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Abstract: With the large-scale commercialization and growing market share of electric vehicles (EVs),
many studies have been dedicated to battery systems design and development. Their focus has been
on higher energy efficiency, improved thermal performance and optimized multi-material battery
enclosure designs. The integration of simulation-based design optimization of the battery pack
and Battery Management System (BMS) is evolving and has expanded to include novelties such as
artificial intelligence/machine learning (AI/ML) to improve efficiencies in design, manufacturing,
and operations for their application in electric vehicles and energy storage systems. Specific to BMS,
these advanced concepts enable a more accurate prediction of battery performance such as its State of
Health (SOH), State of Charge (SOC), and State of Power (SOP). This study presents a comprehensive
review of the latest developments and technologies in battery design, thermal management, and the
application of AI in Battery Management Systems (BMS) for Electric Vehicles (EV).

Keywords: lithium-ion batteries; battery management systems; AI-based monitoring systems; electric
vehicle

1. Introduction
1.1. A Brief History of EVs

The first EVs were built around the mid to late 19th century but conceded their
commercial footprint to cars powered by Internal Combustion Engines (ICE) [1]. Today’s
transportation sector primarily uses ICE, contributing to almost a quarter of all energy-
related greenhouse gas emissions. This issue initiated the demand for replacing ICE
vehicles with advanced technology vehicles such as EVs. Although EVs can reduce fuel
costs significantly because of the high efficiency of electric-drive systems compared to
internal combustion engines, EVs suffer much greater constraints in terms of their limited
driving range, scarcity of charging stations, charging times, and higher initial costs as
compared to ICE vehicles [2–4]. As such, an integrative review would be suitable to
understand the development of this emerging topic by providing a clear understanding of
what are the key barriers and motivators of EV adoption on the sustainability dimensions.

1.2. A Brief History of LIBs

For the past 3 decades major commercial and academic progress has been made in the
development of Li-based battery technologies. This has been driven by the market demand
for high-performance rechargeable batteries to reduce the cost and weight of EVs while
increasing their range and longevity.

Around 30 years ago Sony Co. commercialized the world’s first lithium-ion battery
(LIB) which led to a large increase in research in battery technologies. The research was fu-
eled by environmental concerns and the impact of fossil fuels on greenhouse gas emissions
Governments around the world subsequently have invested considerably in support of
green technologies (solar, wind, etc.) and electric vehicles [5].

Lithium-ion batteries (LIBs) store energy through the storage of charge through the
motion of lithium ions between positive and negative electrodes via a liquid electrolyte.
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The cathode is usually made of graphite while the anode can be made of various types of
lithium oxides. Many studies provide a comprehensive review of the properties of different
LIB chemistries such as the lithium Iron Phosphate cell (LiFePO4), lithium manganese
oxide (LiMn2O4), lithium manganese oxide, or Lithium Cobalt Oxide (LiCoO2) [6–10].

While LIBs provide an increased energy density and cycle life from the previous
generation of batteries, with continuous technological advancements, they are operating
increasingly closer to their theoretical limit [11]. Therefore, in addition to further improving
the design and manufacturing process of current LIBs, research efforts have focused on
developing next-generation lithium batteries, such as solid-state and metal-air batteries.

LIBs are typically made of four major parts: cathode, anode, separator, and electrolyte.
Figure 1 provides a schematic of a battery cell during the charge/discharge process. The
battery is filled with an electrolyte to help the movement of lithium ions between the
electrodes. The arrows indicate the direction and magnitude of the current flowing into
the current collectors. The current from the external circuit flows into the cell, through the
tabs and then flows into all the local regions containing active materials distributed on the
entire current collectors [7].
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porous separator, and current collectors during the charge and discharge process [7].

Several review papers on battery safety have been recently published, covering topics
such as cathode and anode materials, electrolytes, advanced safety batteries, and battery
thermal runaway issues [12,13]. Amongst all the known battery failure modes, the internal
short is one of the major safety concerns for the lithium-ion battery industry. Another
important consideration is temperature variation leading to thermal runaways. The cell
temperature is affected by the number and thickness of electrode layers and generally the
battery size. Therefore, controlling heat generation is extremely important for high-power
devices, such as electric vehicle batteries, where excessive heat can cause damage and
reduce the battery’s longevity lifetime [7].

Thermal runaway is a continuous, temperature increase inside a Li-ion battery that
can be precipitated by manufacturing defects within the battery or by overheating, over-
charging, or short circuit. When internal heating extends to a maximum temperature, it
causes the generation of gases, and the increase in internal pressure that leads to battery
rupture, fire, and explosion [14,15]. The maximum surface temperature can rise to 943◦ for
a fully charged 18,650 battery [16].
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1.3. Batteries for EVs

There are currently three main types of anode materials used in modern electric vehicles
(EVs) batteries, namely Lithium Iron Phosphate (LFP), Lithium Nickel Cobalt Aluminum
Oxide (NCA), and lithium nickel manganese cobalt oxide (NMC) [6,7,17]. LIBs have had a
considerable impact on the EV industry in terms of high energy density, lifespan, nominal
voltage, power density, and cost. While they provide an increased energy density and cycle life
from the previous generation of batteries, with continuous technological advancements, they
are operating increasingly closer to their theoretical limit [11]. The different chemistries vary in
energy density, power capability, cost, and cycle life among other areas. A hybrid battery pack
consists of two or more chemistries so it can combine the advantages of different chemistries to
improve the overall pack performance. Therefore, in addition to further improving the design
and manufacturing process of current LIBs, research efforts have focused on developing
next-generation batteries, such as solid-state batteries, metal-air, and lithium-sulphur cell
chemistries. Solid-state batteries (SSBs) replace the liquid electrolyte used in LIBs with a
solid compound that allows the movement of lithium ions. Compared to LIBs, they have
the potential to provide much higher energy densities and therefore longer driving ranges
for EVs. The solid electrolyte is also less flammable than the liquid electrolytes used in
LIBs, which helps prevent thermal runaway in battery cells. The current challenges in SSB
developments include the interfacing of various layers and costs. The current consensus is
that SSBs will likely become the leading direction of the next-generation EV batteries [18].
Indeed, many leading automotive manufacturers, such as Toyota, Volkswagen, BMW, Ford,
General Motors, Stellates, Mercedes-Benz and Hyundai, have invested in solid-state battery
technologies [19,20].

Lithium-sulfur (Li-S) battery is another type of battery with the potential to become
the next generation of cells to be used in energy storage systems because of their extremely
high theoretical energy density. Li-S cells use lithium metal as the anode and sulphur
as the cathode. During the charge/discharge process, a reversible redox reaction occurs
between the lithium and sulphur instead of the intercalation that occurs in LIBs, offering
a much higher theoretical energy density of 2500 Wh/kg. A breakthrough in 2009 that
achieved stable cycling of over 20 cycles in Li-S cells was followed by extensive research
to improve their specific capacity and cycle life [21]. In March 2022, American battery
manufacturer Sion Power announced that they have achieved more than 2500 cycles with
their 17 Ah Licerion Electric Vehicle cells which target the automotive market [22]. The
German battery start-up Theion featured in a recent Forbes article [23] also has plans to
deliver Li-S batteries suitable for automotive applications by 2024. While the technology
is still in the prototyping phase, with the extremely high theoretical energy density and
low dependence on rare earth metals, Li-S batteries have the potential to become the future
generation cells after or combined with SSBs.

In addition to various types and generations of Li-ion batteries, metal-air batteries are
also considered by some to be a viable future alternative for their high capacity and energy
density [24,25]. The anode is made of a metal, such as lithium, aluminum-magnesium,
etc., and the external air acts as the cathode. Compared to Li-ion batteries, metal-air
batteries are still in a relatively early stage of development and may not see large-scale
commercialization before the next iteration of Li-ion batteries.

To develop high energy density battery chemistries, combing different cell chemistries
is another way to improve the overall performance or reduce the cost of the battery pack
without significantly increasing its mass and volume. The different chemistries vary in
energy density, power capability, cost, and cycle life. A hybrid battery pack consists of two
or more chemistries so it can combine the advantages of different chemistries to improve
the overall pack performance.

Several small-to-medium-scale companies have been trying to commercialize hybrid
battery packs for use in EVs. UK start-up Chimera Energy [26] or Upgrade Technology
Engineering [27], the same team under different company names aims to develop a multi-
chemistry battery system to leverage the advantages of different chemicals and improve
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overall performance. They also own a patent on the control strategy of such battery
packs [28].

In 2019, the UK company Williams Advanced Engineering developed an “Adaptive
Multi-Chem” technology that combines high-energy-density Nickel Manganese Cobalt
(NMC) pouch cells and high-power-density NMC cylindrical cells in one pack to improve
the overall performance [29,30]. Finally, Italian sports car start-up Automobile Estrema
announced their Fulminea project, which uses a hybrid battery pack combining superca-
pacitors and solid-state Li-ion cells to provide the best sports performance. The vehicles
are expected to be delivered to customers in 2023 [31].

Apart from their use in EVs, hybrid battery packs can also be useful in microgrid
applications. They not only allow the combination of different battery chemistries as in
EVs but their combination with recycled second-life automotive batteries. In 2020, Japanese
battery manufacturer GS Yuasa built an energy storage system combining lead-acid and
Li-ion batteries to reduce costs [32].

The Li-ion batteries are used to provide high energy output for EV charging and
the lead-acid batteries are used to capture the renewable energy generated from nearby
photovoltaic arrays [33]. Retired EV batteries can still be used in other applications where
the power capability is not as critical as in the automotive sector. A group from the
University of Oxford is exploring the possibility of combining different chemistry batteries
to provide a low-cost energy storage solution in sub-Saharan countries [34]. This topic was
also studied by a group from Oak Ridge National Laboratory, where a system architecture
for a multi-chemistry second-life battery system was proposed to integrate BMS and power
electronic converters from multiple manufacturers [35].

While hybrid battery packs have the potential to provide cost reduction and moderate
improvement in the overall energy and power performance, they cannot provide the signif-
icant improvement offered by SSBs and Li-S batteries. Therefore, major EV manufacturers
are more interested in using novel cell chemistries than SSbs [36].

2. Battery Thermal Conditioning

The battery thermal management system is one of the main aspects of an EV. Therefore,
a major focus area for research is the optimal working temperature range of batteries during
charging/discharging mode and the associated thermal management.

Since thermal runaway leads to fire in battery packs [37], regulating the battery
temperature within a safe range of 25 ◦C to 40 ◦C during charging and discharging cycles
in EVs is essential for the battery’s longevity and safety [38]. A 10 Ah pouch Li-ion cell
has been tested at various C-rates to measure the time-dependent temperature behaviour
constant current charge/discharge. The battery was placed in a small chamber with a fixed
temperature of 14 ◦C. Figure 2a–c demonstrates the temperature variation of the battery
surface versus time at 0.1, 0.5 and 0.8 C rates, respectively. Figure 2d displays the positions
of thermocouples (T1–T4) on the battery surface. These results show the growth of surface
temperature close to the positive tab for T1 about 0.6 ◦C, 6.4 ◦C and 10.9 ◦C above the initial
temperature after one charge/discharge cycle at 0.1 C, 0.5 C, and 0.8 C, respectively [7,17].

The study was expanded at a higher C rate to validate the battery thermal behaviour,
and the simulation results are compared with the experimental measurements at 0.5 C,
1 C, 2 C and 4 C discharge rates as reported in Figure 3. The results suggest that an
electrochemical-thermal model can reliably estimate the thermal behaviour of an NCA
Li-ion cell batteries, enabling a rapid strategy to investigate the temperature distribution
of the cell under different C-rates [7,17]. The temperature increase at the end of 0.5 C
discharge is about 3.8 ◦C, and the cell temperature significantly rises above the ambient
temperature as the C-rate grows.
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Numerical investigations in the literature showed that the conductivity of the elec-
trolyte increases with temperature, causing more current to be directed to hotter sections
of the battery [17,39,40]. A range of thermal management strategies are commonly used
in battery packs to ensure temperature uniformity amongst cells and for maintaining the
temperature within the range [41]:

• Air cooling
• Liquid cooling
• Phase change materials (PCM)
• Heat pipes
• and a combination of the above strategies.

The liquid and air cooling systems are considered active cooling systems since they
include external pumps, fans, and other auxiliary systems [42]. Active cooling systems
demand more space and power, while PCMs are known as passive thermal management
systems and do not generally require additional components for their operation [43]. Key
considerations in the selection of thermal management systems include energy efficiency,
cell temperature uniformity, and overall weight and volume.

Mengliang et al. proposed a heat pipe and refrigerant-based BTMS coupled with
an air-conditioning system for a battery module to investigate the battery temperature
distribution, and energy efficiency of the BTMS [44]. The results reveal that once the
initial temperature is increased from 25 ◦C to 30 ◦C and 35 ◦C, the average coefficient
of performance increased by 16.95% and 38.41%, respectively; and the average exergy
efficiency of the BTMS improved by 2.63% and 5.07%, respectively [38].
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Kokkula et al. investigated the thermal management of pouch-type lithium-ion bat-
teries with a straight mini-channel-based cold plate sandwiched between two consecutive
pouch-type LiFePO4 cells to form a module coolant pass through the plate. The results
revealed that a cold plate including an even number of channels has a higher pressure
drop than an odd number of channels due to the flow resistance. Additionally, the average
temperature of the battery module decreased with an increase in coolant flow rate at the
expense of a more considerable pressure drop and increased power consumption [45].

A three-dimensional numerical model is developed by Peng et al. to study the PCM
process and its effect on battery thermal behaviour at different C-rate discharge processes
(0.5 C, 1 C and 2 C), and different PCM properties (different mass fractions of expandable
graphite) of the battery module. The results suggest a non-uniform PCM liquid fraction
distribution during the discharge process since the outer layer and top portion of PCM
melted first. Alternatively, by adding high thermal conductivity nanoparticles to a compos-
ite PCM of 12 wt% EG (expanded graphite), the results showed that the heat dissipation
of the battery pack responded well to the increased flow rate than that of pure PCM. Ad-
ditionally, they experimentally observed the good effects of composite PCM for battery
thermal management systems [46].

Based on the above analysis and perception few important future research perspectives
are highlighted. From the literature, thermal fins are mostly created of copper, bronze, steel,
nickel, stainless steel, and aluminum alloy. Although the integration of metal plates with
the fins can effectively improve the cooling performance, the weight of the system is still a
concern and, exploring novel designs of fins using advanced manufacturing techniques still
requires more attention. Moreover, to efficiently dissipate heat generated during battery
operation at a higher temperature and during a faster-charging rate, the use of evaporative
fluid as a potential added technique can significantly improve the performance of existing
air-cooled battery management systems.

In addition, the prediction of lithium-ion battery temperature performance in different
operating conditions, for different values of PCM material, thicknesses, and discharge rates
would be beneficial for accelerating the industrialization of this innovative cooling strategy.

Various types of PCMs can absorb and release a large quantity of thermal energy
through the phase change procedure from solid–liquid, solid–solid and then liquid–gas.
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Although paraffin wax (PW) is the most favoured PCM due to its high energy density,
nontoxicity and low vapour pressures, the disadvantage of PW is low thermal conductivity
and the risk of liquid leakage during the phase change procedure.

From the literature to increase the thermal conductivity of PW, different thermally
conductive fillers, such as ceramic fillers Al2O3 AlN and metal nanoparticles Cu, Al and Ag
can be added to PW [47–49]. Additionally, the liquid leakage issue of PW can be avoided by
mixing polymer and PW since the polymeric matrix can fix PW by a strong intermolecular
force [50,51].

Y. Zhang et al., used graphite/paraffin/silicone rubber composite PCMs to control the
temperature and improve the safety performance and service life in heat energy storage,
battery management and thermal interface materials for electronic devices. In this study,
the expanded graphite (EG), paraffin wax (PW) and silicone rubber (SR) matrix are blended
with the mixture EG/PW/SR composite shown in Figure 4. Further analysis proved that
the fusion latent heat and the crystallization latent heat of the composite PCM were 43.6 J/g
and 41.8 J/g, respectively. Moreover, The shape stable test indicates that the EG/PW/SR
composite PCM may well resist baking at 150 ◦C for 24 h with no shift [52].
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3. Battery Management System

A battery-management system (BMS) detects unusual circumstances and validates
the proper method for controlling the temperature behaviour of the battery to avoid any
negative impact on the power-intake profile. BMS plays a critical role in the safe and
efficient operation of batteries. It uses state estimation which is a broad field of research.

BMS should be designed to mitigate the effects of operations at different states, power
demands, temperatures, and states of health. It generally employs model base estimation
that requires an accurate battery model and a robust estimation strategy to work efficiently.
Since LIBs charge faster than conventional battery technologies, a well-designed BMS is
essential to help with the safety, dependability, and overall performance of lithium-ion
battery systems.

Since LIBs charge faster than conventional battery technologies, a well-designed BMS
is essential to help with the safety, dependability, and overall performance of lithium-ion
battery systems. The accurate estimation of the SOC of a Li-ion battery is challenging
because the Li-ion battery is a highly time-variant, non-linear, and complex electrochemi-
cal system. The SOC estimation methods have been classified into four main categories,
namely the direct measurement method, bookkeeping estimation method, model-based
method, and computer intelligence method. A critical explanation, including their merits,
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limitations, and estimation errors from other studies, is provided. Some recommendations
depending on the development of technology are suggested to improve online estima-
tion [53].

The BMS is responsible for monitoring the SOC, SOH, SOP, and the remaining useful
life (RUL) of the battery pack as well as for cell balancing, thermal management, and safety.

Figure 5 demonstrates the global market for battery-management systems for different
applications [54].
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Battery packs are the most expensive components in EVs and the largest factor con-
tributing to the price differential between EVs and conventional ICE-powered vehicles [7].
In the small and midsize car segments, the average EV costs $12,000 more to produce
than comparable ICE-powered vehicles. The reason behind this cost is that most original
equipment manufacturers over-engineer battery packs by 10–14% in terms of capacity to
slow down the battery degradation rate due to SBMS limitations. This over-engineering
could be mitigated by implementing accurate and robust SOC, SOH, and SOP estimation
strategies onboard the BMS.

Multiple models can be considered or learned for SOC and SOH estimation. These
models are used in combination with an AI-empowered filter [55]. However, a combina-
tion of linear and nonlinear filters can be deployed for estimating the states whose time
evolutions are governed by linear and nonlinear dynamics, respectively. In this way, the
computational burden can be reduced [56].

Next-generation management will serve as the vital link between EVs and the energy
society, which consists of numerous EVs, charging stations, and power plants. It is essential
to have an accurate estimation of battery voltage, heat generation rate, and state of health
under different conditions to maintain the safe and efficient operations of the BMS for
EV application.

With the increasing number of onboard batteries, advanced management is needed
for battery modules. Advanced management systems take different forms, including cen-
tralized systems and distributed. The advanced management system focuses on improving
the battery performance and the user’s driving experience and enables the monitoring of
battery dynamics. Battery modelling and state estimation, thermal management, battery
equalization, charging control, and fault diagnosis are the required functions [57].

While AI technology would improve and transform the implementation of LIBs
for EV applications, the deployment of AI/ML algorithms into real-world scenarios for
predicting and discovering battery materials and estimating the state of the battery system
is challenging [58].

ML techniques can be used to link data, by creating a new dataset construction
and/or existing dataset development where a critical correlation in material science is the
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structure-property relation. A predictive AI/ML approach helps to extract complicated
and nonlinear patterns from training datasets and translate the meta-data into statistical
models. Therefore, fault prognosis as an additional function to the local fault detection
function of the BMS would use historical data and machine learning to predict or prevent
the occurrence of a fault in the battery system [59–61].

The SOH estimation based on ML technologies is shown in Figure 6. The overall
framework is based on two parts, the offline training process, and the estimation process
which could be either offline or online. Sui et al. analyzed the impact of entropy as a feature
for capacity estimation of the battery by monitoring the variation of voltage, current, and
temperature during the aging process. The performance of these sample entropy (SE)-based
estimators, revealed that the entropy-based SOH estimation method will be improved once
the battery SOC gets to the polarization zone [62].
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Currently, with the rapid development of AI in every industry, AI is finding its way
into our everyday lives. Generative AI has been determined as a strategic AI technology
by Gartner [63]. Additionally, in an earlier report, it was predicted that AI would lead to
breakthroughs in key areas such as [64]:

• Augmented workforce
• Cybersecurity
• Metaverse
• Autonomous vehicles

Energy management, climate, healthcare, drug discovery, and robotics are among
other fields where AI can make a difference.

The learning architectures and transformer-based models that benefit from an attention
mechanism have been playing a critical role in different AI applications, especially in natural
language processing. Putting language models aside, regarding the previously mentioned
trends, the following state-of-the-art algorithms represent the recent top AI achievements
for different application domains:

• Computer vision:

– Time-Space Transformer has been developed by Meta AI (Facebook AI) for video
understanding through action recognition. Compared to a 3D convolutional
neural network (CNN), TimeSformer is faster to train and requires less computing
power. Hence, it is more suitable for real-time or on-demand video-processing
applications [63].
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– Perceiver has been developed by Google DeepMind based on transformers to be
compatible across various modalities including image, video, and point cloud. Us-
ing an asymmetric attention mechanism, it can handle large inputs by iteratively
distilling inputs into a latent information bottleneck [65].

• Generative AI:

– DALL-E has been developed by OpenAI to create images from text descriptions,
which applies to a wide range of concepts that can be expressed using natural
language. Building on transformers, DALL-E models the text and image tokens
as one data stream in an autoregressive manner [66].

– Google DeepMind has proposed an AI framework to play the role of an assistant
for mathematicians helping them in discovering new conjectures and theorems.
The algorithm relies on seeking potential patterns and relations between mathe-
matical objects [67].

• Deep reinforcement learning:

– AlphaFold has been developed by Google DeepMind for predicting the protein
structures in the human proteome [68].

– A deep reinforcement learning algorithm has been proposed by Google DeepMind
for high-dimensional and high-frequency control of tokamak, which is a nuclear
fusion reactor. The proposed controller autonomously learns to command the
magnetic actuator coils in a way to satisfy a diverse set of requirements over a
wide range of plasma configurations [65].

• Multimodal learning:

– To cope with the insufficiency of multimodal training data, a transformer-based
multimodal learning architecture has been proposed [69]. In this architecture,
a set of unimodal pre-trained transformer models are used to encode different
modal inputs. Then, representations, which are provided by these encoders, are
fused by another set of transformer layers.

– In multimodal learning, some modalities likely face issues such as missing data,
noisy data, lack of annotated data, unreliable labels, and scarcity of training data.
To cope with such issues, the notion of multimodal co-learning has been proposed
for performing knowledge transfer from resource-rich modalities to resource-poor
ones [70].

– Since data plays an important role in the learning process, recently, in the AI
community, a campaign has been started by Andrew Ng to promote data-centric
AI as opposed to model-centric AI [71]. According to Andrew Ng, “data-centric
AI is the discipline of systematically engineering the data needed to successfully
build an AI system”. The main idea is to have smart-size learning models instead
of overly complex ones. However, the model quality should not be compensated
for simplicity. To obtain a high-quality AI system, such simpler models must
be trained on datasets, which are carefully collected smartly. In this regard,
observability deserves special attention.

Observability plays a key role in estimation, control, and decision-making. Regarding
condition monitoring as well as fault diagnosis and prognosis, the notion of observability
has been recently extended from the system level to the data level. Aiming for high-quality
data, the following five pillars have been proposed for data observability [72]:

• Freshness refers to the availability of up-to-date data.
• Distribution refers to whether data is in the acceptable range.
• Volume refers to the completeness of data.
• Schema is concerned with structure change for the data.
• Lineage is concerned with both upstream and downstream negative impacts of

data downtime.
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To build an automated end-to-end data pipeline, AI must be part and parcel of each
one of these pillars. AI can handle partial observability and compensate for missing data
through data imputation [73]. Furthermore, deploying a cognitive controller alongside
the physical controller in the system will pave the way for improving observability [74].
While the physical controller controls the flow of energy in the system, the cognitive
controller is responsible for controlling the flow of information toward minimizing risk in
the decision-making process [75].

The sequential data collected as time series reflects the dynamic state of the system un-
der study, and the fusion of features associated with different modalities into an industrial
knowledge graph will facilitate condition monitoring and prognostics [76]. Graph neural
networks [77] and tools from graph signal processing [78] can be deployed to develop
such a framework. Furthermore, graph neural networks allow for handling unstructured
data [79]. Using such a knowledge graph allows the AI-empowered decision-making
process to move beyond robustness and aim at achieving antifragility through learning and
system reconfiguration. While a robust or resilient system is supposed to resist shocks and
stay the same, an antifragile system must improve. Antifragile systems should be immune
to prediction errors. Moreover, in case of an adverse event, the antifragile system must be
able to quickly restore its normal status and recover its normal performance [80].

For condition monitoring and prognostics, state/parameter estimation would be a key
element. Through shifting from a model-centric to a data-centric approach, a large spec-
trum of AI-empowered filters can be developed and used for state/parameter estimation
regarding the deployed models and learning methods [56]. In this regard, multiple-linear,
adaptive, kernel-based, and deep-learning models can be tailored to and learned for the
application at hand. For training such models, supervised, semi-supervised, unsuper-
vised, weakly supervised, self-supervised, noise-robust, and reinforcement learning can be
used [81]. Such models can then be used in combination with different filtering algorithms
as the required state-space models. For instance, to handle partially known dynamics,
recurrent neural networks (RNNs), as well as a combination of RNNs and time-varying
state-space models, were used to aid the Kalman filter [82]. Alternatively, the filtering
procedure can also be viewed as a learning process as well. In this regard, for time-series
analysis, probabilistic transformers combine a state-space model with the transformer
architecture to benefit from an attention mechanism [83].

Habibi presented a new hybrid filter-based method for state estimation as the smooth
variable structure filter (SVSF). The SVSF method is model-based and applies to smooth
nonlinear dynamic systems. It allows for the explicit definition of the source of uncertainty
and can guarantee stability given an upper bound for uncertainties and noise levels. The
performance of the SVSF improves with the more refined definition of upper bounds
on parameter variations or uncertainties. By combining SVSF) with different models
and learning methods, a large spectrum of novel AI-empowered filtering algorithms
will be derived and used for condition monitoring and prognostics, especially in energy
management systems (EMS). To be more specific, such filters will be used as part and parcel
of a BMS for battery state estimation. Then, these estimates will be used for diagnosing
and prognosing electrical faults or cell failures as well as improving battery efficiency [84].
The combination of the SVSF with deep learning, reinforcement learning, and graph
neural networks to derive novel filtering algorithms is uncharted territory to improve the
overall accuracy and stability of the estimates. Therefore, there is great potential from both
theoretical and practical perspectives to make a difference in the literature. Moreover, using
the main idea behind the SVSF may contribute to AI research in the sense of deriving novel
learning algorithms [85].

Regarding the advantages of SVSF over the Kalman filter such as robustness against
model uncertainty and the existence of a secondary set of indicators in addition to the
innovation vector, it is expected that the AI-empowered SVSF algorithms will come out
as winners in competitions against the available deep learning-based filters that are built
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on Kalman filter. Moreover, it is expected that the AI-empowered SVSF algorithms find
applications beyond the domain of applicability of current deep learning-based filters.

Data collection is an essential aspect of developing and training AI models. This
proposal will generate extensive and high-quality data for various battery chemistry and
cell types. These data will become an asset for researchers to conduct further analysis,
use for training and modelling, and benchmark against. The datasets will enable more
researchers to start innovating without building up facilities first, accelerating the pace of
battery research.

4. Conclusions

The climate change concern and other environmental issues due to the immense
exploitation of fossil fuels and the emission of greenhouse gases result in increased con-
sumption of rechargeable batteries. Although there are various types of primary batteries
and rechargeable batteries available in the market, lithium-ion LIBs are the most common
energy storage systems due to their high specific capacity, high energy density and good
cycling stability especially for EV applications [7].

In the current study, different cooling methods were investigated to improve the tem-
perature performance of LIBs have been summarized including air cooling, liquid cooling,
PCM cooling, and heat pipes. It is noticed that the air-cooling system has advantageous
features such as safe, consistent, and simple design, but the lower heat capacity and thermal
efficiency of the air as a cooling method. Liquid-cooled is a very effective cooling technique
with greater thermal conductivity and greater heat capacities compared to air cooling in
which a liquid is used as a coolant to eliminate the heat generated by a battery. To increase
thermal conductivity, PCM cooling allows simple cooling designs to wrap batteries, with
graphite sheets between batteries, increasing the heat loss and improving the temperature
uniformity of the battery pack. To achieve better cooling performance PCM cooling can
also be combined with liquid cooling or heat pipes.

Moreover, a BMS is an essential device for charging and discharging the batteries, over-
coming many challenges, and improving the operating performance of battery modules. On
the other hand, using AI-based predictive algorithms in BMS can improve the availability
of testing datasets and robust processing of data in real-time for EV applications.

According to the above analysis, a future investigation using a Kalman Filter Algo-
rithm is necessary to improve the existing algorithms by including both SOH and SOC
estimators to calculate the ageing of the battery in terms of power management during
long periods of use. This response to the demand side of safety challenges in packing
lithium-ion battery energy management.

Moreover, from the perspective of theory and application, ML technologies possess
play a major role in battery SOH estimation. Therefore, the outlook of the research on
future research should focus on implementing advanced battery models and algorithms
onto the cloud-based BMS and the difficulty of onboard implementation. In particular,
an EMS system that runs optimally under harsh weather can significantly improve the
mileage and usability of electric vehicles in Canada and similar regions with cold climates.
This will encourage customer acceptance of electric vehicles and accelerate the pace toward
carbon peak and carbon neutrality goals.
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The following abbreviations are used in this manuscript:

EVs Electric Vehicles
BMS Battery Management System
AI Artificial Intelligence
ML Machine Learning
SOC State of Health
SOH State of Charge
EV Electric Vehicle
LIBs Lithium-ion batteries
LiFePO4 Lithium Iron Phosphate
LiCoO2 Lithium Cobalt Oxide
NCA Lithium Nickel Cobalt Aluminum Oxide
LFP Lithium Iron Phosphate
SSB Solid-state batteries
Li-S Lithium-sulfur
NRC National Research Council Canada
NMC Nickel Manganese Cobalt
PCM Phase change materials
PW Paraffin Wax
EG Expanded Graphite
SR Silicone Rubber
RUL Remaining Useful Life
CNN Convolutional Neural Network
RNNs recurrent neural networks
SVSF smooth variable structure filter
EMS energy management systems
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