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Abstract: This study aims at investigating the improvement in the thermal performance of energy
storage for a hydronic system when it is equipped with evacuated tubes integrated within a hot
water tank. The PCM shell in the bottom section is thicker than at the top to maintain a uniform,
minimal water temperature difference of 5 ◦C between the top and bottom sections of the hot water
tank. The thermal performance of the system was analyzed in diverse months when the ambient
temperature fluctuated. The results have revealed that the thermal performance in December, March,
and June was 80%, 81%, and 84%, respectively, meaning that the thermal performance is optimal
in warm weather. The results confirmed that the system had boosted the presence of hot water
throughout the whole day, including the time of the sun’s absence, due to the release of stored PCM
latent heat. The designed system solves the overheating problem and expands the availability of hot
water through the cold weather. The system is characterized by lower heat losses because the average
water temperature has decreased.

Keywords: phase change material; solar energy; thermal energy storage; hydronic solar system;
paraffin wax

1. Introduction

Intensive combustion processes of conventional petroleum-based fuels pose a signif-
icant impact on the environment in the long term and in the vicinity of residential areas
due to exposure to harmful concentrations of gaseous emissions, namely COx, SOx, and
NOx. As a result, stringent environmental regulations against these gaseous emissions
and the operability of thermal combustion facilities to reduce environmental impacts are
legitimized [1]. Due to the rising costs of petroleum end-products and increased demands
in thermal applications by the residential and industrial sectors, researchers have been
encouraged to investigate new resources of renewable energies (REs) and develop eco-
environmentally friendly REs such as photovoltaics (PVs) and thermal solar panels (SPs).
The installation of solar panels on wide terrain is intended to collect solar energy during the
day. Moreover, the current thermal energy demands strongly encourage researchers to ex-
plore promising engineering solutions for effective thermal energy depots and dispatching
solutions. Thermal energy storage has become increasingly crucial, owing to its interaction
with variable production resources, the increase in the demand for conventional fuels for
the combustion process, and the adverse environmental impact of other RE sources. There-
fore, the ideal way to balance thermal energy is for it to be stored in conservative depots
utilizing phase change materials such as paraffin based PCMs, which are ecologically and
economically ideal.
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Thermal energy storage is a feasible compensation for fluctuations between produc-
tion and consumption rates during peak demand periods through thermal energy depot
facilities that could be integrated within RE producers’ and consumers’ buildups. The
integration of PCMs with an energy storage system has several potential applications,
including the intensive and cumulative latent heat of phase changes. Furthermore, the
phase change process is compatible and better monitored, since it occurs ideally at isother-
mal temperatures [2]. Despite these REs’ potential, they possess a few deficiencies, such
as crisp efficiency and less availability than other RE sources such as wind, traditional
solar, and substrates for biofuel production [3]. The availability of sunlight varies across
continents and between the earth’s upper and lower hemispheres, potentially influencing
energy availability.

The PCM products can be classified into three categories: eutectic, organic, and
inorganic materials [4–9]. Organic PCMs include paraffin and non-paraffin. The main ad-
vantages of organic materials are changing their phase without segregation and latent heat
degradation; self-nucleation; non-corrosiveness; chemical stability and safety. Inorganic
PCMs include salts, hydrates, and metallic materials. They have a high storage density,
high thermal conductivity, are non-flammable, and are readily available, but they need a
nucleation agent and have a super-cooling problem in the phase transition. Eutectics are
mixtures of two or more components [4–9].

Hydronic systems are usually associated with liquid water as a heat transfer medium
for the cooling and heating processes. A hydronic system typically includes both cooled
and heated water cycles to allow for separate heat transfer. Typical temperature differ-
ences of such systems are within the range of 0 and 15 ◦C for cooling and between 20 and
100 ◦C for heating [10–12]. Recently, solar water collectors have been considered a signifi-
cant alternative to traditional electric heaters in meeting domestic hot water requirements.
Although solar water heaters are composed of various types, passive or natural convection
types are used widely due to their simplicity and operational efficiency [13,14].

The development of traditional solar heating and cooling systems was reviewed in
Ge et al., 2018; storing excess heat for further applications was recommended, and
enhancements to the solar energy storage system were highlighted [15]. Moreover,
Buker et al., 2015 discussed improvements in solar panel design, such as panel surface, tilt,
and shading, that could have a significant influence on the performance of the integrated
hydronic systems [16]. Nevertheless, the obstacle that limits the solar water collectors is
the scarcity of matching demand and supply throughout the day. The operation of solar
water collectors depends on the availability of the sun [17] and heat losses [18].

Several researchers have confirmed that thermal energy storage is an essential issue
by using appropriate thermal storage material within the solar energy system, which could
be incorporated in a storage tank [19–21] or with collector tubes [22,23]. Recently, the
heat that is absorbed or released during a phase change of PCMs has been employed as
a thermal storage battery, due to its higher latent heat, wide operating temperatures, and
very good thermal properties [24–31]. A PCM absorbs and stores thermal energy during
the sunny hours of the day; later, it releases the stored energy after the sun’s absence,
which improves the solar system’s efficiency. Organic PCMs, such as paraffin wax, are
best known for storing a large amount of energy due to their high latent heat, thermal
and chemical durability, little sub-cooling, and non-toxicity [32,33]. In the recent liter-
ature, the thermal behavior of paraffin-based PCMs was studied for the energy depot
process. Murali et al., 2015 have examined the effectiveness of flat-plate solar water col-
lectors incorporating paraffin as a PCM in a container placed in the top section of the
water tank. Their findings appear to improve the performance of the solar system [34].
Kumar et al., 2020 have investigated the behavior and effect of applying synthesized
nano-PCMs on the energy storage of evacuated solar water heating systems. According
to their findings, PCMs were filled in evacuated solar tubes, which were connected to
cylindrical containers placed inside the water tank [21], and such PCMs flowed as liquid
inside and served as an energy storage medium to heat the water inside the main tank. In
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a previous study, we investigated the thermo-physical properties of PCMs by studying
the enhancement of the thermal conductivity of the heat transfer medium of a PCM with
the addition of carbon nanotubes (CNT) and graphite nanoparticles (GNP) as nanofillers
to PCM composites [35]. So, future outcomes will focus on the enhancement of the per-
formance efficiency of the solar system by adding nanoparticles to the PCM, which are
then incorporated into the system. In this context, prior studies [36–38] have addressed
the application of a shell and tube thermal storage heat exchanger equipped with finned
outer walls for the tubes, and the enthalpy-porosity method was utilized to reveal the
transient behavior of the PCMs’ melting process. This approach could be subject to various
complexities, and several criteria must be met to apply the proposed enthalpy-porosity
method. In addition, the wavy annulus tubes could cause apparent vortices inside the heat
exchanger that affect the natural convection of heat transfer.

Generally, the reviewed studies imply that the integration of PCMs within a solar
system could ameliorate the performance of the thermal mass, maximize operational
simplicity, and recover the thermal energy of the hydronic solar system for off-peak periods.
It could be understood that few attempts were made to establish an in-field hydronic system
that has a potential application of heating water in residential and industrial premises and
to replace conventional electrical/fuel-based water heating systems, thereby improving
energy storage efficiency during off-peak periods and reducing relevant energy expenses
in premises. This study may offer guidance for future research and the thermal design
of domestic hydronic solar systems. The performance of the system is assessed with an
integrated PCM that is distributed on the shell side of the water storage tank, such that the
PCM shell has a different thickness at the top and bottom of the storage tank (the bottom
portion is thicker than the top). The effect of the PCM in a natural circulation solar water
collector was examined through normal domestic hot water consumption, complete and
sudden emptying of the hot water storage tank, and no hot water consumption.

2. Methodology
2.1. Experimental Setup

The manufactured hydronic solar system is located on the Jordan University of Sci-
ence and Technology campus. Its geographic coordinates are 32.49◦ N (latitude) and
35.99◦ E (longitude). The solar collector that was used is an evacuated tube setup with an
inclined angle of 45◦. The inclined angle was chosen after making calculations to obtain
higher gains in energy in the winter and solve the overheating problem in the summer. The
main features of the evacuated tube of the solar collector are presented in Table 1.

Table 1. Features of the evacuated tube of the solar collector.

Parameter Value

Number of tubes 20

Outer diameter 0.058 m

Inner diameter 0.047 m

Length 1.8 m

Tube material Borosilicate glass

Absorptivity coefficient 95%

Emissivity coefficient 5%

In addition to evacuated tubes, the system contains a water storage tank with a total
capacity of 0.200 m3, a length of 1.6 m, and a diameter of 0.45 m. It is made of galvanized
steel with an outer shell with a diameter of 0.53 m and contains paraffin wax as PCM with
a thickness of 2 cm at the top and 4 cm in the bottom portion; such an asymmetric design is
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believed to assist in charging and discharging heat into the system since it provides more
effective buoyancy motion for the liquid PCM. The tank was thermally insulated by rock
wool to reduce the loss of energy. The insulation shell is covered with galvanized steel
sheet. All specifications of the storage tank are shown in Figure 1.
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Figure 1. Schematic representation of the storage tank with instrumentation.

The phase change material that was used in this system was paraffin wax with
a melting temperature of 48 ◦C. It was chosen due to its thermal stability, low price,
no sub-cooling problem, and suitable latent heat. The thermal specifications of paraffin
wax are presented in Table 2.

Table 2. Thermal specifications of paraffin wax [39].

PCM Melting Temperature [◦C] Latent Heat [kJ/kg] Specific Heat
[kJ/kg·◦C]

Thermal Conductivity
[W/m·◦C]

Paraffin wax 48 210 2.4 (liquid)
2.1 (Solid) 0.24

Additionally, the system consists of a solenoid valve that is programmed to meet
the level of family consumption of hot water throughout the day. This valve withdraws
hot water at specific times; the following diagram shows the proposed water consump-
tion pattern, which presents the distribution of hot water throughout the day. Figure 2
shows a daily water consumption pattern according to real observed consumption and
required estimations.

The system contains a cold water tank to recover hot water discharged from the
hot water tank. Thermocouples (Type K) were fixed through the storage tank to notice
and record water and PCM temperatures during the heating process. Thermocouples
were installed in the system to detect the temperatures of the water, PCM, and ambient.
They were placed in the water region in three positions: two at the top and one at the
bottom. Additionally, other thermocouples were placed in three positions throughout the
PCM region: two at the top and one at the bottom. One thermocouple reads the ambient
temperature. All thermocouples were connected to a converter that gives temperature
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readings in Celsius. The data logger was connected to read and record the temperatures
with Windows software easily plugged into a computer. For measuring irradiance (w/m2),
a pyranometer was used. The data was acquired and stored every 4 min. An additional
experiment was performed every 5 s and the reading was recorded. The hot water tank
was discharged completely in the evening (specifically at sunset) to investigate the water
and PCM temperature behavior in this case.
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Figure 2. The hot water consumption pattern throughout the day.

As for the hot water region, the PCM region was also equipped with two holes and
a lid to fill and discharge the PCM at any time based on necessity. Moreover, the problem of
high pressure throughout the system is resolved by setting up vents for both the water and
the PCM regions. A photographic view and schematic diagram of the system are presented
in Figure 3. The water is replenished from the water supply tank. The hot water storage
cylinder receives hot water passively from the evacuated tube, whereas the hot water flows
up to the tank naturally due to thermosiphon circulation. The hot water was then used for
domestic use, and hot water consumption was recovered by the water supply tank. When
water gains heat from solar energy, it conductively exchanges this energy with the PCM.
Conversely, as the temperature of water decreases, the latent heat will be released to the
water from the PCM during the liquid phase until solidification in the absence of the sun.

2.2. Thermal Model

Energy balance is applied to both parts of the hydronic solar system under steady-state
conditions: the evacuated tube and hot water storage tank. The useful energy gained from
solar radiation by evacuated tubes can be expressed by [40,41]:

Quse f ul = I Ac (τα)e f f kθi − Qloss (1)

and
Qloss, tube = UL,tube Ac (Tw − Ta), (2)

where I represents a global solar irradiance, Ac represents a solar collector area, (τα)eff repre-
sents an effective transmissivity-absorptivity product coefficient, kθi represents an incident
angle modifier, UL,tube. represents an over-all heat transfer coefficient of heat loss from the
evacuated tubes, and Tw and Ta. represent water and ambient temperatures, respectively.
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The solar collector’s efficiency

Energies 2023, 16, 126 6 of 17 
 

 

  
(a) (b) 

Figure 3. Hydronic evacuated tube solar system with a PCM: (a) photographic view; (b) schematic 

diagram. 

2.2. Thermal Model 

Energy balance is applied to both parts of the hydronic solar system under steady-

state conditions: the evacuated tube and hot water storage tank. The useful energy gained 

from solar radiation by evacuated tubes can be expressed by [40,41]: 

𝑄𝑢𝑠𝑒𝑓𝑢𝑙 =  𝐼 𝐴𝑐 (𝜏𝛼)𝑒𝑓𝑓 𝑘𝜃𝑖 − 𝑄𝑙𝑜𝑠𝑠 (1) 

and 

𝑄𝑙𝑜𝑠𝑠,𝑡𝑢𝑏𝑒 =  𝑈𝐿,𝑡𝑢𝑏𝑒 𝐴𝑐 (𝑇𝑤 − 𝑇𝑎), (2) 

where I represents a global solar irradiance, Ac represents a solar collector area, (τα)eff 

represents an effective transmissivity-absorptivity product coefficient, kθi represents an 

incident angle modifier, 𝑈𝐿,𝑡𝑢𝑏𝑒 represents an over-all heat transfer coefficient of heat loss 

from the evacuated tubes, and 𝑇𝑤 𝑎𝑛𝑑 𝑇𝑎 represent water and ambient temperatures, re-

spectively. 

The solar collector’s efficiency ɳ is determined by the value of the ratio between use-

ful energy and solar radiation that falls on the collector. This can be expressed by: 

ɳ =  
𝑄𝑢𝑠𝑒𝑓𝑢𝑙

𝐼 𝐴𝑐
 (3) 

Solar collector efficiency (evacuated tubes) can be explained by: 

ɳ𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑜𝑟 = (𝜏𝛼)𝑒𝑓𝑓 𝑘𝜃𝑖 − 
𝑈𝐿,𝑡𝑢𝑏𝑒   (𝑇𝑤 − 𝑇𝑎)

𝐼
  (4) 

  

. is determined by the value of the ratio between
useful energy and solar radiation that falls on the collector. This can be expressed by:

Energies 2023, 16, 126 6 of 17 
 

 

  
(a) (b) 

Figure 3. Hydronic evacuated tube solar system with a PCM: (a) photographic view; (b) schematic 

diagram. 

2.2. Thermal Model 

Energy balance is applied to both parts of the hydronic solar system under steady-

state conditions: the evacuated tube and hot water storage tank. The useful energy gained 

from solar radiation by evacuated tubes can be expressed by [40,41]: 

𝑄𝑢𝑠𝑒𝑓𝑢𝑙 =  𝐼 𝐴𝑐 (𝜏𝛼)𝑒𝑓𝑓 𝑘𝜃𝑖 − 𝑄𝑙𝑜𝑠𝑠 (1) 

and 

𝑄𝑙𝑜𝑠𝑠,𝑡𝑢𝑏𝑒 =  𝑈𝐿,𝑡𝑢𝑏𝑒 𝐴𝑐 (𝑇𝑤 − 𝑇𝑎), (2) 

where I represents a global solar irradiance, Ac represents a solar collector area, (τα)eff 

represents an effective transmissivity-absorptivity product coefficient, kθi represents an 

incident angle modifier, 𝑈𝐿,𝑡𝑢𝑏𝑒 represents an over-all heat transfer coefficient of heat loss 

from the evacuated tubes, and 𝑇𝑤 𝑎𝑛𝑑 𝑇𝑎 represent water and ambient temperatures, re-

spectively. 

The solar collector’s efficiency ɳ is determined by the value of the ratio between use-

ful energy and solar radiation that falls on the collector. This can be expressed by: 

ɳ =  
𝑄𝑢𝑠𝑒𝑓𝑢𝑙

𝐼 𝐴𝑐
 (3) 

Solar collector efficiency (evacuated tubes) can be explained by: 

ɳ𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑜𝑟 = (𝜏𝛼)𝑒𝑓𝑓 𝑘𝜃𝑖 − 
𝑈𝐿,𝑡𝑢𝑏𝑒   (𝑇𝑤 − 𝑇𝑎)

𝐼
  (4) 

  

=
Quse f ul

I Ac
(3)

Solar collector efficiency (evacuated tubes) can be explained by:

Energies 2023, 16, 126 6 of 17 
 

 

  
(a) (b) 

Figure 3. Hydronic evacuated tube solar system with a PCM: (a) photographic view; (b) schematic 

diagram. 

2.2. Thermal Model 

Energy balance is applied to both parts of the hydronic solar system under steady-

state conditions: the evacuated tube and hot water storage tank. The useful energy gained 

from solar radiation by evacuated tubes can be expressed by [40,41]: 

𝑄𝑢𝑠𝑒𝑓𝑢𝑙 =  𝐼 𝐴𝑐 (𝜏𝛼)𝑒𝑓𝑓 𝑘𝜃𝑖 − 𝑄𝑙𝑜𝑠𝑠 (1) 

and 

𝑄𝑙𝑜𝑠𝑠,𝑡𝑢𝑏𝑒 =  𝑈𝐿,𝑡𝑢𝑏𝑒 𝐴𝑐 (𝑇𝑤 − 𝑇𝑎), (2) 

where I represents a global solar irradiance, Ac represents a solar collector area, (τα)eff 

represents an effective transmissivity-absorptivity product coefficient, kθi represents an 

incident angle modifier, 𝑈𝐿,𝑡𝑢𝑏𝑒 represents an over-all heat transfer coefficient of heat loss 

from the evacuated tubes, and 𝑇𝑤 𝑎𝑛𝑑 𝑇𝑎 represent water and ambient temperatures, re-

spectively. 

The solar collector’s efficiency ɳ is determined by the value of the ratio between use-

ful energy and solar radiation that falls on the collector. This can be expressed by: 

ɳ =  
𝑄𝑢𝑠𝑒𝑓𝑢𝑙

𝐼 𝐴𝑐
 (3) 

Solar collector efficiency (evacuated tubes) can be explained by: 

ɳ𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑜𝑟 = (𝜏𝛼)𝑒𝑓𝑓 𝑘𝜃𝑖 − 
𝑈𝐿,𝑡𝑢𝑏𝑒   (𝑇𝑤 − 𝑇𝑎)

𝐼
  (4) 

  

collector = (τα)e f f kθi −
UL,tube (Tw − Ta)

I
(4)Energies 2023, 16, 126 6 of 17 

 

 

  
(a) (b) 

Figure 3. Hydronic evacuated tube solar system with a PCM: (a) photographic view; (b) schematic 
diagram. 

2.2. Thermal Model 
Energy balance is applied to both parts of the hydronic solar system under steady-

state conditions: the evacuated tube and hot water storage tank. The useful energy gained 
from solar radiation by evacuated tubes can be expressed by [40,41]: 𝑄 =  𝐼 𝐴  (𝜏𝛼)  𝑘 − 𝑄  (1)

and 𝑄 , =  𝑈 ,  𝐴  (𝑇 − 𝑇 ), (2)

where I represents a global solar irradiance, Ac represents a solar collector area, (τα)eff 
represents an effective transmissivity-absorptivity product coefficient, kθi represents an 
incident angle modifier, 𝑈 ,  represents an over-all heat transfer coefficient of heat loss 
from the evacuated tubes, and 𝑇  𝑎𝑛𝑑 𝑇  represent water and ambient temperatures, re-
spectively. 

The solar collector’s efficiency ɳ is determined by the value of the ratio between use-
ful energy and solar radiation that falls on the collector. This can be expressed by: ɳ =  𝑄𝐼 𝐴  (3)

Solar collector efficiency (evacuated tubes) can be explained by: ɳ = (𝜏𝛼)  𝑘 − 𝑈 ,   (𝑇 − 𝑇 )𝐼   (4)

  

Figure 3. Hydronic evacuated tube solar system with a PCM: (a) photographic view;
(b) schematic diagram.

The following equation clarifies how the useful energy leaving the evacuated tubes
moves to the water tank, which transfers to paraffin, giving rise to temperature changes:

QPCM =
(
mPCM cp, PCM ∆T

)
solid + mPCM λPCM +

(
mPCM cp, PCM ∆T

)
liquid (5)

Energy balance in the water tank can be expressed by:

Eaccumulation = Quse f ul ± QPCM − Qload − Qloss,tank (6)

Useful energy, load energy, and the heat loss of the water tank can be calculated by:

Quse f ul = mw, tank ·cp, w ·(Tout, w − Tin, w) (7)

Qload = mw,load ·cp, w ·(Tw − Ta) (8)

Qloss, tank = UL, tank Atank (Tw − Ta) (9)
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The overall heat transfer coefficient of energy losses in the system (UL,sys) is equivalent
to the losses of both the evacuated tube and the water tank. This can be expressed by:

UL,sys = UL,tube + UL, tank (10)

The efficiency of the system with paraffin as the PCM is:
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(12)

The domestic hydronic solar system was evaluated according to EN 12976 standards,
where the solar radiation, water temperature, ambient, and PCM temperatures were
recorded for more than 9 months consecutively under two test types: with PCMs and
without PCMs. According to ISO 9459-5 DST, the withdrawals of hot water from the
storage tank depended on family consumption patterns throughout the testing period.
Thermal output characterization tests were conducted according to the results of calculating
instantaneous system performance experimentally and theoretically and calculating water
storage tank heat losses. The hydronic solar system’s thermal performance was measured
on days with daily solar radiation and temperatures recorded over consecutive months
at different water storage inlet temperatures. Protection against overheating and pressure
resistance standards were considered necessary to save the system from deformation.

3. Results and Discussion

The average values of the solar radiation at the JUST campus throughout the year
are shown in Figure 4. The temperature distributions of the ambient, water, and PCM
at the storage tank were recorded during system testing. All parameters of the sys-
tem were studied for many months over a year to investigate the effect under different
weather conditions.
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Figure 4. Measured monthly radiation data.

3.1. Temperature Distributions

The temperature distributions of the ambient, PCM, and water at the storage tank
(average) with and without PCMs are shown in Figures 5–7. In these figures, it is noticeable
that the water temperature increases from sunrise until it reaches the melting temperature of
paraffin. The water temperature remains at a fixed value until the paraffin melts completely,
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at which point it increases to a specific value. The temperatures decrease with the decrease
in energy gained from the sun at the end of the day. While the water temperature rises
through circulation in the evacuated tubes, water flows into a storage tank where thermal
energy exchange starts between hot water and paraffin, which further raises the paraffin’s
temperature. So, the temperature of the paraffin at the beginning of the day increases
gradually with the increasing water temperature that comes from the evacuated tubes.
When paraffin reaches its melting point, the temperature stays constant, increases to the
maximum specified value, and then gradually decreases at night as a result of the absence
of energy from solar radiation. At the melting and solidification temperature of the PCM,
the water temperature stays at a fixed value, which can be observed in Figures 5–7.
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Figure 5. Temperature distribution of the system through December 2021: (a) using paraffin as PCM;
(b) without PCM.
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Figure 6. Temperature distribution of the system through March 2022: (a) using paraffin as PCM;
(b) without PCM.

The following can be observed by using a PCM case: when the PCM temperature
reaches its melting point throughout the day, the stored energy begins the PCM phase
change from a solid to a liquid. This stored energy is used as released energy in water to
maintain its temperature within the domestic usage range.

The temperatures of paraffin decrease constantly in the afternoon to reach a solidifica-
tion point and stay at the same temperature for a short period, with an exchange of latent
heat that is released in water. This process is reflected in the values of water temperatures,
where the decrease is very small. Energy loss during the late afternoon and night hours
is higher than at any other time during the day. The water temperatures are in the range
for domestic use, which is the main goal of the system. The thermal energy that transfers
between water and paraffin depends on the temperature difference between them and on
the phase of paraffin (liquid or solid). Throughout the day, with the presence of solar energy,
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the glazing temperature, energy collected, and water temperature increase. Approximately
at solar noon, water temperatures reach their maximum.
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Figure 7. Temperature distribution of the system through June 2022: (a) using paraffin as PCM;
(b) without PCM.

It can be observed in Figures 5–7 that water temperatures at solar noon without
using a PCM case are higher than those with PCMs. Higher values due to the transfer of
energy from water to PCMs mean a reduction in overheating problems in the water tank.
Conversely, through early morning and late afternoon, the water temperatures are lower
than those reached when using paraffin as a PCM.

Figure 8 shows different temperature distributions, and the experiment of discharging
the storage tank of hot water completely was performed. This experiment was conducted
to study the behavior of the PCM and heat exchange with water by discharging all amounts
of hot water in the water tank at 4:00 PM. The withdrawal of hot water is replaced by cold
water. It is evident from Figure 8 that the water temperature decreases sharply through
the discharge process, along with the PCM temperature. After that, the water temperature
begins to rise as a result of the heat exchange from the PCM.
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Figure 8. Temperature history of the system through complete hot water consumption.

The water and PCM reach the same temperature at a specific point in time. Addition-
ally, the temperature of the water in the domestic use range can be considered optimal. This
experiment shows the exchange of stored thermal energy in PCMs with water and its effect
on water temperature. This experiment explains the family’s sudden and complete drain of
the hot water from the water storage tank and how the PCM raises the water temperature
by 10 ◦C over a short period of time.

Furthermore, Figure 9 shows the temperature distributions of hot water, PCM, and
ambient temperature in the absence of hot water consumption throughout the day. This
experiment was performed in approximately similar weather conditions to the previous
one. It can be noticed that higher values of hot water and PCM temperatures are due to the
absence of load energy. Moreover, it is clear that the temperature difference between water
and paraffin is small; this difference is less than 1 ◦C in the morning hours with increasing
gains in energy.
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Figure 9. Temperature history of the system through no hot water consumption.
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Due to the design of the storage tank, the thickness of the PCM layer on the top and
bottom of the tank was different. The thickness at the bottom is higher than the top, which
means more mass of PCM and more stored energy through the sun’s presence. This stored
energy is released in the water at the bottom of the tank, which has a lower temperature than
that in the top region. Releasing energy from PCMs means heating water, which makes the
water through the whole tank have similar or small differences in temperature, especially
in the late afternoon hours. Figure 10 presents the temperature distribution of water on
the top and bottom regions; as can be seen, the maximum difference is approximately
5 ◦C during the daybreak hours. It can be observed that the water temperatures at the
top and bottom of the tank are the same at solar noon. This study shows a decrease in
water temperature compared with a hydronic solar system without a PCM, which is an
advantage to reducing heat losses from the system and avoiding superheating through the
tank. Furthermore, Azimi et al., 2015 found that the water temperature at the bottom of the
tank is close to ambient temperature without PCMs [42].
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Figure 10. Temperature distribution of water through the top and bottom of the storage tank [42].

Figure 10 presents a comparison and disparity between our study and that of
Azimi et al. Not only do our results demonstrate a decrease in the difference between
hot water and temperature at the top and bottom of the storage tank greater than that of
Azimi et al., but they also show a decrease in the hot water in the system (within domestic
use), which means less thermal energy losses and covers the hours of solar absence.

3.2. System Efficiency

The results of our experiments and theoretical calculations are summarized in
Tables 3–5. The results show useful gains and losses in energy with the water temperature
in the water storage tank for the clear days of December, March, and June. The lowest
rate of useful energy is in the evening and morning. However, the highest value of useful
energy at solar noon is due to the increasing gain in solar energy. Due to the greater
temperature difference between the water and the ambient, heat loss is greater at noon than
in the morning and evening. The experimental efficiency of the hydronic solar system was

estimated by (
Quse f ul

I Ac
). It is clear from the tables that the system efficiency rises progressively

from sunrise to solar noon, the maximum value, then falls off. The maximum experimental
efficiency is around 80% in December, 81% in March, and 84% in June. The instantaneous
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efficiency of the system without using PCMs is around 60%. So, the positive effect of using
PCMs on the performance of the hydronic solar system is clear.

Figure 11 illustrates the relationship between the system’s thermal efficiency (
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system)
and the temperature difference between hot water and ambient (∆T/I), based on the data
for December, March, and June. The relationship shows a straight line with the overall heat
loss coefficient as a slope. The optical efficiency of the hydronic system is the intercept of
the straight line. The values of the determining factor of the relation (R2 > 0.9) point out
an intense correlation between both parameters. Each figure shows the comparison of the
relationship between systems with and without PCM. It can be concluded from Figure 11
that the case of PCM has higher efficiency than that without PCM.

Table 3. Experimental and calculated results for December 2021 with paraffin.

Local
Time

Tw (K) Ta (K) I (w/m2.5) Quseful (w) Qloss, sys
(w)

∆T/I
(K·m2/w)
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Table 5. Experimental and calculated results for June 2022 with paraffin.
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Situta-Olcha et al., 2021 [43] examined the thermal efficiency of the solar system with
a heat pipe without a PCM under weather conditions similar to December. Their results
show less than 40% thermal efficiency. Moreover, the results of Azimi et al., 2015 and
Tong et al., 2016 [42,44] present lower thermal efficiency than that achieved in this study,
which was less than 70% and 80%, respectively. Kumar et al., 2020 [21] investigated adding
paraffin wax as a PCM inside a cylindrical container through a hot water storage tank. One
case of their study was carried out under conditions similar to our study through June; the
daily efficiency was less than 70%.

Some of the virtues of the current work are attracting promising investment opportuni-
ties, improving the infrastructure of local residential areas and rural regimes, and providing
customizability in the energy sector for the benefit of the individual market with innovative
products and dependable services.

4. Conclusions

A hydronic evacuated tube solar heating system is fabricated and installed to match
the domestic requirements and uses throughout the day by using PCM latent heat. In the
analysis of the hydronic solar system, the influence of the weather and operating conditions
was considered. The thickness of the PCM shell in the bottom portion is greater than that
of the top, minimizing the water temperature difference at the top and bottom to 5 ◦C.

The water and ambient temperatures through the system testing are presented and
discussed in three cases: the first one was at normal conditions on clear days with water
consumption, the second was without water consumption, and the final case was the effect
of sudden and complete consumption of hot water while observing the behavior of PCMs
in heated water. The results show increasing water temperature after a short period for
domestic water temperature values.

The thermal efficiency of the hydronic solar system in December, March, and June
was 80%, 81%, and 84%, respectively. This conclusion is higher than that of the experi-
ments conducted by Kumar et al., 2020 [21]. Thermal efficiency depends linearly on ( ∆ T

I ).
The hot water for domestic use is available throughout the day, which is achieved by
using PCMs.
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Nomenclature

T Temperature: K
Ac Solar collector area, m2

Cp Specific heat, kJ/kg·K
I Global solar irradiance, w/m2

kθi Incident angle modifier
m Mass flow rate, kg/s
QPCM Phase change material energy, w
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QLoad Load energy, w
Qloss energy losses, w
Quse f ul Useful energy, w
UL Over-all heat transfer coefficient of heat loss, W/m2·K
rin Inner radius of the hot water tank, m
ro Outer radius of the hot water tank, m
(τα)eff Effective transmissivity-absorptivity product coefficient
λ Latent heat, kJ/kg
η Thermal efficiency, %
Subscripts
a Ambient
w water
tube Evacuated tube solar collector
tank Hot water tank
sys system
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