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Abstract: In recent years, there has been an increased focus on developing and utilizing renewable
energy resources due to several factors, including environmental concerns, rising fuel costs, and the
limited supply of conventional fossil fuels. The most appealing green energy conversion technology is
solar energy, and its efficient application can help the world achieve Sustainable Development Goal 7:
Access to affordable, clean energy. Irradiance, latitude, longitude, tilt angle, and orientation are a few
variables that affect the functioning of a solar photovoltaic (PV) system. Additionally, environmental
factors like dust accumulation and soiling of panel surfaces impact the cost of maintaining and
producing electricity from a PV system. Dust characteristics (kind, size, shape, and meteorological
elements), one of the largest factors affecting PV panel performance, need to be investigated to devise
specific solutions for efficiently harnessing solar energy. The essential findings of ongoing investiga-
tions on dust deposition on the surface of PV structures and various mitigating measures to tackle
soiling issues are presented in this review study. This comprehensive assessment critically evaluates
the current research on the soiling effect and PV system performance improvement techniques to
determine the academic community’s future research priorities.

Keywords: solar energy; photovoltaics (PV); dust; soiling; performance degradation; environmental
factors; energy storage systems; productive life; cleaning; control

1. Introduction

The ensuring energy security and mitigating climate change are two of the current
critical energy problems witnessed on a global scale mandating an immediate transition
to clean renewable energy sources for powering a safer world [1,2]. Utilizing renewable
energy is crucial for sustainably meeting the steadily rising demand for energy. A variety of
semiconductor materials are employed in photovoltaic (PV) cells. When a semiconductor
is exposed to light, the light’s energy (photons) is absorbed and transferred to the semicon-
ductor’s negatively charged electrons [3,4]. The additional energy enables the electrons to
conduct an electrical current through the material. The PV systems rely heavily on silicon,
a semiconductor material. This method of producing electricity has widespread use in
commercial and residential applications due to its low environmental impact and power
grid independency. PV cells’ life expectancy is high, up to 25 years.

Innovations in PV technologies have been successfully used for both domestic and
commercial applications. They offer the notable advantages of tapping for clean, reliable,
abundantly available, and environmentally friendly energy sources [5,6]. Improvements
in PV systems necessitate a thorough understanding of material science, design, and
economic practices [7–10]. The long-term impacts of solar PV energy conversion are the
focus of many studies undertaken by the research community [11–13]. Technological
developments have improved efficiency and have been crucial in bringing down prices
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of solar PV systems, thereby encouraging their wider use [14–17]. Significant efforts
are being taken to ensure optimal performance and reliability of PV systems [18–20].
Internal obstacles that impede technological expansion generally receive less attention
and funding than external operational issues [21–23]. In the deployment of most solar
PV systems, the accumulation of dust particles from the surroundings on exposed PV
surfaces is a natural occurrence. Even though it affects PV panels’ performance and
energy output, this externality is given minimal attention. Dust adversely affects the
intended function at the initial surface/light interaction, substantially reducing conversion
efficiency or even shutting it down altogether [24–27]. Considering the need for continued
efficient power generation of PV systems and prolonged component life, the effects of
dust on performance and mitigation techniques have recently attracted the attention of the
research community [28–30].

Dust particles have a diameter of 500 µm or lesser. This is ten times smaller than the
diameter of the optical fiber. Dust comprises of bacteria, fungi, plants, hair, human/animal
cells, carpet fibers, biological alloy derived from clay and sand, or deteriorated geomorphic
fall clastic rock [31–35]. There are numerous sources of dust particles (aerosols) in the
environment, such as floating dust components (Aeolian dust), volatile emissions, motor
vehicle traffic, and pollution. Dust particle size and structural components differ from
one zone to another [36,37]. The weather, topography, and metropolitan region influence
the formation of dust on the surface of solar panels. Shape, circulation, weight, width,
structure, charge, and chemistry are common features of dust particles that are relevant to
the study of their generation [38–40]. Humidity, wind speed, PV panel tilt angle, and time
influence dust formation on PV systems [41–43]. Different weather elements like wind,
pressure and temperature cause power loss due to the soiling of solar panel surface by
dust, dirt and grime [44]. Figure 1 portrays the different reasons for dust formation on
solar panels and shows the connection between certain variables. Several Researchers have
studied the influence of the formation of dust on PV systems and made many observations
for several decades. However, the main problem of energy loss due to dust deposition
demands appropriate solutions for sustained efficiency of PV modules [45].

This review presents a comprehensive overview of past and recent research studies
on the impact of dust and dirt accumulation on the energy production of solar panels
and mitigation initiatives to keep them dust-free. Even though several review articles are
present in the literature, this review focuses on the recent developments in the dust impact
on PV. It also shares insights into the mechanics of dust build-up mechanics, chemistry, and
optics to forecast the effects of soiling on the power output of PV systems. The connection
between the technique (hardware), the location of the PV system, and the surrounding
conditions is examined. Airborne dust properties that eventually collect on PV surfaces are
related. The recent advances in the field are captured in this present review. It highlights
recent research studies, relations, observations, remedial actions, and future research scope.
Their relation to the collection of airborne dust particles on PV surfaces are related and
the properties of dust particles are scrutinized. The recent advances in the solar PV energy
generation field are presented and captured in this detailed review. It highlights recent
research studies, a correlation between PV panel output and dust accumulation relations,
observations, remedial actions, and future research scope.

The current review is structured in a systematic manner and is comprehensively
summarized in the following sections. Section 1 provides the background and the distinct
needs for the present review. Section 2 elaborates on the aspects of PV module tilting,
orientation, glazing surface characteristics, and height of solar panels. Section 3 discusses
dust particle properties. Environmental conditions that influence dust deposition on solar
panels and the current state-of-the-art solar panel cleaning systems and required remedial
actions to tackle problems of performance reduction and power loss due to dust deposition
are presented in Section 4. Section 5 summarizes the significant conclusions and scope for
extending the study further.
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2. Features of PV Modules and Systems

Solar systems are designed to maximize energy generation with abundantly available
solar energy. As a result, the properties of PV systems are permanent, and some of
these qualities may lead to soiling loss, especially if regular cleaning regimes are not
meticulously followed.

2.1. Tilt Angle and Orientation

Salim et al. [46] constructed a PV testing system in Saudi Arabia to examine the effects
of dust particle accumulation over time on PV power generation. The system’s monthly
output power reduction was calculated by comparing its performance in the clean range
to a tilt angle with a fixed value of 24.6◦. After eight months, the reduction in energy
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production reached 32%. However, this inquiry did not reveal the physical characteristics
of the PV system at the test site. The energy obtained from dirty solar panels diminishes
over a period leading to a fall in efficiency because dust and dirt block solar radiation
affecting output power. The experiment conducted by Hassan et al. [47] demonstrated that
power output decreased within the first 30 days of exposure to dust. Without proper PV
panel cleaning, the output capacity decreased by 33.5% after one month and by 65.8% after
six months. Sayigh et al. [48] found that after 38 days of exposure to the atmosphere with
0◦, 15◦, 30◦, and 45◦ tilt angles, dust-covered glass panels’ transmission had decreased by
64%, 48%, 30%, and 17%, respectively. Figure 2 shows the actual views of dust accumulated
solar PV panels [30].

Energies 2023, 16, x FOR PEER REVIEW 4 of 30 
 

 

2. Features of PV Modules and Systems 
Solar systems are designed to maximize energy generation with abundantly availa-

ble solar energy. As a result, the properties of PV systems are permanent, and some of 
these qualities may lead to soiling loss, especially if regular cleaning regimes are not me-
ticulously followed. 

2.1. Tilt Angle and Orientation 
Salim et al. [46] constructed a PV testing system in Saudi Arabia to examine the effects 

of dust particle accumulation over time on PV power generation. The system’s monthly 
output power reduction was calculated by comparing its performance in the clean range 
to a tilt angle with a fixed value of 24.6°. After eight months, the reduction in energy pro-
duction reached 32%. However, this inquiry did not reveal the physical characteristics of 
the PV system at the test site. The energy obtained from dirty solar panels diminishes over 
a period leading to a fall in efficiency because dust and dirt block solar radiation affecting 
output power. The experiment conducted by Hassan et al. [47] demonstrated that power 
output decreased within the first 30 days of exposure to dust. Without proper PV panel 
cleaning, the output capacity decreased by 33.5% after one month and by 65.8% after six 
months. Sayigh et al. [48] found that after 38 days of exposure to the atmosphere with 0°, 
15°, 30°, and 45° tilt angles, dust-covered glass panels’ transmission had decreased by 
64%, 48%, 30%, and 17%, respectively. Figure 2 shows the actual views of dust accumu-
lated solar PV panels [30]. 

 
Figure 2. Actual photographic view of dust accumulation density of 13.2 g/m2 [30]. 

El-Shobokshy and Hussein [49] examined the PV exteriors that had been tarnished 
with various sorts of dirt and gauged the power of the PV cells under various conditions. 
The most important factor to be considered is that all PV surfaces are contaminated at low 
air velocities [50,51]. Hottel and Woertz [52] performed a three-month performance exam-
ination of collectors with tilt angles of 30° exposed to dust from four-track railroads as 
they were in an industrial area close to the PV power plant. On examining the dust accu-
mulation on the collector, it was noted that the net capacity was significantly lower (4.7%) 
than expected, while forecasts reported a maximum reduction in glass transmission of 
2.7%. They referred to these lower values as indicating a degradation in performance, 
which was attributed to soiling by snow and rain in Boston, USA, while recommending 
the use of self-cleaning of solar collectors. Similarly, dust build-up on the surfaces of solar 
PV panels raises maintenance costs and cleaning expenses [53]. According to Michalsky 
et al. [54], enough data must be available to develop efficient solar PV systems that con-
sider dust collection and removal measures. 

Figure 2. Actual photographic view of dust accumulation density of 13.2 g/m2 [30].

El-Shobokshy and Hussein [49] examined the PV exteriors that had been tarnished
with various sorts of dirt and gauged the power of the PV cells under various conditions.
The most important factor to be considered is that all PV surfaces are contaminated at
low air velocities [50,51]. Hottel and Woertz [52] performed a three-month performance
examination of collectors with tilt angles of 30◦ exposed to dust from four-track railroads
as they were in an industrial area close to the PV power plant. On examining the dust
accumulation on the collector, it was noted that the net capacity was significantly lower
(4.7%) than expected, while forecasts reported a maximum reduction in glass transmission
of 2.7%. They referred to these lower values as indicating a degradation in performance,
which was attributed to soiling by snow and rain in Boston, USA, while recommend-
ing the use of self-cleaning of solar collectors. Similarly, dust build-up on the surfaces
of solar PV panels raises maintenance costs and cleaning expenses [53]. According to
Michalsky et al. [54], enough data must be available to develop efficient solar PV systems
that consider dust collection and removal measures.

All PV modules should face south for optimal power production in the northern
hemisphere. PV modules in the southern hemisphere must be oriented north of the equator.
This placement ensures that the PV modules are exposed to intense sunlight for a prolonged
duration to maximize solar energy collection. Elminir et al. [55] investigated the relationship
between dust accumulation and the orientation and tilt angle of the PV module. They
concluded that glass samples in the northeast collected more dust than samples in other
directions. This was due to the wind blowing in the study area, bringing in emissions
from the nearby manufacturing manufacturers. The analysis showed that dust density and
surface orientation significantly impacted the typical solar transmission efficiency of the
PV glass and reduced power generation efficiency. The transmission was estimated to be
reduced by 52.54 to 12.38 percent when the dust density ranged from 15.84 to 4.48 g/m2. A
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decrease in inclination angle and an increase in dust deposition led to a large reduction in
solar PV transmittance. A significant decrease in transmittance was seen with an inclination
angle of 150 degrees and a 450-degree north orientation. The northeast winds blew in small
particles from different sources, primarily from the emissions of cement manufacturing
industries, and this particulate matter accumulated on the glass plates.

2.2. Glazing Surface Characteristics

Airborne dust on external surfaces of solar system modules lowers solar cell glazing
transmittance and significantly reduces PV module output efficiency. Mustafa et al. [56]
experimentally tested the output reduction of several solar modules with component
surface impacted by dust deposition from air pollution. The experiments were conducted
on a continuous basis under controlled settings. The results of the study revealed that dust
contamination had a considerable effect on the output generation of the solar system. As
dust density increased from 0 to 22 g−2, PV productivity decreased by up to 26%. The
relation between energy capacity reduction and variation in deposition due to PV cell types
was unclear.

Semaoui et al. [57] considered the energy production obtained from PV modules
connected in series in the desert areas of Algeria. A 32% decrease in PV output was
observed due to the deposition of dust over 8 months. The reduced reduction in solar PV
performance was noted to be 10% in the sunny season and 6% in the cold season. Dusty
panels blocked the solar radiation by 60–70% of its initial value if there was no cleaning of
solar PV modules for a year [58]. A one-year experiment was conducted by Hegazy [59] in
central Egypt at a desert temperature. The solar panel tilt angle was found to be the most
influential factor for dust deposition among the other factors, such as the time of exposure
and site climatic conditions. After 10 days of exposure, researchers in Roorkee observed
that dust and other pollutants deposited over a glass plate tilted at 45 degrees reduced
solar transmittance by 8% [60]. The tilt angles of solar panels and solar coverage rate
results were studied by Elminir et al. [55]. With an inclination angle of 0 to 60◦, and varied
concentrations of dust deposition on PV panels, the equivalent transfer power output
was reduced from 52.54% to 12.38%. Figure 3 shows the outdoor dust deposition testing
research infrastructure [30]. Figure 4 shows the power output variation of solar PV surfaces
with and without dust [30].

Energies 2023, 16, x FOR PEER REVIEW 6 of 30 
 

 

 
Figure 3. Outdoor PV panel testing facility with clean and dusty panels [30]. 

 
Figure 4. The variation of PV output power for clean and dusty solar panels [30]. 

The grouping of common outdoor atmospheric dust that accumulates on compo-
nents of PV systems is shown in detail in Figure 5, based on particle size. The influence of 
dust on the transmission of different polished materials was investigated in the arid cli-
matic condition of the Thar desert (India) [61]. The glass transmission decrease was noted 
to be 19.17%, 13.81%, and 5.67% for the respective 0°, 45°, and 90° tilt angles. The decrease 
in the acrylic light transfer was 23%, 13.98%, and 8.29% for the 0°, 45°, and 90° tilt angles, 
respectively. According to Mastekbayeva [62], the solar system performance was affected 
by the glazing’s ability to transmit solar radiation. The effect of dust deposition on the 
solar radiation transmittance of low-density polyethylene glazing with a thickness of 0.2 
mm was assessed. 

0

20

40

60

80

100

120

140

160

180

200

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40

Po
w

er
, P

 (W
)

Cu
rr

en
t, 

I (
A)

Voltage (V)

I (Clean)

I (Dusty)

P (Clean)

P (Dusty)

Figure 3. Outdoor PV panel testing facility with clean and dusty panels [30].



Energies 2023, 16, 109 6 of 28

Energies 2023, 16, x FOR PEER REVIEW 6 of 30 
 

 

 
Figure 3. Outdoor PV panel testing facility with clean and dusty panels [30]. 

 
Figure 4. The variation of PV output power for clean and dusty solar panels [30]. 

The grouping of common outdoor atmospheric dust that accumulates on compo-
nents of PV systems is shown in detail in Figure 5, based on particle size. The influence of 
dust on the transmission of different polished materials was investigated in the arid cli-
matic condition of the Thar desert (India) [61]. The glass transmission decrease was noted 
to be 19.17%, 13.81%, and 5.67% for the respective 0°, 45°, and 90° tilt angles. The decrease 
in the acrylic light transfer was 23%, 13.98%, and 8.29% for the 0°, 45°, and 90° tilt angles, 
respectively. According to Mastekbayeva [62], the solar system performance was affected 
by the glazing’s ability to transmit solar radiation. The effect of dust deposition on the 
solar radiation transmittance of low-density polyethylene glazing with a thickness of 0.2 
mm was assessed. 

0

20

40

60

80

100

120

140

160

180

200

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40

Po
w

er
, P

 (W
)

Cu
rr

en
t, 

I (
A)

Voltage (V)

I (Clean)

I (Dusty)

P (Clean)

P (Dusty)

Figure 4. The variation of PV output power for clean and dusty solar panels [30].

The grouping of common outdoor atmospheric dust that accumulates on components
of PV systems is shown in detail in Figure 5, based on particle size. The influence of dust
on the transmission of different polished materials was investigated in the arid climatic
condition of the Thar desert (India) [61]. The glass transmission decrease was noted to be
19.17%, 13.81%, and 5.67% for the respective 0◦, 45◦, and 90◦ tilt angles. The decrease in
the acrylic light transfer was 23%, 13.98%, and 8.29% for the 0◦, 45◦, and 90◦ tilt angles,
respectively. According to Mastekbayeva [62], the solar system performance was affected
by the glazing’s ability to transmit solar radiation. The effect of dust deposition on the solar
radiation transmittance of low-density polyethylene glazing with a thickness of 0.2 mm
was assessed.

2.3. Height of Solar Panel

The height at which a solar power plant is installed determines the quantity of soiling
on its surface. As the panel’s installation height is raised, dust deposition may be reduced.
Quang et al. [63] investigated the profiles of dust particle density close to the metro lines.
Researchers found that the dust concentration was lower for panels located 5 m above
the ground because of automobile exhaust pollution. Ambient particulate matter (PM10)
dust concentration and dust deposition were reported by McGowan et al. [64]. For panels
located under a height of 5 m, PM10 concentrations peaked at around 125 µg/m3; at about
100 m, they dropped to 95 µg/m3. The air traveling over deployed PV modules diminishes
the dust deposition since wind velocity increases with height [65]. Beattie et al. [66] tested
PV modules indoors under controlled conditions. The height of the panel arrangement
was altered due to nonlinearity, and it was discovered that as the height increased, the dust
deposition on panel surfaces reduced.
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3. Dust Particle Properties
3.1. Particle Size

Cadle [67] noted that a dust particle is an object with a defined physical border in
all directions without a limit to its magnitude. Dust, soils, sediments, and associated
topological materials comprise of particles that are tens of metres in diameter and much
smaller than a micrometer (nanoparticles). Cells themselves can be end-particles or end-
particle aggregates. It is important to evaluate the size of individual particles from clay,
sediment, or other materials found circulating in the air. Under natural conditions, wind
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flow exists, even in airless surroundings. Tiny dust particles are naturally circulated in the
air and can be transferred to a surface even with little air velocity. Fine particles can transfer
at little air velocity. Analysis of dust deposits in the Negev dry area region of southern
Israel has consistently indicated that large deposits of dust occur at higher air velocities [68].
The background air speed (storm incident) usually varies from 1–3 ms−1 sequence [69].
When the wind is low, it predominantly results in the formation of sedimentary deposits of
dust on flat surfaces [70]. The impact of the weight of grain dust and size of coal dust on
PV performance was predicted by measuring and accessing the electrical parameters of the
PV panels [71].

3.2. Composition of Dust Particles

When dust particles strike a solid surface, ionic alloys in dust can disperse in water
and alter the contact forces between surfaces and dust. This can lead to dust build-up. In
that case, an increase in the combined forces interacts with the coordinating forces brought
on by the dry clay. When compressed water vapor is used to create dust, alkali (NaOH)
and alkaline metal (CaCO3) compounds melt, increasing the pH of the water [72]. The dust
aggregation on dust shielding surfaces of a PV module and the force of attraction between
dust atoms and the separator surface were both investigated by Katarzyna et al. [73]. They
discovered that charging a shielding surface produced delayed attractive effects on dust
particles but did not affect attachment force. They discovered that the dust shielding surface
delayed the adhesion of dust particles but did not affect attachment force. The adherence
of dust particles to common indoor surfaces in a cooling environment was studied by
Tan et al. [74]. The solar panel’s local temperature rises increased due to dust build-up. For
epidemiological research, the rules to be followed for quantifying smaller dust particles
were stated [75].

Uno et al. [76] reported the accumulation of dust on PV module surfaces globally,
including in Asian countries. The budget controls the formation of cirrus clouds and
supplies nutrients to marine ecosystems and the open ocean. In the western United States,
Neff et al. [77] investigated how human activities affected the deposition of aeolian dust.
They saw that higher dust transition prevalent in current times caused the emissions of
K, P, Mg, Ca, and N elements to increase fivefold. Hai et al. [78] focused attention on the
deposition of airborne dust on solar PV installations. The dust contamination impacted PV
performance and reduced PV efficiency. They examined different types of solar cells but did
not find any changes in them. The performance of self-cleaning and anti-reflective coated
pressed glass of a solar PV module was examined by Verma et al. [79]. They discovered that
non-lithographic micro-ordered pressed glass surfaces improved self-cleaning capabilities
at the glass/air interface while reducing refraction. Lu et al. [80] evaluated the impact
of surface soiling on the performance of a solar panel. The data gathered from the study
indicated that a significant factor in reducing the solar transmission of standard glass
was the amount of dust collected on its surface. The dust deposition on the glass surface
depended on the tilt angle and surface orientation of the PV system.

Mazumder et al. [81] concentrated on determining the efficiency of PV modules
exposed to dust from hydrogen generators. The authors found that the dust particles on
the thin film PV cell’s surface turned out to be electrostatically charged and were scattered
by the moving wave generated by the applied electric field. Niknia et al. [82] examined
the effect of dust accumulation on the proficiency of a solar collector. They compared the
operating performance of a clean solar panel and a dust-laden solar panel to determine the
impact of the deposition of dust particles on system efficiency.

Sakhuja et al. [83] investigated the outdoor lifespan of PV glass with intelligent and
self-cleaning applications. Over a long period of exposure to the outdoor environment,
tests revealed that the nanostructured glass showed better self-cleaning capacity and PV
execution. The size of dust particles deposited on PV modules were on par to particle size
scales that were described by Blott and Pye [84]. They also evaluated the solar collector
performance at various times with dust deposition on module surfaces. Sayyah et al. [85]
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concentrated on the drop in energy yield actuated by dust aggregation on solar boards.
They aimed to identify the most proficient cleaning methodology for uninterrupted energy
created by a solar framework. They compiled an information database covering different
kinds of dirt deposited on solar panel surfaces in various places across the world.

Sueto et al. [86] examined the utilization of a photocatalytic coating as a protective
covering to limit adherence of dirt, dust and other particulate matter on PV modules.
Khonkar et al. [87] discussed the need to clean clusters of solar power stations located in a
desert setting. Recognizing the fact that extreme meteorological occurrences are common
occasions that can happen in a desert setting, they highlighted the need for periodic
cleaning of PV modules to ensure continued effective energy generation by the PV system
framework. Appels et al. [88] examined the need for periodic maintenance of solar panels
to keep their surfaces free of dust, dirt, and grime. They demonstrated that special coatings
on glass could decrease dust formation that causes power reduction in PV modules but
reported that the higher cost incurred with such dust-repelling coats was a deterrent.

4. Environmental Effects

Soiling on the top of PV panels is highly dependent on many environmental factors
which tend to vary over a period. This section discusses numerous site-specific factors that
influence the deposition of dust and dirt on PV module surfaces.

4.1. Wind Velocity and Direction

The effect of wind speed on the temperature of the PV system was studied for a
specific test period and was found to be minimal [89]. Increased air temperature resulted
in a considerable solar panel voltage drop and a negligible increase in output current.
Rounis et al. [90] compared the effectiveness of building-integrated transparent PV systems
for new constructions with single and multiple inlets using a numerical model. The
researchers analyzed the thermal and electrical performance of PV systems located in
warm regions under various wind conditions in summer. Multiple building-integrated
transparent PV systems had a 1% greater electrical performance than only one building-
integrated transparent PV system. The system could be upgraded to contribute 7% power
to a 120-kW solar system’s total output and achieve up to a 24% increase in thermal
performance. The suggested system was tested to see how variables like sun radiation, air
velocity, temperature, and the condensed condensation chamber influenced its functioning.
The PV system’s overall performance was assessed, and the maximum efficiency was noted
to be 57% [91].

The ambient air significantly influences the deposition and removal of dust from the
top of a solar module. Dust is moved around by air velocity. Dust can accumulate slowly in
the air but can also be cleared quickly. The speed of wind and attention to the movement of
airborne dust particles carried by wind determine how much dust is likely to accumulate
on PV module surfaces. The settling of dust particles on PV collectors was evaluated
in airflow-simulated studies by Goossens and Offer [68] and Goossens et al. [70]. Their
research indicates that the wind’s direction had a significantly higher impact on dirt settling
than the air velocity. In Libya, the lowest wind speed for conveying dust was 6.5 m/s, and
increased dirt settling was noted to be mostly caused by an increase in average monthly
wind speed [92]. The wind’s direction and the orientation of PV surfaces determine the
quantum of dust creation [55]. According to Kohli and Mittal [93], the accumulation of
fine dust particles on the surface of PV panels resulted in greater performance degradation
than bigger dirt elements. They found that as the size of the dust particles decreased below
50 µm, the resistance of the particles to clearance by wind forces increased considerably.
No particulates lower than 10 µm were eliminated at wind speeds less than 25 m/s. The
most important discovery of their study was that the forces of attraction between the dust
molecules and air increased as the size of the particles reduced. In areas prone to strong
winds, the practical design, construction, and installation of weather-resilient PV systems
become essential to withstand high wind speeds and safeguard against possible damage.
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4.2. Moisture, Dew and Rainfall

As with most alloys, corrosion is an unavoidable degradation of a given material
brought on by interaction with its environment. Metal objects have traditionally been
associated with being subjected to corrosion. Almost all metals are susceptible to corro-
sive attacks. Corrosion was found to be the primary consequence of the deposition of
dirt particles affecting the efficiency of PV systems [94]. Three different soil types were
considered in the research. Roadway dirt in Arizona gradually accumulated over panel
surfaces and was unaffected by variations in relative moisture. The soot samples exhibited
no corrosion-causing properties at the studied humidity levels. When the humidity level
rose, sea salt markedly accelerated the rate of glass surface corrosion. Surface pressure
increased, current leakage reduced efficiency, and sea salt accumulated on the PV module’s
top surface [95]. The PV system’s performance was investigated at maximum voltages in
outdoor settings of extreme temperature and relative humidity. The use of zinc oxide as the
conducting electrode instead of tin oxide could help combat the problem of corrosion [96].
As solar panels age, their efficiency decreases due to various reasons, including loss of
adhesive adhesion between solar cells, deterioration of packaging materials, deterioration
of interface, deterioration of the semiconductor device, and deterioration brought on by
moisture leaks. Jorgensen et al. [97] examined the relative efficacy of several combinations
of packaging techniques for shielding PV devices against dust. Researchers have found
that glass surfaces made of aluminum and glass structures made of ethylene vinyl acetic
acid prevent aluminum from disintegrating. Higher rates of moisture entry and the egress
of dangerous chemicals are permitted by breathable back sheets of solar panels [98].

The solar panel material’s electrical conductivity is impacted by humidity, which
results in the breakdown of the metallic intersections of panels and results in poor perfor-
mance [99,100]. Rainfall has a fundamental impact on soil development. A limited period
of light rain may improve the soil’s aeration. In a mild downpour, water droplets combine
with airborne dust deposited on the surfaces of the module. A PV module’s top surface
may get washed clean by intense downpours. A minimal 20 mm of rain is required to
clean the PV panel face, according to studies by Kimber [101] on the dust deposition on
surfaces of solar panels and its removal by rainfall. When the surfaces are very dirty, the
dust is difficult to remove and calls for the adoption of a mechanical cleaning method.
During extended dry spells in between periods of rainfall, dusty layers could not often
be cleaned [102–104]. Caron and Littmann [105] examined the dust formation and precipi-
tation patterns in the Southern Central Valley, California, from November 2010 to March
2012 [104]. The deployment of solar PV and wind turbine hybrid systems in remote places
must be actively encouraged to harness solar radiation and wind energy effectively. Such
hybrid energy systems can provide almost uninterrupted power generation throughout
seasons. On and off-grid operations are feasible, and the improved reliability and economic
perspectives are both due to the use of promising technologies [106–108]. Wind-solar
electricity resource combinations could help ensure optimal power delivery on a regular
basis [109]. Different renewable energy sources with an optimal blending of operations
based on the source availability provide more sustainable power generation [110–112].
The impact of dust accumulation and soiling on performance must be considered while
optimizing the solar-wind hybrid systems [113–118].

Deposited dust changes the aerofoil streamlines of wind rotors. Different deep learning
algorithms help determine the optimal operation of solar-wind hybrid energy systems
based on modeling climatic and geographical conditions like dust and soiling on surfaces
of renewable energy systems [119–122]. Hybrid deep learning models that combine lengthy
short-term memory with data filtering techniques help monitor the air quality indices
at industrial locations. To estimate the hybrid power generation accurately, superior
machine-learning and metaheuristic models with high accuracy must be created [123–130].
Specific machine-learning methods could be used to maintain adequate voltage and regulate
frequency in renewable hybrid and integrated power systems [131–135]. Dust circulating
in the ambient air and accumulating on system components affects how well solar and



Energies 2023, 16, 109 11 of 28

wind energy systems generate electricity. Wind speed is crucial to produce electricity
by a turbine. While considering dust in the air, on the panels/wind rotors, and the
balance of the systems, technical and financial optimization of solar-wind hybrid energy
systems employing computational technologies could produce superior outcomes. The
key findings on dust build-up gathered from research studies linked to PV systems and
mitigation methods for the removal of dust deposition from surfaces of PV panels are shown
in Table 1.

Table 1. Findings of studies on mitigating dust accumulation on PV panels from 2019 to date.

Ref. Remarks

[136] The PV panel soiling ratio was predicted using broadband or single–wavelength transmittance. The visible band’s
average transmittance corresponded to absorbance better than the ultraviolet or near-infrared wavelengths.

[137] Simulation studies showed how dust collection influences sunlight transmittance and PV performance.

[138] Different self-cleaning coatings on solar cell cover glass were explored experimentally.

[139] The PV output under soiling circumstances was estimated by obtaining real-time sensor output from the site
location in Sharjah.

[140] Different dust morphologies affect the PV performance.

[141] Soiling, raindrops and other global weather factors impacted PV production. A model for calculating hourly PV
production using the performance ratio factor was presented for various climatological settings in Chile.

[142]
Using existing solar radiation data from National Renewable Energy Laboratory, the proposed model suggested
the best PV tilt angle for Lahore and other locations in Pakistan. The soiling and the tilt angle of PV panels at the
sites were studied.

[143] The dust on a refrigerant-based PV/T system was investigated in Surat, India, for varying dust characteristics.

[144] Simulation studies were conducted in three different US sites and concluded that PM2.5 was over-estimated while
PM10 was under-estimated.

[145] Sand, cement, and gypsum were noted to be poorly transported and stored in Iran, resulting in significant
amounts flying into the air.

[146]

Soiling rates and the fluctuation in soiling ratio over time were computed for the driest season of the year, with
values ranging from 0.07 to 0.14 percent each day, in Southern Europe. The relationship between precipitation, the
primary natural cleaning agent, and soiling recovery indicated that light rainfall value of approximately 2.2 mm
had a 50% chance of reducing the soiling ratio.

[147] The PV power losses from soiling on the PV panels in Lahore, Pakistan, were analyzed. The study also provided
suggestions for improving the efficiency of the panel performances.

[148] The effect of dust accumulation on the reflector of a parabolic solar thermal power plant in China was analyzed.

[149]
The surface of PV panels could be easily damaged if / when subjected to harsh mechanical cleaning procedures.
To keep the PV panel surface clean and free of dirt, sensitive and electronically regulated self-cleaning processes
are required.

[150] Samples taken from sand and dust collected on 330 solar modules made by 53 manufacturers from various
countries were tested.

[151]
When working outside of controlled laboratory conditions, the efficiency of PV modules was found to be
significantly decreased. Lower performance and daily energy losses due to dust collection on PV modules were
investigated.

[152] Higher wind speeds lowered the maximum PV temperature and dust deposition drastically.

[153] The self-cleaning coated panels effectively improved the panel’s performance by reducing dust build-up.

[154] The soiling process in a desert climate was simulated using optical and electrical techniques.

[155]

Dust accumulation severely impacted the visible light transmittance of glass, significantly reducing the PV
system’s efficiency. Due to micro-nano structures and low surface energy, a superhydrophobic coating could
reduce the surface adhesion rate of dust. Most coatings of planar modules had poor durability. The durability of
coatings must be enhanced.
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Table 1. Cont.

Ref. Remarks

[156] Industrial materials and urban pollutants, such as sandstone, lime, and dolomite, were found to be the primary
sources of dust on PV panels.

[157]
The analysis revealed that the African dust studied was a mixture of various chemical compounds, with SiO2-type
quartz accounting for approximately 73.8% and calcite (CaCO3) 13.6% of the total deposition. Diffuse reflectance
spectroscopy demonstrated that these particles reflected more than 70% of the irradiation reaching the PV panels.

[158]
In a climate characterized by arid conditions, dust accumulation was noted to be one of the primary concerns as it
caused significant degradation of PV efficiency. Dust deposition decreased the power output of PV systems by
21.57% when compared to clean PV panels.

[159] The impact of dust samples gathered from Iran’s desert region on the power efficiency of the PV system
was investigated.

[160] An indoor laboratory experiment was performed to determine the influence of dust deposition density on
PV performance.

[161] The PV panels’ performance and impact of panel soiling were examined using robotic vehicles, Mars landers
and rovers.

[162] A collision-adhesion model was used to examine the interaction between particles and the performance of
PV modules.

[163] Dust collection significantly impacted the efficiency of PV transmittance. With increasing wind speed, dust
accumulation was reduced initially but subsequently increased.

[164] Dust composition and environmental variables influenced soiling loss per unit area of PV surfaces over the years.

[165] Dust on PV modules reduces the solar radiation received, lowering the efficiency of PV systems.

[166] A single-diode equivalent electrical circuit was used to simulate and forecast the electrical behavior of a
PV system.

[167]
Soiling, or the accumulation of particulate matter on the surfaces of PV modules, reduced the total solar energy
harnessed by the system. Because of the impact on energy production and associated maintenance costs,
evaluating environmental factors was found to be essential in developing a PV installation.

[168] The power loss due to soil deposition on PV panel surfaces was estimated using a probabilistic quantification with
soiling image analysis.

[169] Three natural dust samples were analyzed for structural, chemical, and optical attributes, including their
undesirable impact on energy transmission from a plant.

[170] Sudden climate changes, including sandstorms or long spells of rain, were observed to induce alterations in
energy output rates of a PV system.

[171] A luminescence image was utilized to detect and categorize soiling and quantify the losses.

[172]
A hydrophobic nano coating’s function in reducing energy losses was investigated. The transmission loss reduced
significantly when dust deposition was reduced. The effect of dust composition and accumulation densities on PV
power output was examined.

[173]
Solar PV panels were exposed to dust circulating in the external surroundings, which was a serious cause of
performance detriment. The selected study location was an area with severe air pollution and low rainfall during
the dry winter months due to its unpredictable environmental conditions.

[174] The electrical characteristics, dust life cycle, and cleaning techniques were found to be associated with the
performance of PV systems installed in various climatic zones around the globe.

[175]
In regions with high soiling rates, dust storms, water scarcity, and high solar energy potential, soiling was a
significant obstacle to solar power generation. In high humidity conditions, dew condensation on the solar panels
significantly affected the cementation of dust particles.

[176] The impact of dust collection and soiling on the PV panel’s performance was investigated in Australia.

[177] The grid-connected PV system’s performance impacted the collection of dust and soiling effects.

[178] The soiling mitigation of a ground-mounted solar panel soiling was statistically explored. Gravity was seen to
influence the behavior of dust particles greatly.
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Table 1. Cont.

Ref. Remarks

[179,180] The effect of dust density on energy efficiency was examined to estimate the influence of dust particle
accumulation on PV performance.

[181]

Accumulation of dust on the solar collector was noted to result in a significant reduction in system efficiency.
Changes in the thermoelectric and exergy behavior under varying dust levels were analyzed, and the impact of
dust density on overall PV system efficiency was evaluated. In the conducted natural dust deposition experiments,
the effect of seasonal silt accumulation on the efficiency of a PV system was investigated.

[182]
Soiling on PV modules reduced the solar irradiance of the modules, diminished their performance significantly,
and resulted in substantial economic losses. Soiling was noted to be a complex phenomenon that varies with
location, time, and measurements.

[183] Optical losses caused by dust deposits on the mirrors of the solar panels were analyzed.

[184]
The model of a one-diode solar cell is improved by including the study of dust impact in the simulation of solar
cell performance to test the suggested model. Three primary components of dust were used in
varying proportions.

[185] The electrical performance of modules with and without anti-soiling coating was analyzed at various incidence
angles and soiling layers.

Solar PV systems are electrical generators that use the PV effect to convert sunlight
into electricity. A grid of solar cells housed in a protective metal casing makes up a
solar PV system. All photons from the sun that strike it are converted into useful energy.
Its two main extra attachments are the battery banking system and the solar tracking
system, which help improve overall performance (storing the output power). Many people
employ solar PV technology because it is flexible and adaptable. A solar PV system’s size
varies greatly depending on the load and the application. Careful upkeep is necessary
to keep solar PV systems operating at their optimal level and to lower the probability
of breakdowns. Advanced cleaning methods with high accuracy and minimal energy
requirements are essential for large-scale deployments. Due to thermal stress, uncleaned
panels are frequently exposed to temperature increases and panel deterioration [186–190].
Water immersion is one method that offers the dual benefits of both cooling and cleaning
PV modules [191]. The last two decades have seen much research into different panel
cleaning and cooling strategies [192–194]. Phase change material-based cooling of PV
and electronics has gained much attention in recent decades due to their contribution to
cooling and energy storage [195]. The daily dust density deposited on the surface of the PV
module was 0.9867 mg/cm2 in desert areas [196]. Dust deposition reduced the efficiency of
monocrystalline and polycrystalline solar PV modules by 3.55% and 3.01%, respectively.

Cooling and cleaning the PV system by passive, mechanical methods on a periodical
basis improves the efficiency of solar cells and maintains the protection offered by selective
coatings [197,198]. The temperature distribution plays a significant role in PV power
output [199,200]. Drone-based image capture and selective deep learning algorithms with
cleaning techniques pave the way to improved performance and prolonged life of PV
systems [200–202]. Figure 6 shows the difference in power output for different cleaning
frequencies from weekly to annually [200]. Figure 7 shows the effect of dust volume on
solar panel power output [192].

The cleaning frequency of PV panels improves the power output from PV panels.
Compared to annual cleaning, the monthly cleaning showed 13.1% more power output.
A linear piezoelectric actuator-based solar PV cleaning technology that is compact and
lightweight is used in industries to increase power generation [203]. The solar cell’s
surface is cleaned by a wiper attached to an actuator that moves in a linear motion. More
machine-learning research must be conducted to forecast the temperature rise caused by
ambient changes and their impact on the performance of solar panels. Mechanical, natural,
electrostatic, and self-cleaning nanofilms are a few options for removing dust, dirt, soot,
and grime from PV panel surfaces [204,205]. PV dust deposition density of 20 g/m2 reduces
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short-circuit current, open circuit voltage and efficiency by 15–21%, 2–6%, and 15–35%,
respectively [206,207]. Thus, selective and reliable coatings for PV are essential to mitigate
dust deposition and its adverse consequences. Many researchers have been figuring out
how to lower the cost of cleaning solar modules [208,209]. The amount and size of dust
particles on a PV surface affect efficiency in a direct proportion [210–215]. The power output
and module efficiency both decrease as the amount of dust implantation rises [216–218].
Different cleaning techniques are needed in semi-arid environments. The best approach
for cleaning PV panels is by using water and a brush. This simple cleaning technique can
produce 97.2% cleaning efficiency in dry and 98.8% in wet seasons. Sand removal from the
PV surface can be achieved more effectively by applying electrostatic force. About 90%
of the sand from the PV surface can be removed using this technique. This innovative
technology may be exceptionally helpful in maintaining solar power plants installed in
desert regions.

Energies 2023, 16, x FOR PEER REVIEW 15 of 30 
 

 

 
Figure 6. The difference in power output for the weekly cleaned PV panels with monthly, bi-
monthly, once in six month, and annual cleaning frequency [200]. 

 
Figure 7. Effect of dust volume on solar panel power output [192]. 

A robotic arm system with an electromechanical drive can be used effectively to clean 
the PV module surface. This robot system’s effectiveness can be calculated quantitatively. 
The power generation performance and efficiency of solar panels are mainly affected by 
the accumulation of dirt, dust, soot, bird droppings and other particulate matter. A few 
automatic cleaning devices have also been manufactured to tackle the issue of dust parti-
cle deposition on PV panel surfaces. Figure 8 shows the energy conversion in hybrid en-
ergy systems. Hybrid energy systems benefit from overcoming the non-linearity in power 
generation by optimally combining power sources and energy storage systems [219, 220].  

2.11

4.38

9.11

13.1

0

2

4

6

8

10

12

14

Monthly Bi-monthly Six month Annually

D
iff

er
en

ce
 in

 p
ow

er
 o

ut
pu

t (
%

)

Cleaning frequency

0

10

20

30

40

50

60

70

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120

Po
w

er
 re

du
ct

io
n 

(%
)

Po
w

er
 o

ut
pu

t (
W

)

Dust volume (cm3)

Power output (W)

Power reduction (%)

Figure 6. The difference in power output for the weekly cleaned PV panels with monthly, bi-monthly,
once in six month, and annual cleaning frequency [200].
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A robotic arm system with an electromechanical drive can be used effectively to clean
the PV module surface. This robot system’s effectiveness can be calculated quantitatively.
The power generation performance and efficiency of solar panels are mainly affected by
the accumulation of dirt, dust, soot, bird droppings and other particulate matter. A few
automatic cleaning devices have also been manufactured to tackle the issue of dust particle
deposition on PV panel surfaces. Figure 8 shows the energy conversion in hybrid energy
systems. Hybrid energy systems benefit from overcoming the non-linearity in power
generation by optimally combining power sources and energy storage systems [219,220].
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Solar power systems are at risk of soiling as they are installed in outdoor environments.
“Soiling” is the term used to describe the accumulation of dirt, dust, and other organic
and inorganic pollutants on the surfaces of the PV module. These deposits pose a possible
risk to photovoltaic systems because they absorb, reflect, and scatter some of the light
that strikes the PV panel surface. As a result, less light reaches the PV cell because of the
blockage by dust deposition. This lowers the efficiency of PV systems, as they produce
less power. Contrarily, anti-soiling measures can counteract the effects of soiling through
careful observation and optical measurement techniques, leading to higher productivity and
efficiency. Appropriate extraction algorithms should be utilized during process monitoring
to gauge the degree of soiling. Suitable measures must be adopted to remove dust deposits
on a regular basis to prevent the soiling of PV panel surfaces. Figure 9 shows the life cycle
of deposited dust on surfaces of PV panels [193].

Figure 10 outlines various dust and debris cleaning strategies. There are two types of
cleaning and mitigation measures. Both natural and synthetic cleaning products are used.
Rain, wind, snow, gravity, and dew all contribute to the cleaning process of nature. There
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are many ways of mechanical cleaning, including manual, semi-automated, and automated
methods, as well as electrodynamic screen cleaning and heating of the surface. Preventive
measures include setup (tracking system, site adaption, and site selection) and installation
of special PV modules (anti-soiling coating, optimized module design).
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Figure 10. Dust mitigation methods and techniques adopted for solar PV systems.

The electrical output of a PV device with soiled surfaces is measured and compared
with that of a clean PV device at soiling stations (requires two PV devices). The cleaning
procedure must be carried out based on the desired outcome. Commercial de-soiling
facilities are common and readily available. They are a routine monitoring method that can
directly measure the influence of the soiling of PV surfaces on power output. It is important
to note that soiling stations must be regularly serviced, require human interaction (are not
autonomous), and only achieve partial cleanliness. The effectiveness of automatic cleaning
is poor. It tends to overlook a few hard-to-access areas, such as the device’s sides and
corners. Improvements in cleaning efficiency and new automation methods are priorities
for the soiling stations to avoid power output losses and maintain the performance and
efficiency of PV panels.

The electrical loss is estimated using optical soiling measurement detectors, which
characterize the optical characteristics of the soiling build-up on PV glass surfaces. The
Dust IQ detector and the Mars soiling sensor are the first devices that became available
in the market for sale. The level of soiling on the PV cells is then quantified using image
processing techniques in Open Street Maps. These detectors’ primary advantages are their
affordable price and the encouraging results they show in field validation. Subsequently,
soiling losses are estimated using sensors. The soiling losses of full-sized PV modules can
be calculated with the help of small glass coupons, which are measured by sensors. Images
of the PV module are analyzed using image analysis sensors, which calculate the soiling
coverage area. Coverage measurements are used to estimate soiling levels. Sensors for
use in image analysis are the subject of ongoing study. Sensors based on image analysis
technology can directly quantify soiling on PV modules, detect soiling that is not uniform,
and identify various failure and defect types in PV panels. However, the implementation
and optimization of sensors are focused on cost, as the technology becomes unworkable if
not constantly monitored.

The dust particles are directly deposited on the PV panel when subjected to the
physical environment. It is unavoidable, but it would be removed by inducing a new
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clearing strategy manually or automatically. Dust particle swarm accumulation and power
loss reduction of the solar PV cell module using automatic tilt adjustment carried by a
flexible, powerful sensor unit [157]. The PV module was automatically tilted by a powerful,
flexible sensor unit attached to it. Drones have recently gained traction as a convenient
tool for monitoring PV modules through image-processing algorithms. More factors,
such as reflection, camera settings, and lighting, affect sensors and must be properly
analyzed. Further research is required to improve the prediction and control of smooth
power generation from hybrid energy systems using resource-efficient computing models.
Figure 11 shows schematic layout of solar PV plant components and connections for PV
array performance, cleaning schedules, control, and monitoring [27]. The percentage of
power output losses due to the dust over a period is depicted in Figure 12 [30].

Smaller dust particles are better at blocking the radiation from PV modules; hence
power output deficits are made worse as they get smaller. Sand, silica, ash, and red
soil are a few examples of the various deposits. The energy output of panels exposed
to the environment for as little as two months without cleaning can decrease by 6.5%
due to contaminated air. The PV cells in the desert receive a lot of dust. To determine
electrical performances, dust accumulations are examined using radiation, particle size,
mass, and operating circumstances. Since there had been no rain for so long, a significant
portion of energy was lost. Depending on the circumstances surrounding their formation,
dust particles have various physical and chemical characteristics. Weight and size are
further distinguishing characteristics. Beyond merely wind speed and direction, there are
other environmental elements that contribute to dust and its accumulation in the PV cell.
The output of a PV system is, at best, hardly affected by dust. The PV system cleaning
technology helps protect and maximize solar cells’ performance. Surface dust can be
removed in various ways, including mechanically, naturally, electrostatically, and using
self-cleaning mechanisms.
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cleaning schedules, control, and monitoring [27].
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Compact and lightweight solar panel cleaning technology based on linear piezoelectric
actuators is used in the solar PV industry to increase power generation. A linear actuator
with a wiper is used to clean the solar cell’s surface. A lot of researchers have been trying
to figure out how to lower the cost of cleaning equipment for solar modules. Modified
cleaning procedures are required in the semi-desert environment. The most effective means
of cleaning is water and a brush. Academics, engineers, and designers continue to evince
keen interest in the solar PV system. The use of a cost-effective coating with self-cleaning
characteristics must be investigated as it offers the primary benefit of a low bonding force
between dust particles and panel surfaces.

5. Conclusions

The capacity of PV panels to produce electricity is significantly impacted by the
accumulation of dust and other particulate matter on their surface. Dust from the ambient
air collecting on PV panel surfaces lowers the solar radiation that reaches the PV surface.
As the dust particles cling to the panel surfaces, they can lead to scratches and corrosion,
decreasing the panels’ lifespan. Influencing factors such as characteristics of collected
dust and ambient conditions must be considered in the design of solar plants. Examining
the problems of dust collection on panels, along with its adverse effects and mitigation
strategies, can contribute to devising safe and efficient dust-cleaning techniques for solar
panels. How dust deposition affects solar panels’ performance must be critically analyzed.
The key findings of the current review study are outlined below.

• The deposition of dust particles on the surfaces of solar panels affects their performance
by reducing the solar radiation reaching the cells and shortening their average lifespan.

• The size and structure of the dust particles deposited on PV panel surfaces and other
environmental factors like wind and temperature affect the PV system’s efficiency.

• Even though the frequency of dust storms and precipitation are significant natural
factors, there is no established schedule for the removal of dust deposited on the
surfaces of PV modules.

• Hydrophobic and hydrophilic surfaces are more beneficial passive techniques than
traditional power-consuming and water-intensive cleaning technologies.

• Advanced cleaning technologies like electrostatic and ultrasonic methods could pro-
vide better benefits than fluid jet cleaning methodologies.
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• Automated detection of dust and other contaminants on panel surfaces and deploying
appropriate cleaning techniques on time could be very beneficial for sustaining the
performance of PV systems.

More research is required to combat dust deposition using drone image-based tech-
niques. Based on the artificial intelligence system, an ideal cleaning method for dirty solar
PV panels can be obtained with minimal auxiliary energy consumption. Considering dust
in the atmosphere and deposition on the hybrid energy system’s components, technical
optimization of solar-wind hybrid energy systems employing computational technologies
could produce better results. Models of solar irradiance and wind characteristics with
effects of dust deposition and soiling on PV panels are required to assess the reliability
of the output power generation. Thermally conductive selective coatings are necessary
to avoid local hot spot issues while mitigating dust deposition. Thus, strong multi and
interdisciplinary approaches regarding the physics of dust formation, impact analysis,
panel cleaning and cooling solutions, and machine-learning based controls are essential for
providing suitable solutions for dust and soiling issues of PV systems which hamper their
power generation capacity and lead to power loss.
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