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Abstract: Classification is one of the most common methods of supervised learning, which is divided
into a process of data acquisition, data mining, feature analysis, machine learning algorithm selection,
model learning and validation, as well as prediction of the result, which was done in the current work.
The data that were analyzed concerned ionizing radiation signals generated by partial discharges,
recorded by a method using the phenomenon of scintillation. It was decided to check if the data
could be classified and if it was possible to determine the defect of an electrical power device. It was
possible to find out which classifier (algorithm) worked best for the task, and that the data obtained
can be classified, as well as that it is possible to determine the defect. In addition, it was possible to
check what effect changing the default values of the classifier’s parameters has on the effectiveness
of classification.
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1. Introduction

Machine learning is a subset of artificial intelligence that allows computer systems to
learn directly from examples, data or experience (rather than according to pre-programmed
rules), thus enabling them to perform specific tasks with intelligence. Today, machine
learning is used in many applications and is the basis for intelligent systems [1], made
possible nowadays by the available greater computing resources of PC computers.

As presented in [2-6], classification as a machine learning task has been successfully
used in medicine to improve the quality and scope of health care while remaining rela-
tively constant in cost, as well as diagnostics by analyzing large amounts of data to find
associations. For example, [7] suggested using classification for joint diagnosis, and [8],
for dementia detection. Classification is also finding applications in the military industry.
The authors in [9] presented the effectiveness of classification of passive sonar signals of
military data, and in [10], the use of the aforementioned machine learning task for the
recognition of military aircraft in real-time radar systems was presented. The classification
task also has applications in the energy industry. The article [11] used data analysis to
predict efficient electricity generation and operation in cities. On the other hand, in the
articles [12,13], the authors succeeded in finding that the use of classification methods is
possible to diagnose the defect of a power transformer in a non-invasive way through the
study of data collected by acoustic methods. In addition, in paper [14], the researchers
succeeded in classifying partial discharges on the basis of UHF signals recorded with
various antennas, in paper [15], the authors attempted to classify defects in XLPE-insulated
cables, in paper [16], the separation and classification of partial discharge signals from
various sources in SF6 gas-insulated substations was carried out, and in paper [17], a
method for diagnosing partial discharges in gas-insulated switchgear was proposed. In
view of the positive results that data classification brings, it was decided to try to classify
ionizing radiation signals generated by partial discharges recorded by a method using the
scintillation phenomenon.
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2. Methodology

The purpose of this study is to classify ionizing radiation signals generated by partial
discharges by using MATLAB software (version 2019b, MathWorks, Natick, MA, USA) to
classify measurement data and select the best machine learning method.

The data were recorded using a method that exploited the phenomenon of scintillation,
i.e., the formation of a light flash as a result of the passage of ionizing radiation through
certain substances, during a discharge in the medium. The measurement system consisted
of three parts (Figure 1):

e the electrical discharge generation system, which consisted of a set of spark gaps, a
high-voltage transformer, a voltage divider and a control panel,

e  awireless system for controlling the measurement panel, which consisted of an XBee
module and an integrated circuit,

e asystem for measuring high-energy radiation, consisting of a scintillation detector
based on a scintillation crystal, a photomultiplier and a measurement card.

e  Figure 2 shows a simplified schematic of the circuit for data acquisition from the
scintillator, which was located in the box shown in Figure 1.

(@) (b)

Figure 1. Measurement system: (a) construction (red marking—a box containing the data acquisition

system and electronic components for powering the scintillation detector); (b) control panel.
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Figure 2. Simplified block diagram of a fiber optic system for scintillator data acquisition.
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The measurement system shown in Figures 1 and 2 is described in detailed in the
paper [18]. An americium was used to calibrate the detector system—its energy spectrum
was measured near the electric field generated by the sliding discharge, and the number of
scintillation counts during the one-second measurement was recorded. Then, the relevant
measurements were made.

Studies of ionizing radiation generated by partial discharges were carried out for a
single insulating medium—for pure mineral oil, to which argon or air bubbles were then
also added. The measurement signals were transferred to a computer, and MATLAB was
used to process them, which resulted in splitting the data and placing them in folders. The
measurement data are stored in digital form allowing them to be analyzed in the MATLAB
programming environment. One file represented one measurement and contained within
it information about the values of current, voltage, time and energy of scintillation, with
the number of samples being 80,000. The following types of measurements were classified,
which correlated with the different types of partial discharge damage that can occur in
electric power equipment:

type 1: electrodes in oil, blade-to-blade configuration,
type 2: electrodes in oil with argon bubbles, blade-to-blade configuration,
type 3: electrodes in oil with air bubbles, blade-to-blade configuration, detector dis-
tance 0 mm,

e  type 4: electrodes in oil with air bubbles, blade-to-blade configuration, detector dis-
tance 80 mm,

e  type 5: electrodes in oil with air bubbles, blade-to-blade configuration, detector dis-
tance 120 mm.

The data were grouped as follows: the first folder, for the first type of data, contained
123 m-files, for the following types; in turn, the second folder contained 121 m-files, the
third folder contained 125 m-files, the fourth folder contained 146 m-files, and the fifth
folder contained 168 m-files [19]. In order to automate the process of entering data from
all folders into the MATLAB environment to select features for further classification, a
computer program was developed, whose flowchart is shown in Figure 3.
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Figure 3. Flowchart of data loading and feature creation.
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For the further process of analysis, the main focus was on the measured scintillation
energy (D), for which a feature selection was made, which was necessary due to signal noise
caused by the excessive amount of data analyzed [20]. Eleven features were selected: sum,
maximum, coefficient of skewness (i.e., a measure of the asymmetry of the distribution),
kurtosis (a relative measure of the concentration and flattening of the distribution), median,
variance, mean, root mean square RMS, standard deviation and form factor, which is the RMS
value divided by the mean absolute value. Then, all the feature information for each data type
was put into a matrix, which also included a label with the corresponding type number.

3. Results and Discussion

The purpose of this study was to classify ionizing radiation signals generated by
partial discharges by using MATLAB software to classify measurement data and select the
best machine learning method.

Classification was performed in the built-in tool available in MATLAB software called
Classification Learner (CL). After loading the matrix described in the previous section into
CL and selecting 5-fold cross-validation as the method for evaluating the accuracy of the
classifier, training of the model with all the algorithms available in CL was started. Since
the post-classification data were divided into two groups (type 1-3 and type 4,5), the two
groups were reclassified separately. This made it possible to obtain graphs showing the
relationships between features (scatter plots) for the form factor (column_10 of matrix)
and peak factor (column_11 of matrix) for the first group of data (type 1-3), and for the
second group (type 4,5), the best relationships were between kurtosis (column_4 of matrix)
and peak factor, which are also shown in Figures 4 and 5. ROC (Receiver Operating
Characteristic) curves were also obtained, visually showing the accuracy of the model
for the best classifier and confusion matrices, which are an assessment of the quality of
classification (Figures 6-9). For the first group of data, types 1-3, the best accuracy was
shown by SVM (Support Vector Machines) and linear discriminant analysis, i.e., 99.5%.
For the second group of data, packed decision trees were the best classifier, achieving an
accuracy of 95.5%.
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Figure 4. Obtained scatter plot after training the model with new features (1st group of data; yellow—
1st type, orange—2nd type, blue—3rd type; ® as correct classification, X as misclassification).
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Figure 5. Obtained scatter plot after training the model with new features (2nd group of data;
orange—4th type, blue—5th type; o as correct classification, X as misclassification)).
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Figure 6. ROC curve for the model (1st group of data).
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Figure 7. Confusion matrix after model training (1st group of data; green—correct classification,
red—misclassification).
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Figure 8. ROC curve for the model (2nd group of data).
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Figure 9. Confusion matrix after model training (2nd group of data; green—correct classification,
red—misclassification).

The obtained accuracy is one of the measures of the diagnostic value of the test. These
measures can reach values (most commonly) from 0 to 1—the calculated value of the
measure for a classifier is closer to one, the better the classifier is [21]. It was also decided
to calculate sensitivity, specificity, precision and F1 score (a measure of the test’s accuracy)
using another MATLAB script for the best algorithms (classifiers)—in an automated way,
the measures were calculated depending on the variable values of k, being the number of
k-fold cross-validation neighbors checked and the gamma parameter for linear discriminant
analysis, the parameter determining the scale factor (KernelScale) for the support vector
machine, and the parameter for the number of learning cycles (NumLearningCycles) for
packed decision trees. The results are shown in Tables 1-3.

Table 1. Results of calculating measures of diagnostic test value for linear discriminant analysis.

The Value of The k Value
the Gamma of Cross- Sensitivity Specificity Precision Accuracy F1-Score Average
Parameter Validation

5 0.99 1.00 0.99 0.99 0.99 1.00

0 10 0.99 1.00 0.99 0.99 0.99 1.00

15 0.99 1.00 0.99 0.99 0.99 1.00

5 0.99 0.99 0.99 0.99 0.99 0.99

0.5 10 0.99 0.99 0.99 0.99 0.99 0.99

15 0.99 0.99 0.99 0.99 0.99 0.99

5 0.98 0.99 0.98 0.98 0.98 0.98

1 10 0.96 0.98 0.96 0.96 0.96 0.97

15 0.98 0.99 0.98 0.98 0.98 0.98
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Table 2. Results of calculating diagnostic test value measures for SVM support vector machine.

The Value of the The k Value

KernelScale of Cross- Sensitivity Specificity Precision Accuracy F1-Score Average
Parameter Validation
5 1.00 1.00 1.00 1.00 1.00 1.00
0 10 0.99 1.00 0.99 0.99 0.99 0.99
15 0.99 1.00 0.99 0.99 0.99 1.00
5 0.96 0.98 0.96 0.96 0.96 0.96
10 10 0.96 0.98 0.96 0.96 0.96 0.97
15 0.96 0.98 0.96 0.96 0.96 0.97
5 0.33 0.67 0.66 0.34 0.34 0.47
15 10 0.33 0.67 0.67 0.34 0.34 0.47
15 0.33 0.67 0.66 0.34 0.34 0.47

Table 3. Results of calculating measures of diagnostic test value for packed decision trees.

NumlLearning The k Value

Cycles Parameter of Cross- Sensitivity Specificity Precision Accuracy F1-Score Average
Value Validation
5 0.90 0.98 0.98 0.95 0.94 0.95
30 10 0.90 0.98 0.97 0.94 0.94 0.95
15 0.90 0.99 0.99 0.95 0.94 0.96
5 0.90 0.99 0.98 0.95 0.94 0.95
50 10 0.90 0.99 0.99 0.95 0.94 0.96
15 0.89 0.99 0.99 0.95 0.94 0.95
5 0.89 0.99 0.99 0.95 0.94 0.95
100 10 0.90 0.99 0.98 0.95 0.94 0.95
15 0.89 0.99 0.98 0.94 0.94 0.95

To simplify the analyses of the results in Tables 1-3, the average value was extracted
from the obtained measurements. It can be seen that with the change of parameter values
and k values of k-fold cross-validation, the average of many of them is close to one, which
also means that the model has a high efficiency of data classification, so it is also possible to
determine the type of defect in the power machine.

4. Conclusions

The purpose of the study was to classify ionizing radiation signals generated by partial
discharges through the use of MATLAB software to classify measurement data and select
the best machine learning method. The results were as follows:

e the best classifiers for the first group of data turned out to be the linear discriminant
analysis algorithm and the SVM support vector machine, for which the accuracy was
more than 99%,

e the best classifiers for the second group of data were packed decision trees, for which
the accuracy was more than 95%,

e it was possible to achieve high classification efficiency for both data sets, as shown by
the values of the measures collected in the tables close to the value of 1.

It was concluded that classification of measurement data is possible, and that it is also
possible to determine the defect of an electrical power machine. The next step of the work
might be to create a database of defects for these machines by planning an experiment with
known sources of defects.
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