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Abstract: Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are important for
developing energy systems such as fuel cells and metal–air batteries. Precious metal catalysts, such
as Pt and IrO2, have been considered electrochemical catalysts because of their excellent activity for
the ORR and OER. However, their disadvantages, such as low durability for long-term operation
and high price, necessitate the development of alternative electrochemical catalysts. Transition metal
oxides with excellent electrical conductivity, high efficiency, and stability have been considered
alternative electrochemical catalysts owing to their ORR and OER activities, which are similar to
those of precious metal catalysts. Therefore, in this study, composite catalyst materials comprising
Co3O4 and CoFe2O4 spinel oxides were synthesized via hydrothermal synthesis. The synthesized
composite oxides exhibit bi-functional electrochemical catalytic activity for ORR and OER owing to
the large active surface area and increased number of oxygen vacancies via the nanostrain in Co3O4

nanoparticles.

Keywords: cobalt ferrite oxide; hydrothermal synthesis; oxygen reduction reaction (ORR); oxygen
evolution reaction (OER); spinel oxide

1. Introduction

As concerns about the excessive consumption of fossil fuels and energy depletion
increase, intensive research is being conducted on developing sustainable and renewable
energy technologies [1–5]. Therefore, efficient energy storage and conversion systems,
such as metal–air batteries [6–8] and fuel cells [9–11], are attracting attention because of
their high energy density, environmental friendliness, and cost-effectiveness. However,
the slow kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction
(OER) in electrochemical energy systems limits the efficiency of fuel cells and metal–air
batteries [12–15]. Therefore, developing efficient electrochemical catalysts for ORR and
OER is important. Pt-based catalysts for the ORR and RuO2- and IrO2-based catalysts
for the OER exhibit high electrochemical catalytic activity with high current density and
low onset potential [16,17]. Although precious metal catalysts have high catalytic activity,
commercializing them is difficult due to their high cost, scarcity, and low durability against
long-term operation. As a result, various studies have been conducted on efficient cata-
lysts based on non-precious metals to replace precious metal catalysts to overcome these
shortcomings [17–21].

Non-precious metal-based transition metal oxides (TMOs), such as NiCo2O4 [22],
LaMnO3 [23], CuO [24], MnO2 [25], MnCo2O4 [26], and Co3O4 [27], have been proposed as
bifunctional electrochemical catalysts for ORR and OER because of their excellent stability
and abundance [28,29]. Among the various TMOs, spinel oxide has the basic structural
formula of AB2O4, with divalent and trivalent metal ions located at the A-site and B-site,
respectively [30]. Considering that spinel oxide has various valence states, it has excellent
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redox stability compared to precious metal catalysts and has characteristics such as high
abundance, low cost, and environmental friendliness [31,32]. Spinel-structured cobalt
ferrite (CoFe2O4) has abundant metal ions in various valence states (Fe2+, Fe3+, Co2+,
and Co3+) and has been reported to provide redox-active sites on the surface required
for O2 adsorption and activation [33,34]. Despite these properties, spinel ferrite exhibits
limited electrochemical performance owing to the limited diffusion length at the electrode–
electrolyte interface and low ion diffusion rate due to particle aggregation [35,36].

Chen et al. reported that the electrochemical performance of spinel oxides could be
improved by synthesizing nanomaterials with uniform and large specific surface areas [37].
Various methods have been adopted to fabricate spinel-structured nanomaterials [38–41].
Hydrothermal synthesis, a promising method for synthesizing nanomaterials, is a method
of synthesizing nanomaterials by applying heat to an aqueous solution and using pressure
inside a container. This method has a high level of composition control at a low temperature,
high reaction rate, is free of impurities, and is cost-effective compared to other synthesis
methods. In addition, hydrothermal synthesis can control the morphology of nanoparticles
by controlling parameters such as temperature, molar concentration, and time, thereby
improving their electrochemical properties [42–44].

Therefore, in this study, the composite spinel oxide Co3O4-CoFe2O4 was synthesized
through one-pot hydrothermal synthesis by changing the ratio of Co3O4 to CoFe2O4. The
synthesized Co3O4-CoFe2O4 has a uniform nanoparticle shape and a high specific surface
area, and the coexistence of Co3O4 and CoFe2O4 according to the ratio shows bifunctional
electrochemical catalytic activity for the ORR and OER.

2. Materials and Methods
2.1. Materials

Cobalt(II) acetate tetrahydrate (Co(CH3COO)2·4H2O, 97%, Samchun Pure Chemical
Co., Ltd., Pyeongtaek, Republic of Korea.) and iron (II) chloride tetrahydrate (FeCl2·4H2O,
99%, Samchun Pure Chemical Co., Ltd., Pyeongtaek, Republic of Korea.) were used as
precursors. An ammonia solution (NH4OH, 25–30%, Samchun Pure Chemical Co., Ltd.,
Pyeongtaek, Republic of Korea.) was used as the precipitant.

2.2. Synthesis of Composite Co3O4-CoFe2O4-X via Hydrothermal Method

Co3O4-CoFe2O4 composite spinel oxide was synthesized by one-pot hydrothermal
synthesis. Co(CH3COO)2·4H2O and FeCl2·4H2O (6.35 mmol) are added to 7.75 mL of
distilled water in a ratio of Co3O4:CoFe2O4 = x at.% (x = 0, 12.5, 25, 37.5):100 at.%. After
stirring the solution for 30 min, 6.25 mL of ammonia solution was slowly added using a
syringe under stirring to adjust to pH 10 and stirred for 30 min. The solution was transferred
to a Teflon-lined autoclave and heated at 453 K for 3 h and then cooled to room temperature.
After repeated washing with distilled water and ethanol, the sample was dried overnight in
an oven at 333 K to obtain a sample without additional calcination. Using the same method
described above, Co3O4 was synthesized with 6.35 mmol of Co(CH3COO)2·4H2O. The
samples were named CFO, CO-CFO-12.5, CO-CFO-25, CO-CFO-37.5, and CO, respectively.
CFO is CoFe2O4, CO is Co3O4, and in CO-CFO-X, X is the atomic percentage of CO in
the composite oxides. The proposed reaction mechanism for formation of nanoparticle
consisted of Co3O4 and CoFe2O4. The reaction formula that can occur during hydrothermal
synthesis is shown in Scheme 1.

2.3. Characterization

The crystal structure of the sample prepared by the one-pot hydrothermal synthe-
sis was analyzed using X-ray diffraction (XRD, MiniFlex 600) with Cu Kα radiation
(λ = 1.5406 Å) in the 2θ range of 20–80◦. Field-emission scanning electron microscopy
(FE-SEM, S-4800, Hitachi, Tokyo, Japan.) was used to examine the sample morphology.
The morphology and lattice structure of the electrode materials were analyzed by transmis-
sion electron microscopy (HR-TEM, JEM-2100F). The specific surface area, pore volume,
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pore size distribution, and pore morphology of the samples were analyzed by N2 ad-
sorption/desorption isotherms at 77 K using the Brunauer–Emmett–Teller equation (BET,
BELSORP-mini II). The binding of oxygen in the samples was analyzed by X-ray photoelec-
tron spectroscopy (XPS, Thermo ESCALAB 250) using Al Kα radiation. Electrochemical
activity was evaluated using a rotating ring-disk electrode (RRDE, RRDE-3A Ver. 2.0) in
0.1 M KOH electrolyte solution with ORR of −0.8 V~0.2 V and OER of 0.3 V~1.0 V. ORR
and OER scan rates were performed at 10 mV/s and 50 mV/s, respectively, with a Hg/HgO
(1 M NaOH) electrode used as reference electrode and a platinum wire used as a counter
electrode. Five microliters of catalyst ink were placed on a glassy carbon disk electrode and
used as a working electrode to conduct an electrochemical catalyst performance test in an
O2 atmosphere.

Energies 2023, 16, x FOR PEER REVIEW 3 of 12 
 

 

 

Scheme 1. Proposed reaction mechanism of spinel oxide CFO, CO-CFO-X, and CO. 

2.3. Characterization 

The crystal structure of the sample prepared by the one-pot hydrothermal synthesis 

was analyzed using X-ray diffraction (XRD, MiniFlex 600) with Cu Kα radiation (λ = 

1.5406 Å) in the 2θ range of 20–80°. Field-emission scanning electron microscopy (FE-

SEM, S-4800, Hitachi, Tokyo, Japan.) was used to examine the sample morphology. The 

morphology and lattice structure of the electrode materials were analyzed by 

transmission electron microscopy (HR-TEM, JEM-2100F). The specific surface area, pore 

volume, pore size distribution, and pore morphology of the samples were analyzed by N2 

adsorption/desorption isotherms at 77 K using the Brunauer–Emmett–Teller equation 

(BET, BELSORP-mini II). The binding of oxygen in the samples was analyzed by X-ray 

photoelectron spectroscopy (XPS, Thermo ESCALAB 250) using Al Kα radiation. 

Electrochemical activity was evaluated using a rotating ring-disk electrode (RRDE, RRDE-

3A Ver. 2.0) in 0.1 M KOH electrolyte solution with ORR of −0.8 V~0.2 V and OER of 0.3 

V~1.0 V. ORR and OER scan rates were performed at 10 mV/s and 50 mV/s, respectively, 

with a Hg/HgO (1 M NaOH) electrode used as reference electrode and a platinum wire 

used as a counter electrode. Five microliters of catalyst ink were placed on a glassy carbon 

disk electrode and used as a working electrode to conduct an electrochemical catalyst 

performance test in an O2 atmosphere. 

3. Results and Discussion 

3.1. Characterization 

The crystal phase and diffraction peaks of the spinel oxide CFO, CO-CFO-X, and CO 

obtained by X-ray diffraction analysis are shown in Figure 1. The XRD pattern of CFO was 

consistent with the diffraction peak of the cobalt ferrite spinel oxide phase (JCPDS No. 01-

1121), and the diffraction peak of CO was consistent with that of the cobalt oxide phase 

(JCPDS No. 09-0418). The XRD pattern of the CO-CFO-X composite oxide exhibits CFO 

main peak at 35.4° and CO main peak at 36.7°. In addition, in the XRD results, the intensity 

of the main peak of CO increases as the mixing ratio of CO increases, indicating that the 

CO-CFO complex coexisting with CFO and CO was prepared through hydrothermal 

synthesis without high-temperature calcination. Compared with the intensity of the CO 

peaks, the intensity of CO in CO-CFO-X and the intensity of the CFO peaks are relatively 

low, related to the small crystal size [45]. The CO main peaks of the CO-CFO-12.5 and CO-

CFO-25 samples are slightly shifted to high 2-theta angles, indicating that the lattice was 

expanded. However, in CO-CFO-37.5, which has a high CO content in the composite, the 

shift of the CO-related peaks was not confirmed [46].  

Scheme 1. Proposed reaction mechanism of spinel oxide CFO, CO-CFO-X, and CO.

3. Results and Discussion
3.1. Characterization

The crystal phase and diffraction peaks of the spinel oxide CFO, CO-CFO-X, and CO
obtained by X-ray diffraction analysis are shown in Figure 1. The XRD pattern of CFO
was consistent with the diffraction peak of the cobalt ferrite spinel oxide phase (JCPDS No.
01-1121), and the diffraction peak of CO was consistent with that of the cobalt oxide phase
(JCPDS No. 09-0418). The XRD pattern of the CO-CFO-X composite oxide exhibits CFO
main peak at 35.4◦ and CO main peak at 36.7◦. In addition, in the XRD results, the intensity
of the main peak of CO increases as the mixing ratio of CO increases, indicating that
the CO-CFO complex coexisting with CFO and CO was prepared through hydrothermal
synthesis without high-temperature calcination. Compared with the intensity of the CO
peaks, the intensity of CO in CO-CFO-X and the intensity of the CFO peaks are relatively
low, related to the small crystal size [45]. The CO main peaks of the CO-CFO-12.5 and
CO-CFO-25 samples are slightly shifted to high 2-theta angles, indicating that the lattice
was expanded. However, in CO-CFO-37.5, which has a high CO content in the composite,
the shift of the CO-related peaks was not confirmed [46].

Therefore, FE-SEM and HR-TEM analyses were performed to confirm the crystal
sizes and lattices of the samples prepared using the hydrothermal synthesis method.
Figure 2 shows the structures of CFO, CO-CFO-X, and CO synthesized by hydrothermal
synthesis at 453 K using FE-SEM. The CFO sample (Figure 2a) and CO-CFO-X samples
(Figure 2b–d) consist of small particles, as predicted by the low peak intensity in the
XRD analysis. However, the CO sample (Figure 2e) shows that the nanoparticles are
agglomerated compared to other samples, attributed to the high peak intensity in the
XRD pattern [45]. The samples, except for CO, formed a porous structure and a material
with uniformly distributed nanoparticles. These nanostructures can exhibit high catalytic
performance because of their promising structural features [47]. Figure 3 shows the HR-
TEM images of CFO, CO-CFO-12.5, and CO. In the HR-TEM images of the 10 nm scale bar
of CFO, CO-CFO-12.5, and CO (Figure 3a–c), it is difficult to confirm the lattice parameter
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values and the difference between the samples. However, in the TEM image of the 5 nm
scale bar, CO-CFO-12.5 (Figure 3d) shows a lattice parameter value of 0.475 nm and CO
(Figure 3e) 0.451 nm. Compared to CO, the CO-CFO-X nanocomposite had an expanded
lattice, indicating that the lattice expands as the particle size decreases because of the small
particle size of CFO-CO-X compared to the CO sample, as confirmed in the SEM image
(Figure 2) [48,49].
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Figure 3. HR-TEM images of (a) CFO (b,d) CO-CFO-12.5 and (c,e) CO.

N2 adsorption–desorption was performed to confirm the specific surface area, pore
volume, and pore size distribution of the CFO, CO-CFO-X, and CO samples. As shown
in Figure 4a, the N2 adsorption and desorption isotherms of CFO and CO-CFO-X show a
type IV curve containing a hysteresis loop, indicating a mesopore structure. In contrast,
the N2 adsorption and desorption isotherms of the CO sample correspond to type II
nonporous structures. In the pore size distribution through the Barrett–Joyner–Halenda
model (BJH), CO has relatively developed macropores, while the CFO and CO-CFO-X
samples have well-developed mesopores (Figure 4b). Table 1 summarizes the specific
surface area and average pore size of the samples obtained by calculating the results of
the nitrogen adsorption/desorption experiment using the BET and BJH calculations. As
shown in Table 1, CFO had the highest specific surface area (104.71 m2/g) and the smallest
average pore diameter (24.41 nm). In hydrothermal synthesis, according to the CO ratio,
the higher the CO ratio in CO-CFO-X, the smaller the specific surface area value and the
larger the average pore diameter. CO had the lowest specific surface area (24.92 m2/g) and
the largest average pore diameter (163.19 nm). In the hydrothermal synthesis process, CFO,
which has slow crystal growth, inhibited the crystal growth of CO; therefore, a composite
oxide with a large specific surface area and well-developed mesopores was prepared. The
presence of mesopores in CO-CFO-X can serve as a channel for rapid ion diffusion and
improve its performance as an electrochemical catalyst; in addition, a high specific surface
area affects the ORR current density [50,51].

Table 1. The comparison of SSAs, pore volume, and average pore diameter of CFO, CO-CFO-X, CO.

Sample Specific Surface Area
(m2/g)

Pore Volume
(cm3/g)

Average Pore Diameter
(nm)

CFO 104.71 0.3483 24.41
CO-CFO-12.5 93.54 0.2976 28.07
CO-CFO-25 95.02 0.3168 28.07

CO-CFO-37.5 79.70 0.2841 28.07
CO 24.92 0.0237 163.19
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X-ray photoelectron spectroscopy (XPS) was performed to confirm the change in
oxygen vacancies with an increase in the CO ratio. Figure 5 shows the O 1s XPS spectra.
The O 1s peaks consisted of a lattice oxygen peak at approximately 529 eV and an absorbed
oxygen peak at approximately 531 eV. The area ratios of Oad/OL in the O 1s spectra of
CFO, CO-CFO-12.5, CO-CFO-25, CO-CFO-37.5, and CO were 1.36, 1.40, 1.43, 1.42, and
1.56, respectively. CO (Figure 5e) showed the highest ratio of oxygen vacancies and CFO
(Figure 5a) showed the lowest ratio of oxygen vacancies. As the ratio of CO in CO-CFO-X
increases, the oxygen vacancy ratio tends to increase, attributed to an increase in the ratio
of CO with relatively large oxygen vacancies. However, the CO-CFO-25 sample, containing
relatively little CO, had more oxygen vacancies than the CO-CFO-37.5 sample. Therefore,
the oxygen vacancies in the CO-CFO-X sample are affected by the occurrence of oxygen
vacancies according to the expansion of the lattice structure, as confirmed by XRD peak
shift and TEM lattice images [52,53]. Many studies have shown that an increase in oxygen
vacancies increases the reactivity and number of active sites, reduces the hindrance to the
adsorption of H2O, and lowers the weak metal–oxygen bond to facilitate electron exchange,
thereby affecting the electrocatalytic performance [54–56].
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3.2. Electrochemical Measurement

Figure 6 shows the ORR results for CFO, CO-CFO-X, and CO metal oxides. Pt/C,
known to have a low onset potential and high ORR activity, was measured under the same
conditions as CO-CFO-X. In Figure 6a, Pt/C shows high ORR activity with a limiting current
density value of −3.8 mA/cm2 at −0.2 V. In the ORR curve (Figure 6a), the CO sample with
a low specific surface area (24.92 m2/g) has a current density value of −1.6 mA/cm2, and
the CFO sample with a high specific surface area (104.71 m2/g) has a current density value
of −3.4 mA/cm2. The current density in the diffusion-controlled region was determined
by the diffusion rate of oxygen, i.e., the higher the current density value of the diffusion-
controlled region, the higher the electrocatalytic activity for ORR. The diffusion current is
affected by the geometric surface of the electrode, and the current density increases with
specific surface area [57,58]. The onset potentials of CFO, CO-CFO-12.5, CO-CFO-25, CO-
CFO-37.5, and CO were −0.278 V, −0.270 V, −0.270 V, −0.279 V, and −0.297 V, respectively.
The electrochemical and catalytic properties are similar because the nanocomposites are
based on Co materials. However, compared to CFO, the onset potential and current
density of the CO sample were lower, indicating low ORR performance. Despite the
increase in the ratio of CO, the CO-CFO-X nanocomposite showed a slightly improved
ORR performance compared to CFO owing to the formation of nanoparticles and the
increase in oxygen vacancies. Many studies have reported that the improvement in ORR
properties is related to the formation of oxygen vacancies on the catalyst surface [59–61].
In the calculated electron transfer number (Figure 6b), all the catalysts show a similar
four-electron reaction. In the four-electron reaction, H2O is generated directly without
passing through the intermediate substance H2O2 to reduce the reaction pathways and
achieve desirable reduction reactivity [62].

IrO2, known to have good OER activity, was measured under the same conditions
to compare the performance of CFO, CO-CFO-X, and CO on the OER. Figure 7a shows
the potential values at the same current density of 5 mA/cm2 because it is difficult to
compare the onset potential values. At 5 mA/cm2, the potentials of IrO2, CFO, CO-CFO-
12.5, CO-CFO-25, CO-CFO-37.5, and CO were 0.937, 0.806, 0.779, 0.759, 0.755, and 0.792 V,
respectively. The CFO, CO-CFO-X, and CO samples had higher current densities and lower
potential values than those of IrO2. A lower potential at the same current density increases
the OER efficiency and improves the reaction kinetics of the electrocatalytic process [63].
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10 mHz.

The overpotential (V) value in Figure 7b was calculated as the ERHE value using the
formula ERHE = EHg/HgO + 0.059 pH + E◦

Hg/HgO. IrO2 has the highest overpotential value
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at 1.80 V. On the other hand, the CO-CFO electrode shows a relatively low overpotential
values. These high overpotential values require more energy than thermodynamically
calculated to cause the redox reaction. On the other hand, a low overpotential value
works efficiently for electrochemical kinetics. Therefore, it can be confirmed that the CO-
CFO electrode is effective as an OER electrochemical catalyst. The Tafel slope is one of
the parameters that determine OER kinetics. In Figure 7c, the corresponding Tafel plots
calculated by polarization curves show that the CFO, CO-CFO-12.5, CO-CFO-25, CO-CFO-
37.5, and CO exhibit Tafel slopes of 135, 120, 112, 108, and 128 mV/dec, respectively. These
Tafel slopes are smaller than IrO2 (154 mV/dec), suggesting accelerated OER kinetics of
the CO-CFO catalysts and efficient electron and mass transfer. Electrochemical impedance
spectroscopy (EIS) was used to investigate the kinetics of the OER process (Figure 5d). The
measurement was conducted under the conditions of 0.9 V and 10 mV in the range of 7 MHz
to 10 mHz. The measured polarization resistances of IrO2, CFO, CO-CFO-12.5, CO-CFO-25,
CO-CFO-37.5, and CO were 33.79, 28.31, 25.21, 17.18, 16.80, and 27.06 Ω·cm2, respectively.
The small polarization resistance indicates fast electrochemical reaction at the interface
between electrode materials and electrolyte. These changes in electrochemical performance
may related with the oxygen vacancy and morphology of nanocomposites. CO with the
most oxygen vacancies showed higher OER activity than CFO with small oxygen vacancies.
CO-CFO-25 and CO-CFO-37.5, which have more oxygen vacancies than CO-CFO-12.5,
have lower potential values at the same current density. The increase of oxygen vacancies
is attributed to OER performance. CO-CFO-X nanocomposites with less oxygen vacancies
than CO shows better OER performance. Although CO has a relatively large number
of oxygen vacancies, the small specific surface area and the formation of macropores
originate from the growth of large particles. The small surface area induces low OER
performance owing to the fewer interfaces where electrochemical reactions occur. However,
well-developed mesopores and macropores provide transport channels to improve contact
with oxygen and enable fast long-distance transport of electrolyte ions, resulting in a
relatively high OER performance [64]. Therefore, the CO-CFO-X nanocomposite has a
high specific surface area related to the surface reaction and has many oxygen vacancies,
indicating good activity in OER [65].

4. Conclusions

In this study, CFO, CO-CFO-X, and CO spinel oxides with a higher specific surface
area than other synthesis methods were synthesized through hydrothermal synthesis. CFO,
CO-CFO-X, and CO were synthesized without impurities at the low reaction temperature
of 453 K. In the synthesis process, CFO, which has slow crystal growth, inhibited the crystal
growth of CO, thereby forming CO-CFO-X nanocomposites (79.70~95.02 m2/g) having
a larger specific surface area than CO (24.92 m2/g) and well-developed mesopores. The
lattice expansion of CO-CFO-12.5 and CO-CFO-25 was indicated using XRD and TEM
analysis, and the lattice expansion is affected by the occurrence of oxygen vacancies. CO-
CFO-12.5 and CO-CFO-25 (onset potentials: −0.270 V) showed improved ORR performance
compared to CFO (onset potentials: −0.278 V) owing to lattice strain and increased oxygen
vacancies. CO-CFO-X nanocomposite showed higher stability and OER activity than IrO2
owing to the presence of well-developed mesopores and macropores. The increase of
oxygen vacancies is attributed to the OER performance, but the small specific surface area
of CO reduces the interface where the electrochemical reaction occurs, resulting in lower
OER performance than the CO-CFO-X nanocomposite. Therefore, CO-CFO-X suggests
that it is a bifunctional electrochemical catalyst with high activity in the ORR/OER due
to high specific surface area, lattice strain, and oxygen vacancies. Using the improved
electrochemical catalytic performance of the CO-CFO-X nanocomposite developed in this
study, we plan to conduct application research on fuel cells, metal–air batteries, or water
electrolysis systems.
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