable
input of solar irradiation, and wind power). Robustness of the controller is tested with significant
variation in the turbine time constant of the thermal and geothermal power plant. In this study,
authors also investigated the best possible coordination between the superconducting magnetic
energy storage (SMES) and gate-controlled series capacitor (GCSC) devices to control both voltage
and frequency simultaneously. The effect of communication time to the power system is analyzed in
this study. Additionally, the obtained results are satisfactorily validated using OPAL-RT real-time
digital simulator.

Keywords: automatic generation control (AGC); automatic voltage regulator (AVR); gate-controlled
series capacitor (GCSC); superconducting magnetic energy storage (SMES); cascaded controller

1. Introduction

In an integrated power system having several control zones, power system engineers
are primarily concerned with maintaining frequency and voltage levels close to optimal
operating conditions. By balancing load demand with generation and related losses,
a well-maintained power system is supposed to provide uninterrupted, high-quality power
to its customers. In a real-time situation, the load changes continuously, so there exist
fluctuations in frequency and voltage. To keep these variations within acceptable limits,
each generator needs two control loops: an automatic generation control (AGC) and
an automatic voltage regulator (AVR) [1,2].
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Frequency and voltage oscillations may become more pronounced and even cause
system instability due to the lack of inertia in photovoltaic (PV) systems. Due to the
depletion of traditional energy sources, rising fuel costs, and environmental warming
conditions, incorporating renewable energy sources (RES) is increasing in the current
fossil fuel-based power system. As a substitute to traditional fossil fuels, RES, such as
wind power generation (WPG) and solar photovoltaic (SPV) generation, have captured the
interest of researchers [1,3–5].

The controlling of the renewable energy sources is challenging since they strongly
depend on climate factors. To overcome this issue, storage devices, such as SMES, flywheels,
and batteries, can be used in combination with RES to improve grid stability and frequency
fluctuations [2,5]. At times of high demand from the grid, these devices release their stored
energy. At the same time, non-petroleum-dependent alternatives such as electric vehicles
(EVs) are growing in favor as eco-friendly alternatives to traditional gasoline automobiles
that can contribute to a greener future.

These EVs have the potential to serve as energy storage devices that aid in frequency
regulation as a source during the times of high demand [1]. To address the AGC issue, a few
research studies have been conducted on EV penetration [6–10]. Authors in [6,7] analyzed
the effect of EV and communication delay on isolated power systems. Utilizing EV for
AGC accentuates the reorganized power market [8]. However, research on EV integration
for combined AGC and AVR is in its infancy and requires attention [11].

The superconducting magnetic energy storage (SMES) technology can manage both
real and reactive power requirements. The SMES system functions as energy-compensating
equipment for larger loads and therefore controls frequency oscillations [2,12]. The SMES
action is faster than the primary control mechanism of the governor [12]. Frequently charg-
ing and discharging of a battery system to handle power system fluctuations reduces its
lifespan and performance. The SMES technology is preferable over battery systems [12–14].
However, the superiority of the SMES system in managing the active and reactive pow-
ers together having solar PV, wind, geothermal, and thermal power plants is yet to be
determined in the presence of a cascaded controller.

Flexible AC transmission system (FACTS) devices enhance the power system’s transfer
capacity and stability. Series FACTS devices, such as the thyristor-controlled series capacitor
(TCSC), the static synchronous series compensator (SSSC), the thyristor-controlled phase
shifter (TCPS), the interline power flow controller (IPFC), and the gate-controlled series
capacitor (GCSC), demonstrate their efficacy in managing the tie-line powers in AGC [15,16].
Among all FACTS devices, the GCSC has recently captured the attention researchers in
AGC studies due to its numerous benefits [16]. The GCSC has a smaller capacitor size,
lower cost, and stronger compensating capabilities than the TCSC. The GCSC is simpler
and more cost-effective than the TCPS and SSSC [17,18]. References [13,14] have studied
the coordination of SMES-TCSC and SMES-SSSC; however, the coordination of SMES with
GCSC is not found in the literature addressing combined AGC and AVR loop problems.

In order to regulate the frequency and voltage fluctuations in AGC and AVR loops,
suitable controllers are required. Various integer order controllers [2,3,19] and proportional
integral derivative (PID) controllers [1,2,11,20–22] have been used in the past to solve AGC
and AVR difficulties in literature. Because of its low price, ease of use, and reliability
in practice, the PID controller is mostly used in the literature. However, it fails when
applied to systems with non-minimum phase [1,11,23,24]. Later, the fractional order PID
(FOPID) controllers were successfully implemented to address the AGC and/or AVR [25,26]
and demonstrated their superiority over integer order controllers because of their extra
knobs for flexible control action. Recently, studies have focused on the cascade control
arrangement (CCA) in relation to AGC and/or AVR difficulties [19]. The CCA adds a
sensor that helps in reducing the disturbance before it affects the output of the plant.

To improve the performance of a controller, its parameters must be optimally opti-
mized using appropriate metaheuristic algorithms. Shukla et al. [1] used the particle swarm
optimization (PSO) algorithm to obtain gains of PID and TID controllers. The authors
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of [2,20] used a hybrid algorithm of artificial electric field to get the variables of PID con-
troller. The authors of [3] applied gradient-based optimization (GBO) to optimized integral
order controllers. Ramoji and Saikia in [11,23,24] utilized Harris hawks optimization (HHO)
in their work. The PSO technique has a tendency to fall into a local optimum in a larger
dimensional search space with slow convergence nature [27]. The HHO suffers from the
drawbacks such as population diversity and local optima [28].

Inspired by the actions of birds with the same name, a new metaheuristic algorithm
called the coot algorithm (CA) was presented recently by Naruei and Keynia [29]. In
addition to tackling real-world optimization issues like the design of a pressure spring
tension, their analysis demonstrates that the CA outperforms most other optimization
methods, suggesting that it be investigated further when creating a controller for the
combined AGC and AVR issue. The CA successfully applied to address the unimodal and
multimodal test functions. The CA proved its efficiency in solving the problems that have
unknown search spaces.

The field of AGC and AVR investigations has the following limitations, according to
a careful examination of the literature.

• The AGC and AVR loops control with the utilization of cascaded PID-FOPID con-
trollers tuned by coot technique has not yet been observed.

• The investigations showing the comparative behaviors of cascaded PID-FOPID, FOPID,
and PID controllers is not found for the system comprising renewable energy sources
and electric vehicles.

• The coordinated performance of GCSC and SMES in regulating frequency and voltage
with the cascade PID-FOPID controller is not known.

• Further research is needed on the time-delay effect on the combined AGC and AVR
system performance in the presence of a coot-based cascaded PID-FOPID.

The above limitations encourage the authors to investigate them in the present research
for combined AGC and AVR issue. Based on the limitations found in the literature review,
the following are the novel contributions of this research:

• To examine the comparative performance of cascaded PID-FOPID controllers with
PID and FOPID controllers to evaluate the superiority of the proposed controller when
optimized with the coot technique.

• To demonstrate the efficiency of a cascaded PID-FOPID controller over FOPID random
disturbances and variable solar and wind input.

• To examine the optimal configuration for the application of GCSC and SMES coordi-
nation to the combined AGC and AVR problem by comparing SMES-SMES, GCSC,
and SMES-GCSC-SMES coordination strategies.

• To investigate the impact of communication delay on frequency and voltage profile
in the presence of a cascaded PID-FOPID controller and to suggest a suitable delay
margin for the considered interconnected system.

• To validate the stability of CA-based cascaded PID-FOPID controllers against fluctua-
tions in turbine time constants of thermal and geothermal power plants.

• To validate simulation findings using an OPAL-RT 4510 real-time digital simulator.

For the benefit of the reader, a schematic overview of different sources utilized is
presented in Figure 1, namely, the reheat thermal power plant (RTPP), geothermal power
plant (GTPP), solar thermal power plant (STPP), solar photovoltaic (SPV), and wind turbine
generation (WTG) along with electric vehicles. The control system represented in the
figure acts as control center. The power and communication networks are also highlighted.
Various kinds of power system elements, such as loads and SMES, are also depicted.
Table 1 highlights the comparative analysis of previously published articles, including the
current manuscript.
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Figure 1. Schematic diagram of sources utilized in the present work. 
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Figure 1. Schematic diagram of sources utilized in the present work.

Table 1. Comparative survey of combined AGC and AVR articles with storage, FACTS, RES and EV
integration, and nonlinearities.

Ref. RES Energy Storage EV FACTS Nonlinearities

[1] 4 6 6 6 4

[2] 6 4 6 6 4

[3] 4 6 6 6 4

[11] 6 6 4 6 4

[19] 4 4 6 6 4

[20] 4 4 6 4 4

[21] 4 4 6 6 6

[22] 4 4 6 6 4

[23] 4 4 6 6 4

[24] 6 6 6 6 4

This Article 4 4 4 4 4

The individual segments of this work are structured as follows. Section 2 describes
the power systems under investigation. Section 3 discusses the proposed CPID-FOPID
controller structure used for frequency and voltage regulation. The coot technique is
explained in Section 4. Section 5 discusses the findings for all test systems, along with
OPAL-RT validation of the collected results. Finally, the conclusions and recommendations
for further study are offered in Section 6.
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2. System Investigated

An interconnected two-area power system is taken for investigation having equal
sources in both the areas. Small signal analysis is done in this study; thus, the power
system’s transfer function-based model is represented in Figure 2a,b. The considered
system has the following sources in each area: a reheat thermal power plant (RTPP) [1,2], a
geothermal power plant (GTPP) [19], and a solar thermal power plant (STPP) [24]. From the
renewable energy source (RES), solar photovoltaic (SPV) [1] and wind turbine generation
(WTG) [1] are connected in both the areas along with electric vehicles (EVs) [8,9]. All the
gain and time constants of the above discussed sources are mentioned in the Appendix A.
The system under study is considered an equal area capacity ratio, i.e., 10,000 MW in each
area. To make the realistic approach, the system is also incorporated with non-linearities of
the reheat turbine, GRC (Figure 2c), and communication time delay. The authors also study
the combined coordination effect of FACTS (GCSC) and storage devices (SMES).
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Figure 2. Systems under study: (a) interconnected multi-source multi-unit system; (b) automatic
voltage regulator (AVR) with cross-coupling coefficients; (c) GRC nonlinearity; (d) electric vehicle
(EV) aggregator.

The application of electric vehicles (EVs) is considered in vehicle to gride (V2G) mode.
The EVs are comparable to energy storage devices, such as batteries, that may contribute to
frequency control [8–10]. A single electric vehicle can produce up to 20 kW [8,9]. Therefore,
an EV aggregator is required for AGC and AVR problems that typically include MW-
range capacities. EVs often include a dynamic model of an EV aggregator, a time delay,
a dead band, and regulating capacity [8,9] (Figure 2d). The maximum and minimum
output powers of the EV aggregator are denoted as ∆PU

EVa
and ∆PU

EVa
, which are related to

incremental generation change (∆PEV) in any area, as shown in Equation (1).

∆PU
EVa

= ∆PEV/NEV

∆PD
EVa

= −∆PEV/NEV
(1)

where NEV is the total number of electric vehicles connected to the grid. This study assumed
that each EV has the ∆PEV of 5 kW, and there are 8000 numbers of such EVs connected in
each area.

3. Controller Structure

To find out the solution of the two-area combined AGC and AVR issue, a cascaded
controller is utilized. The primary purpose of the cascaded controller is to improve the dis-
turbance rejection for multi-loop issues like frequency regulation [19]. The two controllers
in this setup, designated as C1(s) and C2(s), are referred to as the master (M) and slave (S)
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controllers, respectively. The control mechanism for the cascade is depicted in Figure 3a,
along with C1(s) and C2(s).
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Area control error (ACE) refers to the error reported to the controller. When system
loading changes, frequency, and tie-line powers diverge from their nominal or scheduled
values, it is undesirable and can lead to power system failure. Continuous monitoring be-
tween load demand and generation in AGC reduces ACE. The ACE is a linear combination
of frequency and tie-line power variations (Equations (2) and (3)).

ACE1 = β1∆ f1 + ∆Ptie (2)

ACE2 = β2∆ f2 + a12∆Ptie (3)

The β1 and β2 are frequency response characteristics, which are the same as the
frequency bias constant (Bi); ∆f 1 and ∆f 2 are the deviation in area frequency; ∆Ptie and a12
are deviation in tie-line power flow and area rating ratio, respectively.

The fractional order is governed by the generalized integer order calculus. This
presents the most frequently used integrators and Reimann–Liouville (RL) fractional deriva-
tives in Equations (4) and (5).

aDα
t f (t) =

1
Γ(q− α)

dq

dtq

∫ t

a
(t− τ)−α−1+q f (τ)dτ, q− 1 ≤ α ≤ q (4)

aD−α
t f (t) =

1
Γ(α)

∫ t

a
(t− τ)α−1 f (τ)dτ (5)

The terms a, t, Dα
t , and Γ(q− α) denote initial time instance, final time instance,

differential fractional operator, and Euler’s gamma function, respectively. The “q” takes the
integer values whose rage is q − 1 ≤ α ≤ q.

Specifically, the transfer functions of a cascade combination of PID-FOPID controller
is shown in Figure 3b.

C1(s) = G(s)w
PID = Kw

P +
Kw

I
s

+ Kw
Ds (6)

C2(s) = G(s)w
FOPID = Kw

P +
Kw

I
sλ

+ Kw
Dsµ (7)
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The terms G(s)w
PID and G(s)w

FOPID are the master and slave controllers, respectively,
with their derivative, integral, and proportional gains representing Kw

D, Kw
I , and Kw

P in area
w and corresponding integral and derivative powers of λ and µ, respectively.

Finding a solution within the feasible zone is the goal of optimization problems, which
are solved by limiting some objective function chosen for the system. The integral time
absolute error (ITAE) criterion, as shown in Equation (8), is used as the objective function
for the combined AGC and AVR problem under investigation.

JITAE−MIN =

T∫
0

|∆ f1 + ∆ f2 + ∆Ptie + ∆V1 + ∆V2|t.dt (8)

where ∆fw, ∆Vw, and ∆Ptie are the fluctuations in frequency, voltage, and transmission lines,
respectively. The terms t and T denote time instance and simulation durations, respectively.

4. Coot Algorithm

The coot algorithm (CA) was recently proposed by Nauei and Keynia [29]. It is
inspired by the behavior of coots as they seek food on the water’s surface. This technique is
modelled after the two phases of motion done by coot birds to guide their swarm towards
a predetermined destination. In CA, the random population Xi = x1, x2, x3 . . . . . . . . . , xn
serves as the baseline for continuous evaluation against the objective function. Based on
four types of motion, the algorithm is formulated below.

4.1. Random Motion

The random motion of the coot at different position CP(i) is given by Equation (9)

CP(i) = CP(i) + A•R2•(Q− CP(i)) (9)

where R2 is random number ∈ [0, 1], and A is described by Equation (10) in terms of
maximum iterations (maxitr).

A = 1− itr
max itr

(10)

4.2. Chain Movement

This movement is implemented by Equation (11) by taking the average position of the
two coots CP(i) and CP(i − 1).

CP(i) = 0.5(CP(i− 1) + CP(i)) (11)

4.3. Position Adjustment as Per Group Leader

The selection of leader for execution of this position is calculated by Equation (12).

K = 1 + (iMOD NL) (12)

where NL is the total number of leaders and K is the leader index. The next updated
position of the coot based on the leader is represented as Equation (13)

CP(i) = LP(k) + 2R1 cos(2πR)•LP(k)− CP(i) (13)

where LP is the position of the leader, and R1 and R are the random numbers between the
range of [0, 1] and [−1, 1], respectively.
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4.4. Leader Movement

To get the optimal place, the group leader must keep its position update as per
Equation (14).

LP(i) = BR3 cos(2πR)•(gBest− LP(i) + gBest) + gBest R4 < 0.5
LP(i) = BR3 cos(2πR)•(gBest− LP(i) + gBest)− gBest R4 ≥ 0.5

}
(14)

where gBest is the overall best solution, and R3 and R4 are random numbers in the range
[0, 1]. The B is found using Equation (15).

B = 2− itr
max itr

(15)

For this study, the number of search agents (n) is set to 10, and the number of iterations
(max itr) is taken to 100 to optimize all the controller parameter subjected to Equation (8).

5. Results Analysis

This research work is conducted on a Windows 10Pro PC running with MATLAB/
SIMULINK 2016a, with an Intel core i7-8700 CPU, 3.2 GHz clock speed, and 8 GB RAM.
Improved results for the cascade controller are emphasized in bold.

5.1. At Nominal Conditions

This study evaluates the combined AGC and AVR for two equal 1000 MW power
systems, as depicted in Figure 1a. In this case, 2% step load perturbated (SLP) disturbance
is used in both areas (i.e., ∆PD1 = ∆PD2 = 1000 MW 0.02 = 20 MW at t = 0 s). In both areas,
the geothermal power plant (GTPP), reheat thermal power plant (RTPP) with GRC, wind
turbine generator, photovoltaic system, and electric vehicle (EV) are considered for power
generation. Different secondary controllers, namely proportional integral derivative (PID),
fractional order PID (FOPID), and cascaded PID-FOPID, are utilized to examine the system.
To get the parameters of these controllers, the coot algorithm (CA) is used, and the results
are subjected to Equation (8).

The Js (ITAE) value for the PID controller is 3.42, while it is 2.155 for the FOPID
controller and 1.156 for the cascaded PID-FOPID controller. This shows that the cascaded
controller is better than the PID and FOPID controllers in respect to Js.

The coot algorithm is executed for each controller in order to obtain its parameters.
The parameters of the controller (PID, FOPID, and cascaded PID-FOPID) obtained by
the CA are shown in Tables 2–4. Figure 4 illustrates the system dynamics for frequency
variation in area 1 and 2 (i.e., ∆f 1 and ∆f 1), change in tie line power (∆Ptie), and pu terminal
voltage for AVR 1 and 2 (i.e., Vt1 and Vt2).

Table 2. PID parameters.

Parameters Area 1 Area 2 AVR 1 AVR 2

KP 0.9024 0.2601 0.2099 0.3999
KI 1 0.0999 1 0.9921
KD 0.9789 0.9101 0.7993 0.1399

Table 3. FOPID parameters.

Parameters Area 1 Area 2 AVR 1 AVR 2

KP 0.8515 0.4521 0.1252 0.0743
KI 0.9064 0.5269 0.674 0.9587
λ 1 0.3402 0.9029 0.9845

KD 0.8239 0.8501 0.4545 0.6265
µ 0.4423 0.3594 0.9641 0.0196
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Table 4. CPID-FOPID parameters.

Parameters Area 1 Area 2 AVR 1 AVR 2

KP 0.4243 0.2612 0.8001 0.6867
KI 0.7488 0.3012 0.9131 0.9786
KD 1 0.9361 0.0415 0.1074
KP 0.9808 1 0.332 0.1
KI 0.1881 0.2004 0.1991 0.5339
λ 0.8667 0.5916 1 0.5001

KD 0.6615 0.0018 0.801 0.6131
µ 0.6066 0.6502 0.5855 0.001

Evaluation of Figure 4 is shown in Tables 5 and 6, with comparisons made between
peak overshoot (MP), peak undershoot (UP), and settling time (Ts). The following is a
critical analysis of the cascaded controller, based on Table 5: The MP values for ∆f 1, ∆f 2,
and ∆Ptie are 0.00148 Hz, 0.001068 Hz, and 0.00381 puMW, respectively. The UP values
are 0.03485 Hz, 0.0432 Hz, and 0.00177 puMW, and the Ts values are 13.55 s, 12.16 s, and
24.11 s, respectively.

The cascaded controller for AVR1 (Table 6) provides an MP value of 1.02 pu, which
is 39.29% better than PID and 14.35% better than FOPID, while the cascaded controller
for AVR2 yields an MP value of 1.063 pu, which is 35.18% better than PID and 32.72%
better than FOPID. The settling times (Ts) for the cascaded controller, PID, and FOPID are
14.2 s, 16.33 s, and 38.98 s for AVR 1, and 11.87 s, 15.26 s, and 20.98 s for AVR 2, repectively.
Therefore, the cascaded PID-FOPID is superior to PID and FOPID in terms of MP, UP, and
Ts for the combined AGC and AVR problem.
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Table 5. Numerical values of Ts(s), MP, and UP for AGC.

Controller Parameters ∆f 1(Hz) ∆f 2(Hz) ∆Ptie(pu)

PID

Peak Overshoot
(in 10ˆ(−3)) 19.68 30.4 9.84

Peak Undershoot
(in 10ˆ(−3)) 39.71 53.13 6.45

Settling Time(s) 44.33 26.56 42.46

FOPID

Peak Overshoot
(in 10ˆ(−3)) 6.505 26.22 9.75

Peak Undershoot
(in 10ˆ(−3)) 53.35 62 3.38

Settling Time(s) 17.2 16.32 35.89

CPID-FOPID

Peak Overshoot
(in 10ˆ(−3)) 1.48 10.68 3.81

Peak Undershoot
(in 10ˆ(−3)) 34.85 43.2 1.77

Settling Time(s) 13.55 12.16 24.11
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Table 6. Numerical values of Ts(s), MP, and UP for AVR.

Controller Parameters Vt1 (pu) Vt2 (pu)

PID
Peak Overshoot 1.68 1.64

Peak Undershoot NIL NIL
Settling Time(s) 38.98 20.91

FOPID
Peak Overshoot 1.191 1.58

Peak Undershoot NIL NIL
Settling Time(s) 16.33 15.26

CPID-FOPID
Peak Overshoot 1.02 1.063

Peak Undershoot NIL NIL
Settling Time(s) 14.2 11.87

5.2. Effect of Random Load Demand (RLD), Variable Solar Irradiations, and Irregular Wind Power

The studies done so far have assumed constant solar irradiances and wind power, as
well as a 2% step disturbance. However, under realistic conditions, these vary continuously.
To evaluate this circumstance, the random load demand (RLD), variable solar irradiations,
and irregular wind power depicted in Figure 5 are considered. The performance of the
proposed cascade controller is compared to that of the FOPID controller after parameters
are obtained via the coot algorithm (Tables 7 and 8). When using the proposed coot-based
cascade controller, the overshoots (MP) and undershoots (US) are reduced to a greater
extent than they are with the FOPID controller. This is an indication of the superiority of
the cascade controller. The dynamics (i.e., ∆f 1, ∆f 2, ∆Ptie, Vt1, and Vt2) are depicted in
Figure 6.

Table 7. FOPID controller gain for RLD, variable solar irradiations, and irregular wind power.

Parameters Area 1 Area 2 AVR 1 AVR 2

KP 0.6646 0.6166 0.7214 0.1512
KI 0.4053 0.0967 0.9478 0.3430
λ 0.9998 0.1003 0.9711 1.0010

KD 0.2158 0.6907 0.6773 0.1300
µ 0.6742 0.8491 0.4448 0.8131

Table 8. Cascaded PID-FOPID controller gain for RLD, variable solar irradiations, and irregular wind power.

Parameters Area 1 Area 2 AVR 1 AVR 2

KP 0.5630 0.9588 0.2273 0.1958
KI 0.5406 0.5524 0.5665 0.4288
KD 0.8272 0.0029 0.3829 0.4171
KP 0.9879 0.0891 0.8746 0.0695
KI 0.7491 0.8894 1.0101 0.8285
λ 0.7514 0.4316 0.8012 0.9021

KD 0.5599 0.5101 0.3457 0.9756
µ 0.1893 0.6518 0.3436 0.6042

5.3. Sensitivity Analysis

It is anticipated that the operating circumstances of the power system will vary con-
tinuously, and the controller gains must be capable of adapting the system performance
for these fluctuations. The sensitivity analysis is performed to validate the capacity of
the controller’s nominal parameters to perform their function. In this scenario, the time
constants of the turbines of RTPP and GTPP are modified by ±30% of both areas. The
system dynamics (i.e., ∆f 1, ∆f 2, ∆Ptie, Vt1, and Vt2) are compared for with and without
varied conditions in Figure 7. It can be observed from this comparison that the responses
are nearly same, which demonstrates the robustness of the cascade controller with same
parameters obtained at nominal conditions.



Energies 2023, 16, 251 13 of 27Energies 2023, 16, x FOR PEER REVIEW 13 of 28 
 

 

 
(a) 

 
(b) 

 
(c) 

Figure 5. Random patterns of: (a) load demand, (b) wind power input, and (c) solar 

irradiance. 

Table 7. FOPID controller gain for RLD, variable solar irradiations, and irregular wind power. 

Parameters Area 1 Area 2 AVR 1 AVR 2 

KP 0.6646 0.6166 0.7214 0.1512 

KI 0.4053 0.0967 0.9478 0.3430 

λ 0.9998 0.1003 0.9711 1.0010 

KD 0.2158 0.6907 0.6773 0.1300 

µ 0.6742 0.8491 0.4448 0.8131 

  

Figure 5. Random patterns of: (a) load demand, (b) wind power input, and (c) solar irradiance.

5.4. SMES-GCSE-SMES Coordination

The superconducting magnetic energy storage (SMES) technology stores electrical
power from the grid as the magnetic field of a coil composed of superconducting wire with
almost negligible energy loss. Although secondary control actions are slow to respond, the
SMES system can improve the system’s dynamic behavior and power flow [12–14].

The SMES system incorporates a step-down transformer, as well as an AC/DC con-
verter, a superconducting inductor, and a converter unit. Figure 8 illustrates the schematic
diagram of the SMES.
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Figure 9 is a representation of its corresponding transfer function model. In this
figure, KSMES and TSMES stand for the gains and time constants, respectively. The lead-lag
compensation block parameters are expressed by the terms T1, T2, T3, and T4, respectively.
The SMES units are placed at the load points of areas 1 and 2. Notations in the SMES, such
as KSMES, TSMES, T1, T2, T3, and T4, are tuned along with the parameters of the cascaded
controller for the purpose of achieving its best possible design. Equation (16) describes the
transfer function of the SMES system.

TFSMES =
∆PSMES

∆ f
(1 + sT1)

(1 + sT2)

(1 + sT3)

(1 + sT4)

(KSMES)

(1 + sTSMES)
(16)
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The gate-controlled series capacitor (GCSC), which is a series FACTS device based on
a pair of gate-commutated switches in parallel with a capacitor, can control the power flow
of the transmission lines and its impedance. The schematic diagram is shown in Figure 10.

This article represents different coordination of the above discussed SMES and GCSC.
The purpose of this section is to find the best coordination from SMES-SMES, GCSC, and
SMES-GCSC-SMES. Table 9 represents gain obtained by the cascaded controller when
optimized with CA for SMES-SMES coordination, and Table 10 indicates the optimized
values of SMES for this case. Table 11 represents gain obtained by the cascaded controller
when optimized with CA for GCSC coordination. Tables 12 and 13 represent gain obtained
by the cascaded controller when optimized with CA for SMES-GCSC-SMES coordination
and optimized SMES parameters for this case, respectively.
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Figure 9. Transfer function-based circuit diagram of SMES. 
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Figure 10. GCSC arrangement in the series of the transmission line.

Table 9. Cascaded PID-FOPID controllers’ gain for SMES-SMES coordination.

Parameters Area 1 Area 2 AVR 1 AVR 2

KP 0.2258 0.8173 0.3613 0.1791
KI 0.3065 0.8786 0.9529 0.7979
KD 0.0856 0.1181 0.4614 0.5346
KP 0.6511 0.6584 0.8268 0.8311
KI 0.6122 0.7543 0.6181 1
λ 0.1001 0.1626 0.8967 0.8407

KD 1 0.4325 0.8971 0.0019
µ 0.0576 0.7115 0.5134 0.1044

Table 10. SMES-optimized parameters for SMES-SMES coordination.

Parameters SMES 1 SMES 2

T1 0.0335 0.0501
T2 0.0932 0.1001
T3 0.3998 0.5
T4 0.0173 0.0166

KSMES 0.2986 0.627
TSMES 0.5229 0.01
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Figure 11 represents the comparison of system dynamics (i.e., ∆f 1, ∆f 2, ∆Ptie, Vt1, and
Vt2) with the different coordination scheme with nominal case. Among these, coordination
SMES-GCSC-SMES found the best results, which is also proven by Tables 14 and 15, with
comparisons made between OP, UP, and Ts.

Table 11. Cascaded PID-FOPID controllers’ gain for GCSC coordination.

Parameters Area 1 Area 2 AVR 1 AVR 2

KP 0.6426 0.4157 0.2335 0.2631
KI 0.9936 0.8508 0.6443 0.8527
KD 0.8534 0.366 0.9774 0.515
KP 0.001 0.5467 0.0711 0.7847
KI 0.2646 0.7844 0.9999 0.8062
λ 0.0943 0.5073 0.8933 0.6129

KD 0.4109 0.5326 0.1228 0.3681
µ 0.1001 0.6842 0.2966 0.8405

Table 12. Cascaded PID-FOPID controllers’ gain for SMES-SMES-GCSC coordination.

Parameters Area 1 Area 2 AVR 1 AVR 2

KP 0.9903 0.7472 0.2788 0.5704
KI 0.2046 0.8415 0.5147 0.6733
KD 0.9598 0.849 0.8231 0.5776
KP 0.9048 0.9927 0.1897 0.2183
KI 0.6968 0.9696 0.6823 0.3916
λ 0.3755 0.0379 1 0.8961

KD 1 0.9875 0.2716 0.2653
µ 0.2539 0.3412 0.1291 0.0869

Table 13. SMES-optimized parameters for SMES-GCSE-SMES coordination.

Parameters SMES 1 SMES 2

T1 0.0396 0.0122
T2 0.0754 0.0642
T3 0.4962 0.2332
T4 0.0298 0.0249

KSMES 0.1278 0.037
TSMES 0.3224 0.1283

Table 14. Numerical values of Ts(s), MP, and UP for AGC.

Coordination Parameters ∆f 1 (Hz) ∆f 2 (Hz) ∆Ptie (pu)

SMES-SMES
Peak Overshoot (in 10ˆ(−3)) 0.34 NIL 0.31

Peak Undershoot (in 10ˆ(−3)) 26.6 18.42 7.966
Settling Time(s) 12.89 7.12 21.12

GCSC
Peak Overshoot (in 10ˆ(−3)) 0.66 NIL 1.304

Peak Undershoot (in 10ˆ(−3)) 15.72 19.85 12.35
Settling Time(s) 10.22 6.92 23.93

SMES-GCSC-SMES
Peak Overshoot (in 10ˆ(−3)) NIL NIL NIL

Peak Undershoot (in 10ˆ(−3)) 12.31 16.9 7.962
Settling Time(s) 8.91 6.78 16.87



Energies 2023, 16, 251 19 of 27

Table 15. Numerical values of Ts (s), MP, and UP for AVR.

Coordination Parameters Vt1 (pu) Vt2 (pu)

SMES-SMES
Peak Overshoot 1.016 1.024

Peak Undershoot NIL NIL
Settling Time(s) 11.25 8.10

GCSC
Peak Overshoot 1.054 1.018

Peak Undershoot NIL NIL
Settling Time(s) 9.30 9.26

SMES-GCSC-SMES
Peak Overshoot NIL NIL

Peak Undershoot NIL NIL
Settling Time(s) 7.21 7.84
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5.5. Effect of Communication Time Delay

It is believed that the control signal travels with a certain delay from the distant location
to the control center. As a result of these delays, the dynamic behaviors degrade. For this
study, the controller receives a single delay signal representing the whole communication
delay. Different communication time delays (Td) are placed on the system, and the dynamics
(i.e., ∆f 1, ∆f 2, ∆Ptie, Vt1, and Vt2) of the system (shown in Figure 12) are studied to see
how well the controller works. As shown in Figure 12, as the Td value rises, the system
dynamics are affected by an increase in oscillations.

Up to Td = 1.6 s, the system dynamics are well-settled, but after applying a delay
longer than 1.6 s, the dynamics degrade in nature, and at Td = 1.85 s, the fluctuations
increase and oscillate continuously. The system dynamics become more oscillatory as Td
increases, which is 1.85 s or more. Therefore, for the proposed system to operate reliably, a
delay of less than 1.85 s is recommended. The optimized gain of the cascaded controllers
obtained at delay of 1.6 s and 1.85 s are mentioned in Tables 16 and 17, respectively.

Table 16. Cascaded PID-FOPID controllers’ gain for delay at Td = 1.6 s.

Parameters Area 1 Area 2 AVR 1 AVR 2

KP 0.1045 0.0641 0.5801 0.3867
KI 0.1597 0.1003 0.9131 0.9786
KD 0.0415 0.0283 0.0415 0.1074
KP 0.2661 0.5048 0.0332 0.0911
KI 0.0238 0.1047 0.7199 0.9533
λ 0.4321 0.5022 0.9754 0.4998

KD 0.1049 0.0377 0.8991 0.9613
µ 0.4896 0.1501 0.0885 0.1001
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5.6. Validaton of the Dynamics through OPAL-RT

The proposed automatic voltage regulator (AVR) and automatic generator controller
(AGC) system for two-area power plants is verified on the OPAL-RT OP4510 real-time
digital simulator, which makes use of the most up-to-date Intel generation Xeon 4-core
processors and a robust Xilinx Kintex-7 FPGA platform. It is capable of real-time parallel
processing, producing results that are matched with those obtained on hardware [23,24].
Figure 13 depicts the OPAL-RT OP4510 system in its laboratory configuration, which
includes a host PC running RT-Lab software, I/O ports, TCP/IP connection, and the real-
time digital simulator itself. In order to validate the proposed unified ALFC and AVR
control pattern, it is first constructed in the MATLAB/Simulink R2018 platform. The
technique combines the parallel processing power of the real-time simulator. The results
from the system are compared to the results from using MATLAB. In-depth analysis of the
results (Figure 14) shows that the system outputs (i.e., ∆f 1, ∆f 2, ∆Ptie, Vt1, and Vt2) on both
platforms are quite equivalent, lending support to the validity of the suggested method.

Table 17. Cascaded PID-FOPID controllers’ gain for delay at Td = 1.85 s.

Parameters Area 1 Area 2 AVR 1 AVR 2

KP 0.8095 0.5084 0.7536 0.7011
KI 0.4037 0.3062 0.8041 0.6089
KD 0.1006 0.0354 0.1158 0.0668
KP 0.0805 0.2055 0.7066 0.1218
KI 0.5701 0.0172 0.8181 0.9835
λ 0.7671 0.1221 0.3099 0.4013

KD 0.0652 0.0281 0.9501 0.2071
µ 0.0367 0.1339 0.0266 0.0575
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6. Conclusions

In this paper, the suppression of oscillations in the dynamics of the combined AGC
and AVR system are performed utilizing a coot algorithm-tuned CPID-FOPID controller on
the study considering two equal-area power systems with the following sources: reheat
thermal power plant (RTPP) in addition to GRC, geothermal power plant (GTPP), solar
thermal power plant (STPP), solar photovoltaic (SPV), and wind turbine generation (WTG).
In this study, the power system was penetrated with electric vehicles (EVs) in both areas
that serve as sources for the grid (V2G mode). The main findings of this research are
explained below.

• The analysis revealed that the proposed cascaded controller is superior to the PID
and FOPID controllers in terms of peak overshoot (MP), peak undershoot (UP), and
settling time (Ts) when optimized using the coot algorithm.

• To verify the stability of the controller, the power system is also examined with realistic
approaches, such as random load demand (RLD), fluctuating solar irradiances, and
irregular wind powers. Even under these more real circumstances, the cascaded
controller is superior to the FOPID controller.

• For the purpose of verifying the proposed controller’s efficacy, a sensitivity analysis is
conducted in which the RTPP and GTPP turbine time constants are varied by +/−30%.
This case study successfully confirms the CPID-FOPID controller capacity to survive
these fluctuations, as the dynamics obtained under these conditions were found to be
identical to those in the nominal case.

• The SMES-GCSC-SMES coordination is successfully verified with the CPID-FOPID controller.
• Moving toward a more realistic scenario, this article also addressed the impact of

communication time delay, which degrades the system’s dynamics when introduced
into the system.

• The obtained simulation findings are successfully verified with validation using OPAL-
RT OP4510 real-time digital simulator.

However, the research presented in this manuscript is limited to conventional power
system, and the restructured AGC or combined AGC-AVR problem can be evaluated
using the proposed coot algorithm-tuned cascaded controller. As the fuzzy logic controller
provides superior performance, the combination of cascaded fuzzy-based controllers can be
tested for the frequency and voltage regulation in an interconnected power system. As the
number of tunable parameters are more in the fractional or cascaded controller, proper care
should be taken when optimizing these controllers. The above-mentioned controllers can
be designed utilizing the more efficient optimization technique, which delivers competitive
global optimum results.
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Appendix A
Reheat Thermal Power Plant:
Governor time constant (Tg) = 0.08 s,
Turbine time constant (Tt) = 0.3 s,
Reheater gain (Kr) = 0.5,
Reheater time constant (Trt) = 10 s.
Geothermal Power Plant:
Governor time constant (Tg) = 0.05 s,
Turbine time constant (Tt) = 0.1 s.
Solar Thermal Power plant:
Solar collector gain (Ksi) = 1,
Solar collector time constant (Tsi) = 1,
Governor time constant (Tsg) = 0.08 s,
Turbine time constant (Tst) = 3 s.
Power System:
Power system gain (KP) = 120,
Power system time constant (TP) = 20 s,
Synchronizing coefficient (T12) = 0.0707 puMW/rad.
Electric Vehicle:
Gain (KEV) = 1,
Time constant (TEV) = 1 s.
Solar Photovoltaic:
Gain (KPV) = 1,
Time constant (TPV) = 1.8 s.
Wind Turbine Generator:
Gain (KWTG) = 1,
Time constant (TWTG) = 1.5 s
Automatic Voltage Regulator:
Amplifier gain (Ka) = 10,
Amplifier time constant (Ta) = 0.1 s,
Exciter gain (Ke) = 1,
Exciter time constant (Te) = 0.4 s,
Generator field circuit gain (Kf) = 0.8,
Generator field circuit time constant (Tf) = 1.4,
Sensor gain (Ks) = 1,
Sensor time constant (Ts) = 0.05 s,
Cross-coupling coefficients of AVR: K1 =1, K2 = 0.1, K3 = 0.5, K4 = 1.4, and PS = 0.145.
GCSC:
Gain (KGCSC) = 1,
Time constant (TGCSC) = 0.015 s
Controller:
KD

w, KI
w, and KP

w denote the derivative, integral, and proportional gains in area w, respectively.
λ and µ represent the powers of integral and proportional gains, respectively.
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