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Abstract: Usually, data-driven methods require many samples and need to train a specific model for
each substation instance. As different substation instances have similar fault features, the number of
samples required for model training can be significantly reduced if these features are transferred to
the substation instances that lack samples. This paper proposes a fault-line selection (FLS) method
based on deep transfer learning for small-current grounded systems to solve the problems of unstable
training and low FLS accuracy of data-driven methods in small-sample cases. For this purpose,
fine-turning and historical averaging techniques are proposed for use in transfer learning to extract
similar fault features from other substation instances and transfer these features to target substation
instances that lack samples to improve the accuracy and stability of the model. The results show that
the proposed method obtains a much higher FLS accuracy than other methods in small-sample cases;
it has a strong generalization ability, low misclassification rate, and excellent application value.

Keywords: small-current grounded system; single-phase grounding fault; fault-line selection;
deep transfer learning; deep learning

1. Introduction

Small-current grounded systems (SCGSs) are widely used in distribution networks of
66 kV and lower voltage levels, and the number of single-phase grounding faults exceeds
80% of the total number of faults in distribution networks [1,2]. If the neutral of one side
of the transformer winding in a substation is ineffectively grounded, the winding, the
bus, and the line connected to this bus form an SCGS. Therefore, the substation instances
mentioned below refer to a specific SCGS. When a single-phase grounding fault occurs in
the SCGS, no prominent fault features can be detected in the fault line, and selecting the
fault line from the several lines connected to the bus is called a fault-line selection (FLS)
problem. FLS is challenging due to the fault with the random process and inconspicuous
fault features.

Traditional FLS methods can be divided into steady-state, transient, and injection
methods. Because the steady-state signal is usually weak and susceptible to interference,
the steady-state method is less accurate and is difficult to apply in practice [3,4]. The
amplitude of transient signals is large, but the duration of the transient process is short and
has certain randomness, so the transient method is prone to misjudgment under certain
circumstances [5,6]. The injection method injects a specific signal into the system by an
additional signal generator and then detects the content of the injected signal in each line
and selects the faulty line [7,8]. The additional signal generator increases the cost of FLS
significantly, which is not conducive to large-scale applications. Due to the theoretical
bottleneck of these methods, it is difficult to fully consider the single-phase grounding
fault process with certain randomness. Therefore, their FLS accuracy is generally lower
than 70%.

In order to improve the accuracy of FLS, some scholars proposed using data-driven
methods such as neural networks to learn fault features from historical data and using these
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features to select the faulty line [9,10]. This type of method requires many fault samples, the
model’s training is very unstable in small-sample cases, and the FLS accuracy is not high
enough. To solve the problem of training FLS models with small samples, the paper [11]
proposed a generative adversarial network (GAN)-based FLS method to train the classifier
using a large number of GAN-generated samples, which alleviates the problem of an
insufficient number of samples to some extent. However, the methods proposed in [9–11]
cannot adapt to different substation instances. It is necessary to build a specific model for
each substation instance and then train the model with a large number of samples to obtain
a good FLS accuracy. As these methods require many fault samples, they are not conducive
to broader application.

Data dependence is one of the toughest problems faced by deep learning [12]. Deep
transfer learning exploits similarities in different domains to transfer the features learned
from the source domain to the target domain, reducing the number of samples required
for model training and achieving better results when solving problems with a lack of
samples. Currently, deep transfer learning methods mainly fall into the following four
categories: instance-based transfer learning methods [13], mapping-based transfer learning
methods [14], adversarial training transfer learning methods [15], and network-based
transfer learning methods [16,17]. Network-based transfer learning methods are one of the
most common of them, and many pre-designed neural networks can be pre-trained with
open-source datasets and then transferred to the desired domain. Among them, models
such as AlexNet [18], VGG [19], and ResNet [20] are widely used, and they have achieved
excellent results in image classification [21,22].

A necessary condition for deep transfer learning applications is that similarities must
exist between the two domains. Similar circuit structures exist in all substation instances;
they all satisfy the same physical laws when single-phase grounding faults occur in different
instances. If these similar features can be used to build an FLS model that can perform
transfer learning between different substation instances, the number of samples required
for training can be greatly reduced, and the FLS accuracy can be improved.

In this paper, we consider using the similarity existing in different substation instances
to solve the FLS problem using deep transfer learning to extract fault features from other
substation instances and transfer these features to the target substation instance to improve
the accuracy and stability of small-sample training of the model. The main contributions
are as follows.

1. An FLS model architecture based on deep transfer learning is proposed. Fine-tuning
is used to transfer the fault features extracted from other substation instances to the
target instances that lack samples. This will reduce the number of samples required to
train the model in the target instance and improve the FLS accuracy.

2. The historical averaging technique is proposed for introduction into the transfer
learning of the FLS model. It can limit the model parameters to vary widely during
the training process. The model can retain the general fault features learned from
other substation instances and learn the specific fault features in the target substation
instance during transfer training, which improves the transfer effectiveness of the
FLS model.

The rest of this paper is organized as follows: Section 2 describes the dataset used in
this paper and the proposed method; the validity of the proposed method is verified and
discussed in Section 3; finally, the paper is concluded in Section 4.

2. Materials and Methods
2.1. Dataset

Fault samples obtained from real SCGSs are used to train and test deep transfer
learning models. The SCGS used includes: (1) system A (source domain): a 10 kV bus in
a substation; three lines are connected to the bus, and its neutral point is not grounded;
(2) system B (target domain): a 10 kV bus in a substation; seven lines are connected to the
bus, and its neutral point is grounded through the arc suppression coil.
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2.2. Improved Method Based on Deep Transfer Learning
2.2.1. Introduction to Deep Transfer Learning

A schematic diagram of transfer learning is shown in Figure 1. Dataset A with a large
number of samples (source domain) and dataset B with only a few samples (target domain)
are known to have similar features. Transfer learning enables the model to learn similar
features in the source domain and then transfer them to the target domain so that the model
can work well in the target domain. The transfer of similar features eliminates the need
to train the model from scratch, which significantly improves the training efficiency and
model performance.
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Currently, deep learning has achieved excellent results in many fields. Transferring
the knowledge learned by deep neural networks in the source domain to the target domain
has become a popular research direction, called deep transfer learning.

2.2.2. Network-Based Deep Transfer Learning Model

The network-based deep transfer learning method assumes that the feature processing
mechanism of the neural network is continuous and progressive, and the first few layers of
the network can be regarded as a feature extractor, which can extract general features from
the dataset. These features are transferable, i.e., they make the model work well in a target
domain similar to the source domain. Therefore, this paper uses fine-tuning to transfer the
pre-trained model in the source domain to the target domain for retraining.

The schematic diagram of fine-tuning is shown in Figure 2, which transfers the model
parameters that have been trained in the source domain to a new model; then, the new
model can be trained in the target domain. During transfer training, the parameters of the
first few layers of the network are frozen to retain the general features learned by the model
in the source domain, and then the model is trained with data from the target domain.
Fine-tuning has the following advantages: (1) it uses a model that has been trained in the
source domain and does not need to train a model from scratch; (2) the features from the
source domain are preserved in the model, so it can work well when there are only a few
samples in the target domain.

2.2.3. Improved Model Using Historical Averaging Technique

It was found in the experiment that, when only fine-tuning is used in the transfer
learning model, the model effect is not good enough. This may be due to the wide variation
in the model’s parameters during training, causing it to forget the general fault features
learned in the source domain and thus fall into overfitting.

Therefore, this paper proposes the use of the historical averaging technique to solve the
above problems. It refers to adding a historical average term to the model’s loss function, as
shown in Equation (1), where θ(i) represents the model parameters in the neural network at
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time i. This technique was proposed in [23], where the historical average term can penalize
an extensive range of changes in model parameters, guiding the model to find the optimal
value near the initial point, which is beneficial for the model to retain the features learned
in the source domain.

∆LH =‖θ − 1
t

t

∑
i=1

θ(i)‖2

2

(1)
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2.3. FLS Model Based on Deep Transfer Learning
2.3.1. Data Processing of FLS Model

When a fault occurs, the fault samples can be obtained by sampling and processing
the data of each line of the substation. The sample format is shown in Equations (2)–(6).
lin represents the data of line n at time i. V, I, P, Q, and cos θ denote the bus voltage, line
current, active power, reactive power, and power factor, respectively. Their subscripts a, b,
and c denote phase a, phase b, and phase c, respectively. qi represents the bus voltage and
the data of one line at time i. x represents a sample. y is a scalar that represents the label of
sample x. When sample x corresponds to a faulty line, y is 1; otherwise, it is 0.

Vi =
[

Vi
a Vi

b Vi
c
]

(2)

lin = [ Iin
a Iin

b Iin
c Pin Qin cos θin ], 1 ≤ n ≤ N (3)

qi =
[

Vi lin
]T

(4)

x =
[

q1 q2 . . . qT ] (5)

y =
[

y1 y2 . . . yN
]T , y ∈ RN (6)

Due to differences in operation, the number of lines, and the environment where the lines
are installed, there may be order-of-magnitude differences in voltage and current sampling.

The input data processing of the FLS model needs to overcome two main problems:
(1) The operating states of different lines in the same substation instance are different,
and their operating parameters are quite different. (2) The operating states of different
substation instances are different, and their respective operating parameters are quite
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different. The accumulation of differences caused by the above problems makes the model
training very difficult and unable to learn the fault features of the target domain. This
paper performs min–max normalization for each physical quantity of different systems,
as shown in Equation (7). This processing is beneficial for the model to utilize the fault
features of each line and improve the FLS accuracy. x(•) takes the voltage, current, active
power, reactive power, and power factor of all samples, and then brings them into the
formula for calculation. Amin and Amax are the minimum and maximum values of x(•) in
all samples, respectively.

x(•) = x(•)− Amin

Amax − Amin
(7)

2.3.2. FLS Model Architecture Based on Deep Transfer Learning

The structure of the FLS model based on deep transfer learning is shown in Figure 3.
The classifier of the model consists of multi-layer Bi-LSTM layers and fully connected layers.
Bi-LSTM can better utilize the time-series features in the data to improve the model’s ability
to select the faulty line [24].
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Figure 3. FLS model architecture based on deep transfer learning. Figure 3. FLS model architecture based on deep transfer learning.

Although the proposed model can obtain high FLS accuracy, misclassification is
inevitable. In the proposed architecture, the real-time fault data and the output results
are verified and stored in a historical dataset, and the model is periodically retrained with
a new historical dataset to reduce the misspecification of the proposed model.

In this model, the output layer uses the sigmoid activation function, and the loss
function is the cross-entropy function, as shown in Equations (8) and (9).

sigmoid(x) =
1

1 + e−x (8)

L(x, θ) = −(y∗ log( f (x)) + (1− y∗) log(1− f (x)) (9)

The input data of the FLS model are the operation data of a single line, and the output
result is ideally 1 or 0, where 1 indicates that the line is in a fault state, and 0 indicates that
the line is in a normal state. In actual operation, the FLS model needs to judge the status of
each line in the substation instance separately, and the output result of each line is between
0 and 1. Therefore, it is necessary to select the faulty line according to the output result.
There are generally two selection criteria: (1) the maximum value criterion and (2) the
threshold value criterion.
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(1) Maximum value criterion: The output result of all lines is R =
[

r1 r2 . . . rN
]
;

if rj = max(R), it is considered that the fault occurs in line j.
(2) Threshold value criterion: Set the threshold α in (0,1). For the output result

R =
[

r1 r2 . . . rN
]

of all lines, if rj ≥ α, it is considered that the fault occurs in line j.

2.4. Training Strategy for FLS Model
2.4.1. One-Step Training Strategy

The one-step training strategy combines samples from the source and target domains
into a training set and uses it directly for model training, as shown in Figure 4. The training
goal is to minimize the loss of the model to the training set so that the model can learn the
features of both domains simultaneously. The samples from system A are introduced into
training, which can provide more fault features for the model to avoid the model falling
into overfitting and to improve the FLS accuracy of the model. The loss function can be
divided into two parts, the source domain (system A) and the target domain (system B),
and its mathematical expression is shown in Equation (10).

L(x, θ) = L(xSystem A, θ) + L(xSystem B, θ) (10)
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The early stopping method needs to be used during the training process to prevent
the model from overlearning the chance features in the data [25]. First, the test loss of the
model is recorded at each training epoch, and the model training is terminated early when
the test loss shows an increasing trend; then, the weights at this time are used as the final
model parameters. The early stopping method can effectively reduce the risk of the model
falling into overfitting and the training time, and improves the model’s performance.

The training strategy is simple and effective and can directly transfer the fault features
in system A to system B, improving the FLS accuracy in small-sample cases. However, this
method trains the data of the source domain and target domain simultaneously, which has
certain blindness. The model chooses which features to keep and which features to forget
by the gradient generated during training, which is an uncontrollable process.

2.4.2. Two-Step Training Strategy

Although the strategy proposed in Section 2.4.1 is effective, the FLS accuracy of the
trained model is still not high enough, due to its inherent flaws. The core reason is that
this strategy combines a large number of source domain samples with a few target domain
samples for training, which makes the model more inclined to learn features in the source
domain rather than those in the target domain.

This paper proposes the two-step training strategy to solve the above problems, as
shown in Figure 5. It trains on samples from the source and target domains separately while
using fine-tuning and historical averaging techniques to retain the general fault features
learned from the source domain, improving the FLS accuracy. The process of the two-step
training strategy is as follows:
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Step 1: Binary classifier 1 is trained using a large number of samples from the source
domain to extract fault features, and its loss function is Equation (11). When the training
accuracy ρ of the model satisfies Equation (12), the model training is terminated, where ρT
represents the termination accuracy, and the model parameter is θ1 at this time. It should
be pointed out that parameter ρT represents the fitting degree of the model to the features
of the source domain. The improper setting will reduce the effect of transfer learning. In
practice, it is generally taken as 70%.

L1(x, θ) = L(xSystem A, θ) (11)

ρ ≥ ρT (12)

Step 2: Transfer the model parameters θ1 of the trained binary classifier 1 to binary
classifier 2. Then, the model parameters of the first s layers of the network are frozen, and
Equation (13) is used as the loss function to train the binary classifier 2 using the target
domain samples to learn the special features of the target domain.

L2(x, θ1) = L(xSystem B, θ1) + ∆LH (13)

3. Results and Discussion

The proposed method was implemented in Python 3.6 using Keras 2.2.4 and Ten-
sorflow 1.13.1. The model structure used was two-layer Bi-LSTM and four-layer fully
connected layers (100-100-50-25). The parameter optimization of the model used the Adam
optimizer, and the parameters of the optimizer used the default values.

3.1. The Transfer Learning Process of FLS Model
3.1.1. FLS Model Using One-Step Training Strategy

The FLS model uses the one-step training strategy, trained on 1000 source domain
samples and 200 target domain samples, and tested on 500 target domain samples. The
training and test results are shown in Figures 6 and 7, and the analysis is as follows.

The training loss drops rapidly during the 0–50 iterations, while the test loss does not
drop but rises rapidly. During 50–200 iterations, as the model fits the samples of system
A relatively well, the loss value of this part decreases; then, the samples of system B become
the main factor affecting the gradient direction, and the test loss gradually decreases.
Eventually, the training and test losses of the model stabilize, and the test accuracy reaches
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about 75%. The early stopping method is used to terminate the model’s training early at this
time, which effectively reduces the overfitting of the model and the invalid training time.
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Figure 7. FLS model accuracy using a one-step training strategy.

The above results show that the samples of system A in the training set can help the
model extract fault features. A small number of system B samples help the model adapt to
the difference between system A and system B, significantly improving the FLS accuracy
of the model in the target domain. However, due to the blindness of the one-step training
strategy, it cannot control which source domain features the model retains, so its accuracy
still has room for improvement.

3.1.2. FLS Model Using Two-Step Training Strategy

The model uses the two-step training strategy, and the sample sets used for training
and testing are the same as those in Section 3.1.1. In the second step of training, the first
three layers of the network are frozen; the termination accuracy is taken as 70%. The
analysis is as follows.

The training curve of the FLS model using the two-step training strategy is shown
in Figure 8. In the first training step, when the loss value decreases with the training and
finally reaches the minimum value, the training is terminated. In the second training step,
as the model gradually learns the target domain features, the various losses continue to
decrease and eventually stabilize. As shown in Figure 9, the model can achieve about 85%
accuracy on the test set. Such high accuracy can be achieved with only a small number of
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target domain samples, indicating that features in the source domain are well preserved
and transferred to the target domain.

Energies 2022, 15, 3467 10 of 17 
 

 

 

Figure 8. FLS model loss using a two-step training strategy. 

 

Figure 9. FLS model accuracy using two-step training strategy. 

As the two-step training strategy uses fine-tuning to freeze part of the network layers 

and uses the historical averaging technique to limit the large changes in model parame-

ters, its fitting effect on the training set is slightly worse than that of the one-step training 

strategy. Nevertheless, this makes the trained model effectively avoid overfitting, its per-

formance on the test set is better than that of the one-step training strategy, and it has a 

stronger generalization ability. 

3.2. The Effect of Proposed Model on Different Target SCGSs 

In order to further verify the transfer learning effect of the proposed model in differ-

ent target systems, the source domain and target domain in Section 3.1 are exchanged, 

and then the one-step training strategy (M1) and the two-step training strategy (M2) are 

trained and tested separately. The results are shown in Table 1. 

  

1.4

1.2

0.8

0.4

L
o

ss

0 200 400 600 800 1000

Epochs

0.2

Binary crossentropy loss

Historical loss

First step loss

Second step loss

1.0

0.0

0.6

0 200 400 600 800 1000

Epochs

80

70

60

A
cc

u
ra

cy
 (

%
)

Training accuracy

Test accuracy
50

90

Figure 8. FLS model loss using a two-step training strategy.
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Figure 9. FLS model accuracy using two-step training strategy.

As the two-step training strategy uses fine-tuning to freeze part of the network layers
and uses the historical averaging technique to limit the large changes in model parameters,
its fitting effect on the training set is slightly worse than that of the one-step training strategy.
Nevertheless, this makes the trained model effectively avoid overfitting, its performance
on the test set is better than that of the one-step training strategy, and it has a stronger
generalization ability.

3.2. The Effect of Proposed Model on Different Target SCGSs

In order to further verify the transfer learning effect of the proposed model in different
target systems, the source domain and target domain in Section 3.1 are exchanged, and
then the one-step training strategy (M1) and the two-step training strategy (M2) are trained
and tested separately. The results are shown in Table 1.

From the time point of view, the training time required by M1 is slightly less than
that of M2, while the testing time required by the two methods is about the same. This is
because M2 needs to be trained in two steps, and its computational load is relatively large
during the training process. Both M1 and M2 perform feedforward computations during
the testing process, and their computational load is similar.

From the accuracy of view, M1 has a higher training accuracy than M2, but M2 has
a higher test accuracy than M1. This result shows that M2 can better utilize the fault features
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from the source domain and transfer them into the target domain, thus avoiding the model
falling into overfitting.

Table 1. The training and testing results of the FLS model after exchanging the source and target
domains. It should be noted that the test time represents the computation time of the model for one
fault in the target domain.

Source
Domain

Target
Domain Methods

Accuracy (%) Time (s)

Training Test Training Test

System A System B M1 95.6 73.1 75.8 0.285
M2 94.1 87.6 136.3 0.279

System B System A M1 97.3 74.8 74.2 0.141
M2 96.9 90.3 117.3 0.152

Furthermore, both methods achieve higher accuracy when the target domain is system
A. There are two reasons to explain this result: (1) system A contains fewer lines, and it
is easier for the model to identify faulty lines; (2) when system B is used as the source
domain, more fault samples of lines can provide more information for model training to
improve the model’s performance. Therefore, system instances with more lines and better
data quality should be selected as source domains in practical applications.

3.3. Model Comparison

In order to verify the performance of the proposed method in small-sample cases, this
section selects the following models and records the accuracies they obtain with different
sample sizes. The models proposed in this paper are used in M1–M5. The experimental
results are shown in Figure 10, and the analysis is as follows.
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Figure 10. Test accuracy of each model at different sample sizes.

M1: The one-step training strategy.
M2: The two-step training strategy.
M3: The two-step training strategy without fine-tuning.
M4: The two-step training strategy without historical averaging technique.
M5: The two-step training strategy without fine-tuning and historical averaging techniques.
M6: A deep neural network model based on supervised learning, whose model

structure is the same as M1 and only uses the target domain data for supervised training.
M7: Support vector machine model based on supervised learning; its kernel function

is RBF and only uses target domain data for supervised training.

(1) When the number of samples is more than 100, the accuracy of M2 is much higher
than in other models. Its accuracy can reach about 85% when the sample size is 200,
and when the sample size is further increased, the accuracy can even exceed 90%.
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(2) Comparing M1 and M2, it can be seen that the two-step training strategy can make
the FLS model obtain about 85% accuracy when there are only 200 samples, and its
transfer learning effect is significantly better than that of the one-step training strategy.

(3) Comparing M2, M3, M4, and M5, it can be seen that the application of fine-turning
and historical averaging techniques can significantly improve the accuracy of the
FLS model in small-sample cases. When only one of the two techniques was used,
fine-tuning performed slightly better than the historical averaging technique, but they
were both significantly better than when neither technique was used.

(4) Comparing M5 and M6 shows that when fine-turning and historical averaging tech-
niques are not used in the two-step training strategy, it is equivalent to a supervised
deep neural network model trained only with target domain data. In the two-step
training strategy, the model extracts the source domain features in the first step, but if
no measures are taken to preserve these features, they may be gradually forgotten by
the model with training in the second step.

(5) The effect obtained by M7 is far worse than other models, which indicates that
it is difficult for the traditional shallow learning to extract fault features in high-
dimensional data.

Table 2 shows each model’s training and test results when only 200 target domain
samples are used. The results show that M5 and M6 have the highest training accuracy
on the target domain, exceeding 98%. However, they do not make good use of the fault
features from the source domain and suffer from severe overfitting; therefore, their test
accuracy is low. When using only one of the fine-tuning and historical averaging techniques
(M3 and M4), the model’s test accuracy is even lower than when neither technique is used
(M5). This suggests that fine-tuning and historical averaging techniques must be applied
simultaneously for the FLS model to work well. The training and test time of the shallow
learning algorithm (M7) is short, but its training and test accuracy are extremely low. When
using the two-step training strategy (M2), the method proposed in this paper can effectively
extract fault features from the source domain and select the fault line in the target domain.
Therefore, M2 obtains the highest test accuracy in small-sample cases.

Table 2. Training and testing results for each model when using only 200 target domain samples.

Methods
Accuracy (%) Time (s)

Training Test Training Test

M1 94.7 72.8 74.9 0.281
M2 93.5 86.3 139.2 0.276
M3 89.2 49.7 114.8 0.281
M4 90.3 52.1 93.5 0.279
M5 98.9 53.7 107.0 0.285
M6 98.7 51.1 99.2 0.284
M7 87.6 24.9 33.8 0.130

The experimental results show that the proposed method has the best transfer learning
effect when using the two-step training strategy, avoiding overfitting and obtaining high
FLS accuracy in small-sample cases.

3.4. Effect of Termination Accuracy on FLS Models

The above experiments demonstrate that the performance of the two-step training
strategy is better than that of the one-step training strategy. In the two-step training strategy,
the termination accuracy indicates how well the model learns the specific features of the
source domain, which significantly affects the transfer learning effect of the model. To verify
the effect of termination accuracy on the model’s performance, we set different termination
accuracies ρT in this section and then record the test accuracy of the model in the target
domain. The experimental results are shown in Figure 11 and analyzed as follows.
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Figure 11. The effect of termination accuracy on the test accuracy of the model. Figure 11. The effect of termination accuracy on the test accuracy of the model.

As the termination accuracy gradually increases from 10%, the model fits the source
domain increasingly well. The features obtained from the source domain are transferred
to the target domain, which leads to an increasing trend in the test accuracy of the model.
The test accuracy of the model in the source domain reaches its highest value of about
86% when the termination accuracy is around 70%. After that, the test accuracy does not
continue to increase as the termination accuracy increases further but decreases slightly.

The results show that the model’s fit to the source domain should not be as high
as possible in the two-step training strategy. The higher the termination accuracy that
is set, the better the model learns the specific features in the source domain. Overfitting
these features can make it difficult to transfer the model to work well in the target domain.
Setting the termination accuracy at 70% generally makes model training more stable.

3.5. Operation of FLS Model

Figure 12 illustrates a single-phase grounding fault occurring in system B. When t = 0 s,
the bus voltage of the system is abnormal, and the operator successively cuts lines 3, 1, 6,
2, and 7, but the fault is not isolated. About 20 min later, line 5 is cut off, at which time
the bus voltage returns to normal, which means that the fault occurs on line 5. The above
process cuts off many normal lines, which expands the scope of outages and increases the
operating time with faults.

After pre-training the proposed model in system A and transferring it to system B, the
model can be tested with historical data from system B. At t = 0 s, the FLS model detects the
fault occurrence and samples the fault data. The sampled data are pre-processed and fed
into the FLS model, and then the model output is obtained, as shown in Table 3. According
to the maximum value criterion, it can be concluded that the fault occurs on line 5. This
FLS process is 0.395 s in total, which can meet the requirement of real-time FLS.

Table 3. Output of the FLS model for Figure 12.

Line 1 2 3 4 5 6 7

Output 0.030 0.233 0.239 0.145 0.863 0.471 0.322

Figure 13 illustrates a single-phase ground fault occurring in system A. When t = 0 s,
the system bus voltage is abnormal. After the operator successfully cuts off lines 2 and 3,
the bus voltage returns to normal, which means that the fault occurs on line 3.
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Figure 12. A single-phase grounding fault in system B. 
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Figure 13. A single-phase grounded fault in system A.

After pre-training the proposed model in system B and transferring it to system A, the
model can be tested with historical data from system A. At t = 0 s, the FLS model detects the
fault occurrence and samples the fault data. The sampled data are pre-processed and fed
into the FLS model, and then the model output is obtained, as shown in Table 4. According
to the maximum value criterion, it can be concluded that the fault occurs on line 3. This
FLS process is 0.226 s in total, which can meet the requirement of real-time FLS.

Table 4. Output of the FLS model for Figure 13.

Line 1 2 3

Output 0.001 0.327 0.946

The computation results show that the proposed method can accurately select the fault
line in the target domain after transfer learning, which significantly improves the efficiency
of FLS and reduces the negative impact of single-phase grounding faults.
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4. Conclusions

This paper proposes a deep-transfer-learning-based fault-line selection method, which
solves the problem that data-driven fault-line selection methods are challenging to train
in the absence of samples. The proposed method can retain numerous fault features from
other instances and transfer these features to the target instance. This greatly reduces the
number of samples and the time required for model training in the target instance. In the
proposed method, fine-tuning and historical averaging techniques can enhance the model’s
training and help the model obtain a fault-line selection model with a better generalization
ability in small-sample cases.

The computation results show that the proposed method can maintain high accuracy
even when only a few samples are in the target instance. Its training process is stable and
relatively simple, and its effect is significantly better than other fault-line selection methods,
which have strong practicality.

The proposed method in this paper is affected by the similarity between substation
instances, and the transfer effect of the model will be much better between substation
instances with higher similarity. However, there is no similarity metric for substation
instances to use, which will be a future research direction.
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