
Citation: Cruz-De-Jesús, E.; Martínez-

Ramos, J.L.; Marano-Marcolini, A.

Optimal Scheduling of Controllable

Resources in Energy Communities:

An Overview of the Optimization

Approaches. Energies 2023, 16, 101.

https://doi.org/10.3390/en16010101

Academic Editors: Zhengmao Li,

Tianyang Zhao, Ke Peng, Jinyu Wang,

Zao Tang and Sumedha Sharma

Received: 14 October 2022

Revised: 29 November 2022

Accepted: 2 December 2022

Published: 22 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Review

Optimal Scheduling of Controllable Resources in Energy
Communities: An Overview of the Optimization Approaches
Emely Cruz-De-Jesús 1,* , Jose L. Martínez-Ramos 2 and Alejandro Marano-Marcolini 2

1 AICIA (Andalusian Association for Research and Industrial Cooperation), 41092 Seville, Spain
2 Department of Electrical Engineering, Universidad de Sevilla, 41092 Seville, Spain
* Correspondence: emecrude@alum.us.es

Abstract: In recent years, there has been a growing interest in the study of energy communities. This
new definition refers to a community sharing energy resources of different types to meet its needs and
reduce the associated costs. Optimization is one of the most widely used techniques for scheduling the
operation of an energy community. In this study, we extensively reviewed the mathematical models used
depending on the objectives and constraints considered. The models were also classified according to
whether they address uncertainty and the inclusion of flexibility constraints. The main contribution of
this study is the analysis of the most recent research on the mathematical formulation of optimization
models for optimal scheduling of resources in energy communities. The results show that the most
commonly used objectives are profit maximization and cost minimization. Additionally, in almost all
cases, photovoltaic generation is one of the main energy sources. Electricity prices, renewable generation,
and energy demand are sources of uncertainty that have been modeled using stochastic and robust
optimization. Flexibility services using demand response are often modeled using interruptible loads and
shiftable loads. There is still considerable room for further research on the distribution of benefits among
the participants of the energy community and the provision of flexibility services to the electricity grid.

Keywords: energy communities; optimization techniques; optimal scheduling

1. Introduction

The energy community (EC) is a topic of recent application and is popular in different
regions of the world, making it an open field of research. The Clean Energy for All Europeans
package has introduced two new concepts related to the field of ECs: the citizen energy
community (CEC) and the renewable energy community (REC). Both are similar in terms
of objectives: to provide a community with environmental, economic, and social benefits.
The main difference between them is that a CEC is a concept restricted to the use of electricity,
including that generated with renewable energy, and its geographical extension is not precisely
defined. However, RECs are limited in extent to relatively small regions.

ECs promote local energy exchange among their participants. They help the system
transition to the generation of renewable energy, reducing reliance on fossil fuels and
minimizing grid-supplied electricity use. An important social consequence is that they help
alleviate energy poverty [1]. ECs also bring benefits to the distribution system operator
(DSO) due to the service flexibility they can offer, such as reducing peak demand through
the participation in demand response programs (DRPs) [2].

To optimize the resources of an EC, a mathematical problem is formulated and solved
through one or several optimization techniques. The objective of this problem can be the
minimization of a cost or the maximization of a benefit while complying with a set of
constraints. This article presents an overview of the optimization approaches that are used
to program the resources of ECs. The optimization model may vary depending on the
resources and configuration of the community, the regulatory framework, or the objectives
of stakeholders [3,4]. Some researchers have proposed methodologies to optimize a local

Energies 2023, 16, 101. https://doi.org/10.3390/en16010101 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16010101
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-9421-387X
https://orcid.org/0000-0002-3946-9848
https://orcid.org/0000-0001-5750-7732
https://doi.org/10.3390/en16010101
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16010101?type=check_update&version=1


Energies 2023, 16, 101 2 of 15

energy community (LEC) by taking the size of BESS and PV systems as decision variables [5].
Many ECs integrate thermal storage systems and thermal production. In addition, there
is still much work to perform in terms of the regulation of thermal production in LECs;
some studies addressed the operation of the thermal energy community [6]. There are
important challenges and aspects to take into account when modeling an EC: especially
relevant is human behavior. The stochastic nature of this factor must be included in the
model of an EC [7]. Two of the indicators often mentioned in this type of studies are the
self-sufficiency rate (SSR) and self-consumptions rate (SCR). The former refers to the ratio
of load demand that is not powered by the grid; the latter refers to the ratio of the local
generation that is used to supply the local load demand.

The remainder of the paper is organized as follows: Section 2 presents a general formu-
lation to optimize the resources of an LEC. Section 3 describes the methodology we used to
analyze the literature. Section 4 presents a generalization of the objective function of LECs,
the most common constraint models found in the literature, and the different optimization
techniques used to solve these models. Section 5 summarizes how uncertainty has been
introduced in ECs, and Section 6 details the flexibility and ancillary services that have been
evaluated in different studies. Finally, Section 7 outlines the main conclusions of this study, the
main contributions of which are the presentation of an updated review of (a) the optimization
techniques used for scheduling energy community resources, (b) the most common constraints
that are considered in the models, and (c) the flexibility and ancillary services offered to the
DSO and the transmission system operator (TSO).

2. General Approach

In this section, a general approach is presented that takes into account the different
formulations found in the literature. Minimizing total operating cost is the objective
function (1), and maximizing profits is another common goal of LECs. In this case, the price
of the energy sold and purchased to the grid pexp

t , pimp
t is considered.

The consumption and injection of BESS pcba
t , pdba

t and the generation of dispatchable
units gtte

t and PV generation, gppv
t , interruptible load piid

t , and noninterruptible load pnni
t

are considered the resources to be optimized.

• The objective function is the minimization of the operating cost:

OC = ∑
t∈T

∑
te∈TE

cote · gtte
t + ∑

t∈T
(mpimp

t · pimp
t )− ∑

t∈T
(meexp

t · pexp
t ) + ∑

t∈T
∑

id∈ID
(crid · Piid

t ). (1)

The most common constraints found in the literature are the following:

• Energy balance constraint: In (2), the total energy generated must be equal to the total
energy demand plus the power exported to the grid, taking into account the load
shedding in the EC.

∑
pv∈PV

gppv
t + ∑

ba∈BA
(pdba

t − pcba
t ) + ∑

te∈TE
gtte

t + mpimp
t −meexp

t =

∑
ni∈NI

pnni
t + ∑

id∈ID
(peid − piid

t ), ∀ t. (2)

• BESS constraints: Constraint (3) presents the evolution of the state of charge of the
BESS in each period considering the discharge and charge power of the battery and
their respective efficiencies. Constraint (4) ensures that the state of charge of the
BESS does not exceed the minimum and maximum limits of the battery parameters.
Constraints (5) and (6) model the power limits of the battery charge and discharge,
respectively. The battery does not simultaneously charge and discharge, so the binary
variable edbba

t is introduced. The constraint (7) forces the final state of charge of the
battery to be equal to the initial state of charge of the battery for better cyclic evolution
of the battery. With this equation, the total energy consumed by the battery in the
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study horizon is equal to the total energy injected into the grid, considering the charge
and discharge efficiencies.

socba,t = socini,ba
t=1 + socba

t−1 + ηc · pcba
t ∆t− pdba

t
ηd

∆t, ∀ ba, ∀ t, (3)

socmin
ba ≤ socba

t ≤ socmax
ba , ∀ ba, ∀ t, (4)

pdmin
ba · edbba

t ≤ pdba
t ≤ pdmax

ba · edbba
t , ∀ ba, ∀ t, (5)

pcmin
ba · (1− edbba

t ) ≤ pcba
t ≤ pcmax

ba · (1− edbba
t ), ∀ ba, ∀ t, (6)

socini
ba = socba

t24, ∀ ba. (7)

• Dispatchable generation: Constraint (8) presents the minimum and maximum limits
corresponding to the generators that can be dispatched according to their on or off
state defined by the binary variable ute

t .

pmin
te · ute

t ≤ gtte
t ≤ pmax

te · ute
t , ∀ te, ∀ t. (8)

• PV generator: Constraint (9) presents the PV generation availability used in the model.

0 ≤ gppv
t ≤ papv

t , ∀ pv, ∀ t. (9)

• Energy purchased or sold: Constraints (10) and (11) model the limits of buying and
selling energy in each period, respectively. In this case, simultaneously buying and
selling energy is not allowed.

0 ≤ mpimp
t ≤ mpmax · (1− bst), ∀ t. (10)

0 ≤ mpexp
t ≤ memax · (bst), ∀ t. (11)

• Interruptible load: Constraint (12) limits the value of the load-shedding variable to the
value set by peid

piid
t ≤ peid, ∀ t. (12)

3. Methodology

The review of the investigations presented in this paper highlights the different op-
timization techniques used to program the resources of ECs. This review focused on
research papers published between 2012 and 2022. The other selection criterion was that
the optimization technique corresponded to classical methods to analyze the approaches
in detail. Web of Science was used to search for most of the research articles, as in [8].
Energy communities, optimization, and scheduling were some of the keywords used in the
investigation. This review focused on the optimal daily scheduling of the resources of an
EC. The study of equipment size or analysis of long-term profitability was not within the
scope of this study.

We considered the scheduling studies of RECs and CECs. As this is a relatively recent
research topic, among the articles found that belonged to the scope defined in this article,
the oldest was from 2017, and the newest were from 2022.

This study emphasizes the operation of LECs and the optimization of their resources;
several optimization techniques have been proposed to achieve the objective set by the
communities, and the techniques found in this review are presented in Section 4. Most
primary sources of generation in the EC are renewable; therefore, variability is their natural
characteristic. To optimize the use of these resources, it is necessary to introduce uncertainty
into the formulation of the optimization model. Section 5 explains how randomness has
been analyzed, mainly for energy consumption and renewable generation. ECs can also
offer flexibility services to the system, to the DSO, or to the TSO, as presented in Section 6.

4. Optimization Models

The objective functions of ECs depend on many factors: the resources of the commu-
nity and their capacities, regulations, and the principal objectives of the participants. The
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minimization of operating cost and gas emissions, maximization of profits, social welfare,
SCR, and SSR are some of the objectives in many studies. To this end, various optimization
techniques have been applied to solve the problem, including the constraints.

4.1. Operation Constraints in Energy Communities

Limitations in the capacity of equipment belonging to the EC; operating restrictions
related to reserves, conventional generator devices, electrical, and thermal storage systems;
availability of renewable resources such as wind and solar; and network constraints are
some of the constraints found in the literature, as shown in Table 1.

Regarding network constraints, the maximum power of interchange between the EC and
the grid at the point of common coupling (PCC) was considered [9], and a maximum power
limitation in the transformer that connects the community to the grid was presented [10]. The
low-voltage constraints of an LEC connected to the distribution network was described in [11].

Table 1. Common constraints.

Ref. Operation
Constraints

Grid
Constraints

Gas
Emissions

Renewable
Energy Storage

[12,13] - - - - Yes
[10,14–18] Yes - - - Yes

[19] - - Yes - Yes
[20–22] Yes - - - Yes

[23] Yes - Yes Yes Yes
[24] Yes Yes - - Yes

[25–27] Yes - - - -
[28–31] Yes - - - Yes

[32] Yes - Yes Yes Yes
[33] Yes - - Yes -
[9] Yes Yes - Yes Yes
[11] Yes Yes - - Yes
[34] Yes - - - -

4.2. Optimization Techniques

The studies in the literature that addressed the problem of resource scheduling have
used different optimization approaches. Most of them used mixed-integer linear pro-
gramming (MILP). In this section, a summary description of each optimization technique
presented in the literature used for the daily scheduling of LEC resources is outlined.

Table 2 presents a summary of the different optimization techniques found in the
literature used to program the resources of the EC.

Table 2. Optimization techniques used to program EC resources.

Optimization Technique Reference

Linear Programming [13,27,28,34]

Mixed-integer linear programming (MILP) [9–12,14,16,18–25,29,32,33,35–38]

Nonlinear programming (NLP) [15]

4.2.1. Linear Programming (LP)

In this programming, the variables and constraints are linear. In addition, the variables are
continuous. The computational cost of a linear programming problem depends on the number
of constraints and the number of variables. This type of programming problem does not have
local minimum multiples. LP is often the least difficult to solve; another of its characteristics is
simplicity. The decision variable should be non-negative and includes a single objective [39,40].

Ref. [13] evaluated the maximization of the social welfare of an LEC with peer-to-peer
trading, where the price of willingness to pay was calculated for each user and referred
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to a price that each participant of the LEC was willing to pay apart from the electricity
price of the grid to contribute to the reduction in the marginal emissions from the grid It
also expresses the inclination of a user to buy local PV energy. The case study was an LEC
with households and medium/small companies. The resource community consisted of
prosumers with PV generation, consumers, and BESS. The parameters were from the city
of Vienna, Austria. The total study horizon was one year. Linear programming was used
in the optimization model. Ref. [27] focused on determining the trustworthiness rate (TR)
of consumers who provide DR in an LEC. These indicators were calculated taking into
consideration the historical rate (HR) of the behavior of the consumer at a moment to
answer a request in real time for the reduction in energy; the DR, the last-day rate (LDR),
and the cut rate (CR) are part of the terms for the calculation of the TR. The importance of the
TR is that, according to this value, a consumer is selected to participate in the DR to reduce
the energy according to the requirement; this is the novelty of this study. The horizon of the
study was one day. Ref. [28] assessed the optimization of an REC comprising buildings and
electric vehicles (EVs), and the management between the building and the EV as flexible
resources, taking into account the Portuguese legislation. The model was implemented
in PYTHON, using GUROBI optimizer [41,42]. Ref. [34] addressed the optimization of
a large EC with the objective of minimizing operating costs. A day-ahead and real-time
optimization was carried out. The day-ahead model determined the flexibility service to
offer to the TSO. A parallelizable LP was developed. This model regards the exchange of
energy within the EC and between the EC and the grid.

4.2.2. Mixed-Integer Linear Programming (MILP)

In MILP, the objective function and constraints are linear, and the decision variables
are continuous, integers, and scalar. The most commonly used solution method for solving
integer programming (IP) and MILP problems is the branch-and-bound method. The integer
variables allow modeling nonlinear behavior approximations, so that it is not necessary to
make use of a nonlinear model that is more complex to solve. Additionally, integer variables
make an optimization problem nonconvex and therefore far more difficult to solve [39? ].

MILP optimization techniques have been widely used for the management of EC resources.
Authors [12] maximized the revenue of an REC, optimizing the scheduling of a BESS using
an MILP formulation. Day-ahead forecasting with a time window of 24 h and a real-time
prediction with an intrahour level with a 1 min time step were conducted. In real time, the set
point of the BESS is updated through a decision tree algorithm. The principal problem here
is scheduling the BESS of an REC. The objective is to maximize REC revenue. This revenue
is obtained from the difference between the levelized cost of storage (LCOS) of the BESS
and the income of selling the PV net surplus to the grid, and the incentives related to the
energy exchanges with the REC. Ref. [35] assessed the minimization of the operating cost of
an LEC that incorporated interruptible and noninterruptible loads, a PV plant, and a BESS.
Stochastic and robust optimization were used to program the resources, taking into account
the uncertainty in demand load, electricity prices, and PV generation. The K-means method
was used to obtain the profiles of uncertainty-sensitive resources. Optimal scheduling was
performed for a day ahead for an hour of time step. The objective function of the LEC included
the cost of the energy purchased from the grid, the cost of the interruptible loads, and the
revenue from the sales of energy. The model was formulated as a mixed-Integer programming
(MIP) problem in GAMS, using CPLEX as the solver [44,45].

Authors [14] proposed minimizing the operating cost of an LEC that involves P2P transac-
tions, and the prosumers have PV generation and a BESS. Four scenarios were analyzed and
compared, and the best option was the one that included the P2P transaction and the batteries
together. The time window was 15 min, for 96 periods in one day of operation. The objective
was to minimize the operating cost and energy bill of the prosumers. The objective function
was to minimize the operating cost of the LEC. The cost of the energy purchased from the grid
and the revenue for the energy sold to the grid were included. The model was implemented in
MATLAB using TOMLAB as the optimization platform and the CPLEX solver [45,46].
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Researchers [16] studied the optimization of the resources of an LEC that involved
buildings with their own building energy management system (BEMS) and community
energy storage (CES). Buildings have flexible loads, such as the HVAC. In this study,
the flexibility services with a flexible load and the CES were also addressed. Three distinctly
different building archetypes were considered: residential houses, offices, and healthcare
facilities. The optimization was carried out in two stages using model predictive control
(MPC)-based hierarchy. The objective function of the first stage was to minimize the
operating cost of each building; in this stage, the BEMS was the one in charge of the
optimization. In the second stage, the objective function was to maximize the SSR and SCR
of the LEC. The CES was used for this aim. The simulations were performed for one week,
with a time step of 15 min, and a prediction horizon of 96 time steps (24 h). This problem
was formulated as MILP. The model was implemented in MATLAB using the YALMIP
toolbox and the CPLEX solver with an optimal gap of 10−4 [45,47,48].

In [36], the authors addressed the optimization of a polygeneration system of buildings
that could act as an EC and/or microgrids in Zaragoza, Spain. The daily profile of different
energy demands was considered: electrical loads, cooling and heating, and different sources
of generation were used. The objective function was to minimize the total annual cost,
calculated as the sum of the investment and the operational cost. The formulation took
the form of an MILP problem, and the horizon was 24 h with a time step of one hour.
The model was implemented in Lingo Optimizer software [49].

Ref. [19] evaluated the impact of indirect flexibility that depended on human behavior
modeled a the battery of EVs and direct flexibility devices such as stationary energy
batteries on the energy performance of buildings and ECs. The optimization had a horizon
of 24 h and a time step of 1 h. The case study was the Predis-MHI platform, which is a living
laboratory for teaching and investigation activities in the Presqu’île district of Grenoble in
France. In this study, two objective functions (maximize self-consumption and minimize
CO2 emissions) were evaluated using six different scenarios. Authors [20] maximized the
benefits of the operation of an EC built on a university campus in Romania. This university
campus comprised administrative buildings, accommodation facilities, and lecture rooms
powered by renewable energy (PV and wind turbines), and diesel generators. It had a BESS
and was connected to the main grid. The optimization horizon was one year. Power
quality measurements were considered. The objective of the analysis of this EC was to
minimize the net present costs and maximize the benefit of the EC using a stochastic
optimization model. The formulation of the problem was MILP. Ref. [21] assessed a pool
trading model in an LEC that considered different home energy management systems
(HEMSs) and different consumers. A price-based demand response program (PBDRP)
was taken into account. This study included fixed, interruptible, and shiftable loads.
The HVAC system was modeled as a controllable load, and the discomfort of the shiftable
load was modeled. The objective function included the cost of the LEC transaction with
the main grid, the cost of the transaction in the LEC, and the cost of the controllable
appliances of the home. The optimization problem model was centralized. In this study,
the optimization constraints were divided into two groups: HEMS scheduling and the
transaction between the LEC and the main grid. The 24 h schedule was obtained for
a 30 min time interval. Ref. [22] evaluated the reduction in peak overload in an LEC that
was a university campus in Amsterdam, The Netherlands. The preheating and postcooling
with heating pump were optimized to reduce the overloading; also, controlled loads were
used as flexibility services. The case study evaluated the behavior of the LEC in winter
and summer with a daily study horizon. A fully connected neural network is in charge
of the prediction of PV generation and operation of the heating pump and controlled and
noncontrolled loads. The time step of these profiles is one hour. The objective function was
to minimize the procurement of flexible services. The model was implemented in PYTHON
and MATLAB/SIMULINK [41,48]. Ref. [23] evaluated the optimal scheduling of an LEC
that embodied various distributed energy systems (DESs), with the objective of minimizing
the total expected net energy and CO2 emission cost. Four study cases were analyzed,



Energies 2023, 16, 101 7 of 15

where the DESs operated with and without sharing thermal energy and electricity between
them, and the grid-connected and island modes were estimated. The four DESs were
an office building, a strip mall, a supermarket, and a midrise apartment. The problem was
formulated as deterministic and stochastic using a Markovian process with the transition
matrix. The results were evaluated using a summer and a winter day. The formulation was
an MILP problem and was resolved using branch-and-cut and using the CPLEX solver [45].

Authors [24] determined the optimal minimum operating cost of an EC with the
objective of minimizing the energy cost of the entire EC considering the energy cost and the
revenues of the participants. The authors considered the Internet of things (IoT) devices
necessary to achieve the aim. Each prosumer had a nanogrid system to manage the
exchange of energy with the distribution system, the local generation, the management
of the storage system, and the home automation system that controlled the connected
and disconnected load. Both systems were controlled by a smart energy aware gateway
(SEAG), which was the IoT system. It interacted with the local smart meter and shared
information with the aggregator and a service provider. The authors also considered that
energy was shared among the prosumers and between them and the grid. The time step in
this approach was 1 h. The results were obtained using a study case of the University of
Calabria Campus in Italy. The formulation was solved as in [23].

Ref. [37] analyzed a smart EC that involved prosumers with renewable generation as
PV production and consumers, with the objective of maximizing social welfare. A compari-
son was made between a centralized and two decentralized approaches. Peer-to-peer (P2P)
trading between stakeholders (consumers and prosumers) was carried out. The objective
function was the maximization of social welfare. Another study related to the trade of
P2P is [10]; the researchers addressed the optimization of the resources of an LEC. In this
case, first, each participant optimized their own resources using Lagrange multipliers,
and then the results of this optimization were sent to an aggregator. This optimized the
operating cost at the community level. ADMM method is used to solve this problem.
The objective function of each participant and the community is formulated with Lagrange
multipliers. The objective at the community level was to minimize the operating cost;
this cost took into account the energy traded with the grid. The objective function for
each participant included the cost of the generation, the energy exchanged with the grid,
the discharge and charge energy from ESS, and the net load. The formulation was an MIP
problem. The problem was formulated in MATLAB [48]. Ref. [32] addressed the optimal
operation of an EC that composed of different DESs. The objective was to minimize the
total operating cost by taking into account different case studies. As data for the different
studies, an EC in the United States was used, which comprised different DESs, such as
residential and commercial buildings. The objective was to minimize the operating cost
of the EC, taking into account the cost of buying natural gas from the gas station, the cost
of purchasing energy from the grid, and the revenues from selling energy to the grid.
Ref. [29] assessed the optimization of a multi-nergy district/community with different
resources. The objective function was to minimize the operating cost, capacity price, energy
import cost, and energy sales revenue, obtaining at the same time a PV generation incen-
tive. The economic analysis was annual, and the operating schedule was for each hour of
the day. Ref. [33] minimized the operating cost of an LEC community using a two-stage
stochastic MILP. The LEC involved residential load, flexible residential load, and rooftop
PV generation. The flexible loads were divided between loads that could be reduced and
loads that could be increased, and the periods where these loads could increase or decrease
were pre-established. The objective function included the cost of the energy purchased
from the grid, the cost of PV energy injected into the grid, the cost of the PV energy sold
to the LEC, the cost of the flexible loads that could be reduced, and the cost of the flexible
loads that could be increased. The objective function prioritized local consumption, and the
study case evaluated the scheduling of 24 h of operation with a time resolution of 15 min.
Ref. [9] analyzed the optimization of an HEMS from the point of view of the aggregator.
The resources were from an EC that was connected to the main distribution grid. The EC
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had solar panels, thermal and electrical loads, and a BESS; and the thermal energy stor-
age was electric water heaters (EWHs). The model was a robust optimization, and the
formulation took the form of an MILP. In this study, flexible bids were offered to the local
market operator (LMO). The uncertainties in energy prices, PV generation, and electrical
and thermal loads were modeled through robust optimization. The objective function
included the cost of the energy purchased from the grid, the cost of energy imbalances
(positive and negative imbalances), the cycling cost of the batteries, and the cost of battery
degradation. In addition, the deviation in the electricity prices (positive and negative)
was included.

In [11] centralized and decentralized optimization approaches were evaluated. The ob-
jective function of the centralized problem was the minimization of the operating cost of
the LEC (the energy sold and bought to the grid). The objective function of the decentral-
ized problem was obtained by decomposition of the Lagrangian. Both centralized and
decentralized problems were compounded in two stages. An MILP solver was used for the
centralized model, and a mixed-integer quadratic programming (MIQP) solver was used for
the alternating direction method of multipliers (ADMM) model. All the calculations referred
to a time window of 1 day, divided into 96 periods of 15 min each. Ref. [25] addressed the
optimization of an EC that comprised a wastewater treatment plant, a hotel complex that
included restaurants, and the energy demand of administrative buildings in the southeast
of Romania, near the sea. As a local source of electricity generation, the biogas that was
obtained from the treatment water of a wastewater treatment plant (WWTP) was used as
the fuel for a combustion engine (50 kW) and a PV plant (100 kWp). The objective was to
minimize the operating cost of electrical energy to obtaining more local generation than
consumed locally, thereby achieving a positive-energy community. The quadratic function
of the biogas engine, the cost of start up and shut down, and the cost of energy exchange
with the grid were considered. The price of power exchange was the same for the import
and export of energy to the grid. Power exchange is considered positive when the power
direction is toward the grid, and negative when energy is imported from the grid. The au-
thors only considered an electrical energy balance; the thermal balance was not considered
in this study. The model was formulated with a horizon study of 24 h of operation, taking
a summer day with high tourist influx as a scenario. Two study cases were evaluated: the
power exchange was set to be very close to zero, and the objective function was set to zero.
Ref. [18] dealt with the scheduling of a cooperative EC. The approach consisted of two
stages: in the first stage, the exchange of energy between the consumers was addressed; in
the second stage, the minimization of the energy exchange between the community and
the grid was assessed. The stochastic, pessimistic, and optimistic cases of the study were
evaluated. All simulations were performed over a 24 h time horizon with a resolution of
30 min. This model was implemented in MATLAB using GUROBI as solver [42,48].

In [38], the willingness of consumers to change their behavior was modeled using
a stochastic approach. There was a community manager in charge of making recommenda-
tions to consumers to change their consumption patterns. The objective was to match the
PV generation with the demand load.

4.2.3. Nonlinear Programming (NLP)

In this type, the objective function and/or constraints are nonlinear. The variables
are continuous. These problems can have several local optimal. For solving nonlinear
problems, the generalized reduced gradient (GRG) and the quadratic programming (SQP)
methods are used. The computational algorithms for NLP are typically iterative in nature.
Another characteristic of nonlinear programs is that they can be very hard to solve, there
is no guaranteed method of finding a feasible point if the problem embodies nonlinear
constraints, and the solution is a local optimum point [39,40].

Researchers [15] presented a short-term memory neural network to forecast the load
and distributed generation profiles. It utilizes an elastic net approach to optimally apply
a set of feasible distributed resources and demand-side management programs. The op-
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timization technique was a nonlinear constrained optimization that was solved using
sequential quadratic programming (SQP) method. The daily operation was programmed
on a 15 min basis.

5. Uncertainty Management

Given that renewable generation is one of the main resources in ECs, and variability is
its main characteristic, many researchers have evaluated different solutions to address the
uncertainty of renewables, including the variability in the load demand.

5.1. Stochastic Optimization

Here, the objective function and/or constraints contain uncertainty. The optimal
decision is taken under uncertainty; the formulation can be “wait and see”, “here and now”,
and “chance-constrained optimization”. With stochastic programming, the parameters
subject to uncertainty or possible errors in their measurement or estimation and whose
probability distribution is known can be treated as random variables. Probabilistic measures
are necessary, and, on occasion, it is necessary the use a decomposition method to solve the
stochastic problem, for example, in a stochastic problem with resources. The probability of
occurrence is necessary for modeling different scenarios [39,50].

Ref. [23] designed a stochastic optimization using the Markovian process with a tran-
sition matrix to manage the uncertainty. The results showed that by using the stochastic
approach, the expected net energy cost was more economical than using the deterministic
one. In terms of the computation cost, the deterministic approach required less time than
the stochastic approach.

In [37], the authors concluded that with regard to the performance of the model with
the stochastic formulation, the matching between the producer and the consumer with
similar characteristics was the key to maximizing social welfare in P2P transactions. The re-
newable generation and load were forecast, and the error of this forecast was considered
to model the uncertainty of these parameters using the Laplace distribution. Authors [30]
proposed a stochastic MPC that allowed for obtaining more benefits in terms of minimizing
operating costs and maximizing self-consumption compared with the deterministic MPC.

In [17], a two-stochastic formulation was used, where the dispatchable generator was
a first-stage decision; the EV, ESS, and the cost of the interruptible, shiftable, and reducible
loads and the grid imbalances were second-stage variables. Uncertain resources were
renewable generators, load profiles, and market prices. A large number of scenarios were
generated by Monte Carlo simulation (MCS). The model was performed using TOMLAB in
MATLAB [46,48].

5.2. Robust Optimization

The objective function and/or constraints may require uncertainty management.
The formulation of an uncertainty set is necessary to characterize the possible outputs of
parameters with uncertainty. This set is usually represented through elliptic sets, budgeted
uncertainty sets, and box-constrained sets. It is not necessary to use probability functions
such as stochastic optimization. A worst-case optimal solution for the parameters with un-
certainty is sought. In stochastic optimization, the number of scenarios needed to describe
the possible outputs of the scenarios with uncertainty is often very large, which may prove
to be more difficult to solve computationally. The number of scenarios does not appear in
robust optimization. A larger uncertainty set can lead to very conservative or safe results;
but, as consequence, the cost can be very high [50,51].

Ref. [9] formulated a robust optimization in which the uncertainty-prone resources were
energy prices, PV production, and electrical and thermal load. The conclusion was that the
robust approach allowed minimizing the total operating cost while considering the uncertainty
in these factors.

In [35], the uncertainties in demand load, PV generation, and electricity prices were
modeled using robust and stochastic optimization. With regard to the robust optimization,
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in this LEC, the worst-case scenario was considered as an increase in the electricity prices
and demand load, and a reduction in the PV generation. The results showed that, using
robust optimization to be protected for the worst-case scenario, a higher operating cost was
achieved. With a stochastic formulation, effective and economic planning was obtained.

6. Ancillary Services

Many researchers have addressed ECs that offer flexible services to the DSO. This
flexibility may be the main objective or one of several objectives, depending on the resources
available for the EC. In [15], the authors considered the participation in the DRP, using
shiftable and interruptible loads [21]. In future work, they will consider the selection of
the demand response program to be an optimization decision, where the solution of the
problem selects the most appropriate DRP or the most effective strategy for participating.
They propose the use of evolutionary algorithms to achieve this aim.

In [16], the authors, through a mechanism, quantified the flexibility services that the
LEC should offer to the grid. One of the contributions was a real-time framework for the
flexible services implemented for quantifying the available flexibility capacity, and the
distribution of the revenues for the flexible services with CES capacity sharing between the
LEC. This was achieved in congruence with the initial investment of the users. To provide
this service, load flexibility was used: in this case, HVAC and CES.

In [19], indirect flexibility devices (electric vehicle battery), as in [28], and direct flexibility
services (stationary BESS) were addressed. The study contributed to the evaluation of the
impact of indirect flexibility on the self-consumption of office buildings and a method to
introduce indirect flexibility into the energy management system of a building. Two of the
conclusions were that indirect flexibility can increase the self-consumption of the building and
that direct flexibility can compensate for the behavior of human actions.

Heating pumps and controlled load were used to reduce the peak overload in [22].
Two of the contributions are that this study optimized the flexibility resources to avoid
overloads and modeled the continuous control of flexible devices (heating pump and
controlled loads) instead of using the discrete control on/off.

In [26], the challenge was to select the flexible bill that allowed for flexible users
and maximized self-consumption. Consumers that provided flexibility to downward and
upward energy were used for the DRP. Regarding the results, different case studies were
considered: no REC was established (base case), REC was established without flexibility,
and REC was established with flexibility. The results showed that the SCR increased
by 5.01% when the flexibility in the REC was considered; the same occurred with the
SSR, which increased by 2.92%. Thus, it was shown that flexibility impacts the SCR and
the SSR. In [27], consumers who reduced their energy according to the DRP target were
evaluated. In this study, a trustworthiness rate was determined. According to this value,
a consumer is either selected or not to participate in the DRP to reduce energy according to
the requirement.

In [31], ancillary services (the participation of the LEC providing the manual frequency
restoration reserve (mFRR) or tertiary reserves) were evaluated. The BESS was used to
provide flexible services. The results showed that the selection of the BESS parameters
in the day-ahead schedule impacted the real-time profitability of the LEC. Additionally,
another result was that the participation of the LEC providing mFRR caused an increase
in profits. [33] used flexible residential loads; there was a cost to the load that could be
decreased and another price to the load that could be increased. This study concluded that
flexible loads facilitate the integration of renewable generation into the LEC.

In [9], the DSO procured flexibility services in a local flexibility market. The LMO
called for flexibility bids, the aggregator prepared and offered bid services to the LMO,
and the LMO informed the aggregator if their bid has been accepted or not. This study
contributed a proposal of a local flexibility management strategy that is composed of two
products: flexibility bids on the local market, and local constraint support for the DSO
in the form of maximum allowed net power and net ramping rate. An adjusted robust
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optimization was used to model the uncertainty in energy prices, PV production, electrical
demand, and thermal consumption. The revenue from the flexibility depended on the level
of robustness. In addition, there was a trade-off between the level of robustness and the
possibility of being accepted.

In [17], the microgrid/EC participated in DRP. The flexibility in the loads was modeled
as direct load control programs, in which consumers voluntarily participated and received
monetary compensation if their loads were reduced, disconnected, or shifted.

Table 3 summarizes the ancillary and flexibility services included in the EC opera-
tion programs.

Table 3. Ancillary services.

Ref. Resources Ancillary Services

[15] BESS, electric vehicle DRP: shiftable load, curtailment load

[16] Shiftable appliances, CES, photovoltaic
(PV) panels, HVAC

Load flexibility (HVAC) and CES capacity
sharing between LEC and grid aggregator

[19] Stationary battery, battery electric vehicle,
PV modules

Indirect flexibility devices (battery of
electric vehicle) and direct flexibility

services (stationary battery
energy storage system)

[21] Electric vehicles, Home appliances,
PV panel, HVAC

DRP: Interruptible loads and
shiftable load

[22] Photovoltaic generation, heat pump,
cooling loads

Reduce peak overloading: heating pumps
and controlled load

[26] PV generation, flexible loads,
nonflexible load

Demand response: Flexibility in
downward and upward energy

[27]

DG (distribution generator: small hydro,
wind, photovoltaic, biomass, fuel cell,
cogeneration) and DR consumers and

different scale of consumers

DRP: Consumers that reduce their energy
according to DR target

[28] Electric vehicle, PV system Flexibility using electric vehicles

[35] Interruptible loads, noninterruptible
loads, photovoltaic plant, BESS Flexible loads: Interruptible load

[30]
Noncontrollable (NCL), controllable loads

(CLs), renewable energy
sources (RESs), CES

Flexible loads: There is no revenue
from flexibility

[31] BESS, EV,
Photovoltaic system

Manual frequency restoration reserve
(mFRR) or tertiary reserves: BESS is used

to provide flexible services

[33] Rooftop PV, residential demand, flexible
residential loads Increase and reduction in flexible loads

[9] PV system (solar panels), BESS,
and thermal energy storages: EWH Flexibility bids to the LMO

[17]
ESS, EV, distpachable generators (DGs),

inflexible loads, interruptible loads,
reducible loads, shiftable loads

DRP: direct load control programs,
voluntary, monetary compensation

7. Future Works and Conclusions

The main contribution of this study are the analysis of the latest research on the mathe-
matical formulation of optimization models for optimal resource scheduling in ECs. Different
researchers have modeled the optimization of the resources that belong to different ECs. Several
objective functions have been proposed, such as maximizing profits, and minimizing the total
operating cost of the community. Self-sufficiency and self-consumption have been used as part
of the objective and as indicators of the optimal use of internal resources. Flexibility services
have been shown to help increase both indices.

In the reviewed literature, the aim of EC resource scheduling was primarily minimizing
operating costs. In addition, the peer-to-peer model has been considered for energy trading
among participants.
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The most common resources that have been used are PV panels, BESS, EVs, TESs,
and HVAC. New resources, equipment, and hybrid systems can be taken into account in
future work.

Several researchers have considered uncertainty management in their optimization
models. Market prices, renewable energy, and demand load are the resources with un-
certainty that were most frequently encountered in the literature. Stochastic optimization
using Markovian processes and exponential distributions have been used for uncertainty
treatment. Robust optimization has also been used for uncertainty handling; in this case,
uncertainty sets have been defined to schedule resources for the worst-case scenario.

Most of the research related to flexibility using DRP has used flexible loads in the form
of interruptible loads or shiftable loads. These resources have been predetermined with
a capacity depending on their availability and the willingness of the participants. Only
a few investigations have included the flexibility service as a variable in the optimization
problem, with the aim of obtaining the optimal package of flexibility to include in resource
scheduling. Human behavior generates an impact on the operation of ECs; some researchers
modeled this factor using stochastic methods. Few researchers haved considered network
constraints; some of them simply considered the maximum capacity at the PCC.

Software such as MATLAB and PYTHON have been very present in the development
of many optimization approaches.

The distribution of benefits among participants in EC is an issue that needs to be addressed
in future studies. The flexibility services that an EC can provide to the system are an open
question in the field; provided that most of the present studies refer to participation in DRP,
ancillary services such as manual frequency control and downward and upward reserves should
be considered.

Author Contributions: E.C.-D.-J. is the main author and conducted the main review of the optimiza-
tion approaches for scheduling controllable resources in energy communities; conceptualization,
J.L.M.-R. and A.M.-M.; review and state of the art, E.C.-D.-J.; writing—original draft preparation,
E.C.-D.-J., J.L.M.-R. and A.M.-M.; writing—review and editing, J.L.M.-R. and A.M.-M.; project ad-
ministration, J.L.M.-R. All authors participated in the AEI-funded project, which dealt with the
integration of renewable generation in future scenarios of the Spanish Energy System. All authors
have read and agreed to the published version of the manuscript.

Funding: Grant PID2020-116433RB-I00 funded by MCIN/AEI/10.13039/501100011033.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are grateful for the support of the CERVERA Research Programme
of CDTI under the research project HySGrid+ (CER-20191019).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations, Variables and Parameters
The following abbreviations, variables and parameters are used in this manuscript:

Abbreviations
EC Energy Community
CEC Citizen Energy Community
REC Renewable Energy Community
LEC Local Energy Community
LMO Local Market Operator
HEMS Home Energy Management System
BEMS Building Energy Management System
CES Community Energy Storage
ESS Energy Storage System
BESS Battery Energy Storage System
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EWH Electric Water Heater
PV Photovoltaic
TES Thermal Energy Storage
HVAC Heating Ventilation and Air Conditioning
EV Electric Vehicle
WWTP Wastewater Treatment Plant
MILP Mixed-Integer Linear Programming
MIQP Mixed-Integer Quadratic Programming
SQP Sequential Quadratic Programming
MPC Model Predictive Control
ADMM Alternating Direction Method of Multipliers
LP Linear Programming
NLP Nonlinear Programming
MPC Model Predictive Control
MCS Monte Carlo Simulation
DSO Distributed System Operator
TSO Transmisor System Operator
DES Distributed Energy System
DRP Demand Response Program
OC Operating Cost
PBDRP Price-Based Demand Response Program
LCOS Levelized Cost of Storage
P2P Peer-to-Peer
SSR Self-Sufficiency Rate
SCR Self-Consumption Rate
Variables
meexp

t Energy sold to the grid
mpimp

t Energy purchased from the grid
pcba

t Charge power of the BESS
pdba

t Discharge power of BESS
gtte

t Generation of dispatchable units
gppv

t Generation of photovoltaic plants
piidt Load shedding
socba

t State of charge of the battery
edbba

t BESS state, binary variable
ute

t Dispatchable units state, binary variable
Parameters
pimp

t Energy purchase prices
pexp

t Energy sales prices
crid Interruptible-load cost
pnni

t Essential load
peid Nonessential load
ηc, ηd Charge/discharge efficiency of BESS
socmin

ba , socmax
ba Minimum and maximum state of charge of BESS

socini,ba Initial state of charge of BESS
pdmin

ba , pdmax
ba Minimum and maximum power of BESS when discharging

pcmin
ba , pcmax

ba Minimum and maximum power of BESS when charging
pmin

te , pmax
te Minimum and maximum power of dispatchable units

mpmax Maximum purchase energy allowed
memax Maximum sales of energy allowed
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