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Abstract: The dynamic operation of power transmission systems requires the acquisition of reliable
and accurate measurement and state information. The use of TCP/IP-based communication protocols
such as IEEE C37.118 or IEC 61850 introduces different gateways to launch cyber-attacks and to
compromise major system operation functionalities. Within this study, a combined network intrusion
and phasor data anomaly detection system is proposed to enable a secure system operation in the
presence of cyber-attacks for dynamic control centers. This includes the utilization of expert-rules,
one-class classifiers, as well as recurrent neural networks to monitor different network packet and
measurement information. The effectiveness of the proposed network intrusion and phasor data
anomaly detection system is shown within a real-time simulation testbed considering multiple
operation and cyber-attack conditions.

Keywords: cyber-security; dynamic control centers; network intrusion detection; anomaly detection;
cyber-physical systems; phasor measurement units

1. Introduction
1.1. Motivation

As introduced in [1–4], dynamic control centers extend traditional SCADA-based
system architectures with new assistant functionalities (e.g., DSA, WAMS) to increase the
situational awareness and to improve the grid operation to handle critical grid situations
or disturbed system states. This requires the integration of additional monitoring and
control components (e.g., PMUs, HVDC, FACTS), and an increased utilization of TCP/IP-
based transmission protocols as well as automation processes. From a cyber-security
perspective, new system threats arise in these architectures and can severely endanger the
reliable operation of power transmission systems, especially during transient system states.
This may include malfunctions (e.g., failures in protection devices), outages, violations of
operational limits, or large-scale power supply interruptions with high financial impact [2,4].
Dynamic control center functionalities rely on secure communication links and trustworthy
measurement and control data, which can be achieved by integrating efficient active and
passive cyber-security measures.

1.2. Main Contributions

In contrast to conventional cyber-security solutions, special requirements have to be
fulfilled to enable cyber-secure dynamic control centers. These include the inspection of
specific protocols and data types as well as a combined monitoring of relevant network
and process data. This study proposes an active cyber-security solution to enhance the
reliability and robustness of control center functionalities for the steady state and dynamic
assessment, as shown in Figure 1.
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Figure 1. Basic concept of a cyber-secure dynamic control center architecture.

For this purpose, various detection algorithms have been developed within this study
for the automatic online-monitoring of SCADA and PMU data transmission between the
dynamic control center and substation level. This includes a combination of rule-based
and machine-learning-based intrusion detection methods to analyze different information
in the exchanged network packets at all protocol layers. Additionally, a novel recurrent-
neural-network-based autoencoder and forecaster model is proposed to detect and correct
data manipulations in high-resolution phasor measurements.

1.3. Paper Organization

The paper is organized as follows. Section 2 gives a brief overview of current network
intrusion detection approaches for the relevant communication protocols IEC 61850 and
IEEE C37.118. Then, Section 3 starts with a general overview of the proposed network
intrusion and anomaly detection system. Afterwards, the different monitoring applications
are explained in detail, including a specification- and anomaly-based NIDS as well as
a recurrent-neural-network-based autoencoder and forecaster model. The evaluation in
Section 4 describes the experimental setup based on a real-time simulation system with
integrated communication links and different attack scenarios to assess the performance
of the network and anomaly detection applications. Section 5 summarizes the results and
gives a short outlook for necessary improvements and possible future work.

2. Cyber-Attack Detection in Power Transmission Systems

As already investigated in [2,4–9], dynamic control center architectures are faced
with a wide range of possible active and passive cyber-attacks, which endanger different
power system assets, including RTUs, PMUs, protection systems, or relays, as well as
control room servers. Typical active or passive attack types comprise MITM attacks, data
spoofings (e.g., insert fake commands to trip lines or manipulate PMU measurement
information), eavesdropping, or reconnaissance attacks. As a common defense approach,
intrusion detection systems (IDSs) enable the detection of malicious activities or events in
ICT systems and mitigate cyber-attacks on critical infrastructures [10–12]. Specification-
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based NIDS with various stateful or stateless deep packet inspections are proposed to
detect cyber-attacks within the PMU data transmission based on the IEEE C37.118 protocol.
These expert rules typically check IP addresses, TCP ports, device IDs, time or quality flags,
measurement values, message sizes, and other meta information, which can be compared
to derived nominal values from the CONFIG frame [13–15].

For the IEC 61850 data transmission, anomaly-based NIDS and specification-based
NIDS approaches have been investigated. This includes the application of machine learning
(e.g., neural networks) to analyze network traffic information such as round-trip times,
packet sizes, or IP addresses as well as the derivation of expert rules from SCL files to
check IP addresses, TCP ports, IDs, sequence numbers, and state numbers. Most of these
approaches focus on the process bus communication within the substation, including
sampled values and GOOSE messages [16–21].

The majority of existing cyber-attack detection algorithms focus only on the analysis
of process information to recognize anomalies in the field measurements using well-known
feature extraction and classification techniques (e.g., Bag-of-Patterns, SVMs, decision trees).
In general, these solutions can be categorized as anomaly-based NIDS; however, they ignore
important network information and limit the detection capabilities to specific f cyber-attack
types (e.g., DoS-attacks) [22–27].

3. Intelligent Monitoring and Analysis of Heterogeneous Network and Process Data
3.1. System Overview

The proposed network intrusion and anomaly detection system for secure dynamic
control centers consists of the following main applications: a specification- and anomaly-
based NIDS, combined as hybrid NIDS application, and an anomaly detection and cor-
rection application for phasor data. Each application focuses on different information of
incoming PMU and MMS network packets to detect different cyber-attacks by using expert
knowledge and machine learning techniques. A general overview of the network intrusion
and anomaly detection system is given in Figure 2.

Figure 2. Main workflow and components of the network intrusion and anomaly detection system.

The specification-based NIDS uses expert rules to check specific protocol fields in all OSI
layers of IEC 61850-8-1 (MMS) and IEEE C37.118 (PMU) network packets. The anomaly-based
NIDS trains a one-class classification model using examples from normal and noncorrupted
MMS and PMU network traffic. Representative features are derived from a stateful analysis
of the data link and network layer of current and past network packets. More information
regarding the network traffic processing as well as the integration of expert knowledge is
given in the following subsections.
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The application phasor data anomaly detection and correction (PADC) uses a recurrent-
neural-network-based autoencoder and forecaster model to detect and replace the manip-
ulated phasor data. In contrast to the previous applications, only the measurement data
from the last layer of the incoming PMU network packets are analyzed. Several inputs
are required for the different detection applications, including the extraction of CONFIG
frames and SCL files, the incorporation of expert knowledge, as well as sufficient training
data of noncorrupted network traffic. A detailed explanation of the applications is given in
the subsequent subsections.

3.2. Hybrid Network Intrusion Detection System (Hybrid NIDS)

The basic architecture of the hybrid NIDS, which includes the specification-based
NIDS and the anomaly-based NIDS applications, is shown in Figure 3.

Figure 3. Basic architecture and workflow of the hybrid NIDS application.

In the first step, a network interface is defined to capture network traffic (online) or
to read historical network records (offline) for a predefined set of machines (e.g., via
the corresponding MAC addresses) within the network. The full network traffic is then
passed to the model-based traffic prediction module within the anomaly-based NIDS for further
processing and analysis. The necessary training data are provided as additional PMU and
MMS network records. In case of the specification-based NIDS, only TCP/IP-based network
packets are decoded and forwarded to the rule-based packet analysis. The frame analyzer
explores the packet structure and checks for existing PMU or MMS application layers at OSI
level 5 to 7, which are further decoded for the deep packet inspection in the specification-
based NIDS. For the rule-based NIDS, additional expert knowledge is required, including
whitelists (as user-defined text files with a specific format.), the IEC 61850 SCL description
(as XML files usually created during the configuration of IEC 61850 communication links),
as well as the PMU CONFIG frames (extracted and stored as object files at the start of
the PMU communication). All three files are automatically loaded and parsed with the
rule-based NIDS application. A final postprocessing step calculates the intrusion scores
and collects the results from both NIDS applications.
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3.2.1. Rule-Based Deep Packet Inspection

The main part of the specification-based NIDS is a multilevel and stateless deep
network packet inspection of incoming PMU and MMS frames. The basic structure of the
proposed expert rule system is given in Figure 4.

Figure 4. Basic architecture and workflow of the specification-based NIDS.

The rule system uses multiple rule sets, R, which are composed of different expert
rules, r ∈ R, to inspect protocol information at different OSI layers. In the first step, all
incoming PMU and MMS packets are passed to the TCP/IP rule check by applying the rule
set RTCP/IP. Thus, OSI layers 3 and 4 are inspected with the incorporation of a user-defined
whitelist. Depending on the protocol type, all PMU packets are further processed in the
PMU rule check by applying the rule set RPMU, whose rules are automatically derived
from the CONFIG frame. Various protocol information of the transmitted DATA frames
is checked, including the checksum, the DATA frame size, the seconds of century (SOC)
timestamp, the time quality flag, as well as the stream source ID-code. On the other hand,
the MMS packets are passed to the MMS service check with the rule set RMMSService using a
user-defined whitelist as well as to the MMS error codes check with the rule set RMMSError. In
case of MMS reports, an additional rule set RMMSReports is applied within the MMS report
rule check incorporating IEC 61850 data model information from extracted SCL/SCD files.
An overview of the different rules and associated rule weights is given in Table 1.

Table 1. Rule overview of the specification-based NIDS.

Rule Set Rule Object Rule Weight Reference Value

TCP/IP Protocol type 0.3

defined in a whitelist
TCP/IP Source IP address 0.25
TCP/IP Destination IP address 0.25
TCP/IP Source TCP port 0.1
TCP/IP Destination TCP port 0.1

PMU Checksum 0.2 recalculated checksum
PMU DATA frame size 0.2 derived from the CONFIG-Frame
PMU SOC timestamp 0.2 current system time and user-defined delay

PMU Time quality flag 0.2 time quality indiction MSQ_TQ is “0” or
“Normal operation”

PMU Stream source ID codes 0.2 derived from the CONFIG-Frame
MMS service MMS service type [0, 1] defined in a whitelist
MMS error MMS error code [0 . . . 1]

MMS reports Integrity period 1/3 derived from SCL file
MMS reports Transmission time 1/3 system time
MMS reports Number of active report instances 1/3 derived from SCL file
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The rule weights wr are specified by the expert to account for the relative importance
of each rule within a given rule set R. In case of the MMS service type, only one specific
service is possible for a given MMS message, which leads to a weight w = [0; 1]. In case of
the MMS error codes, a weight w = [0 . . . 1] is associated with each possible error code (13
in total). A detailed description is omitted at this point. Within the postprocessing step, the
inspection results ŷ (ŷ = 0: no violation; ŷ = 1: rule violation) of all rules r within a rule set
R are summarized using the predefined weights w ∈ [0, 1] to create an intrusion score SR:

SR = ∑r∈R wr·ŷr with SR ∈ [0 . . . 1]. (1)

The computation of intrusion scores allows an aggregation of expert rules with differ-
ent severity levels and impacts on the power system reliability.

3.2.2. Classification-Based Prediction of Network Traffic Anomalies

The traffic-prediction module uses a one-class classification approach to differentiate
between normal and abnormal network packets. This is achieved with a one-class support
vector machine (OC-SVM), which in contrast to binary SVMs uses a special optimization
procedure to maximize the distance between a hyperplane and the zero point of the feature
space [28]. For a given training dataset, the OC-SVM computes a closed decision boundary,
such that observations or network packets with a high distance to that decision boundary
are classified as abnormal, and vice versa. The basic structure of the proposed classification
model is given in Figure 5.

Figure 5. Basic architecture of the anomaly-based NIDS using an OC-SVM.

The anomaly-based NIDS takes the actual and last network packet to derive repre-
sentative features to distinguish between normal and abnormal network packets. These
features comprise the total packet length (f1), the size of the TCP payload (f2), and the
time difference between two subsequent packets (f3). In case of non-TCP network packets,
the size of the TCP payload is set to f2 = 0. The resulting feature vector f = [f1, f2, f3] is
standardized and passed to the OC-SVM with an RBF kernel to compute the class affiliation
ŷ = 0 (normal packet) or ŷ = 1 (abnormal packet). Additional hyperparameters include the
coefficient of the RBF kernel γ and a calibration factor for the learned class boundary ν. In
contrast to the rule-based NIDS from Section 3.2.1, a training phase is required to optimize
the model parameters of the OC-SVM using PCAP files from historical and uncorrupted
network traffic records. To mitigate data imbalances during the training, the samples are
additionally weighted according to the frequency hP of each of the NP protocol types with
w = 1/(NP·hP).

3.3. Recurrent-Neural-Network-Based Phasor Data Anomaly Detection and Correction (PADC)

The detection of data manipulations in PMU frequency, voltage magnitude, and
voltage angle measurements is based on a combination of gated recurrent units (GRUs)-
based autoencoder (GRUs-AE) and forecaster (GRUs-FC) models. The basic architecture of
the PMU anomaly detection and correction (PADC) application is illustrated in Figure 6.
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Figure 6. Conceptual overview and workflow of the PADC application.

The frequency, voltage magnitude, and voltage angle signals from N PMU sensors
are acquired as input data over a fixed time period T. For each measurement type, an
individual autoencoder–forecaster combination is trained on a normalized input matrix

XN = [xk]
k=N
k=0 with XN ∈ RT×N. (2)

The GRU-AE and GRU-FC models are implemented as Seq2Seq-models with ad-
ditional attention mechanisms to learn the normal system behavior based on the latent
representations fAE and fFC for various contingencies and transient system states using
uncorrupted PMU signals. The GRU encoder computes the hidden state vectors from the
input signals and passes them to the attention model to extract the latent representations—
as introduced in [3]. The GRU decoder uses these latent representations as well as the
last hidden state of the encoder to compute the reconstructions or forecasts. The GRU-AE
model fAE reconstructs the input matrix XN minimizing a reconstruction error

EAE = | fAE(XN, θAE)−XN| =
∣∣X̂N −XN

∣∣. (3)

From the same input matrix, the GRU-FC model fFC predicts the next H time steps by
minimizing a forecast error

EFC = | fFC(XN, θFC)− YN| with YN ∈ RH×N. (4)

The model parameters θAE and θFC are learned via backpropagation through time
(BPTT). To distinguish between corrupted and noncorrupted measurement values, thresh-
old values are derived from the unnormalized reconstruction and forecast error distribu-
tions after completion of the training phase. For this, a histogram-based error analysis is
used based on the relative cumulative sums and the definition of a specific error tolerance
to account for bad training examples. As a result, the sensor-dependent threshold values
are extracted from the reconstruction errors; similarly, the sensor- and forecast-horizon-
dependent threshold values are extracted from the forecast errors. In the application phase,
these threshold values and the error results of the GRU-AE and GRU-FC models are passed
to an anomaly detection and correction (ADC) model to achieve a time-and sensor-specific
detection of abnormal PMU measurements and to provide additional replacement values.
The principal workflow is given in Figure 7.
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Figure 7. Principal workflow of the anomaly detection and correction (ADC) model.

Inside the ADC model, an “idle” mode is used to activate or deactivate the GRU-FC
model depending on the currently used forecast horizon h, the GRU-AE prediction results
ŷAE, and the time- and sensor-specific forecast error eFC. An internal counter c checks
if the number of currently processed observations reaches the sample window T. The
GRU-FC model is deactivated (“idle” mode is active) if the maximum forecast horizon H
has been reached, and activated (“idle”-mode is deactivated) if the GRU-AE model has
not detected anomalies ŷAE = 0 over the last T observations. Consequently, the GRU-
AE model is primarily used to recognize the duration of the data manipulation, whereas
the GRU-FC model recognizes the beginning of the data manipulation and distinguishes
between corrupted and noncorrupted PMU sensors. Additionally, the forecast values of
the GRU-FC model are used as replacement values.

4. Evaluation Studies
4.1. Experimental Setup and Attack Implementation

To evaluate the different applications of the proposed network intrusion and anomaly
detection system, a transmission power system model based on [29] was implemented in a
real-time simulation engine using HYPERSIM (OPAL-RT). The grid topology consisted of
6 machines, 17 busbars, and 26 branches divided into a southern and a northern subgroup
and interconnected by 5 inter-area transmission lines. The overall experimental test setup
is given in Figure 8.

Figure 8. Overview of the experimental setup to evaluate the network intrusion and anomaly
detection system.
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The PMU slaves were implemented at all busbars to transmit frequency and voltage
measurements using the IEEE C37.118 protocol at a fixed reporting rate of 25 f.p.s. One
additional RTU slave was implemented at a single station to transmit voltage, current, as
well as active and reactive power measurements via the IEC 60870-5-104 protocol using a
fixed reporting every 2 s. A commercial gateway was used to convert the SCADA telegrams
into the IEC 61850-8-1 (MMS) reports.

On the adversary side, a MITM attack was implemented to eavesdrop and manipulate
arbitrary protocol information of the exchanged PMU and MMS network packets. The
MITM attack uses ARP spoofing to redirect the network packets between the control center
and substation level to an adversary. The adversary decodes the network packets, over-
writes specific protocol information (e.g., measurement values), and sends the manipulated
network packets to corrupt important monitoring or control applications. For simplification,
no detailed attacker model was assumed in this work and no prior information about the
system topology or historical measurements was available for the adversary. For the IEEE
C37.118 protocol, the implemented attacks include various manipulations of frequency
information and voltage phasor information, SOC timestamps, time quality flags, as well
as ID-codes or station names in transmitted DATA frames. This goes beyond related in-
vestigations [15,23,24,26], which focused on data replays, packet drops, and timing attacks.
Regarding the IEC 61850-8-1 (MMS) protocol, the attacker can compromise integer-based
data attribute values and the time of entry in transmitted MMS reports.

4.2. Attack Detection via Expert Rules

Some exemplary results of the specification-based NIDS are shown in case of a cor-
rupted MMS traffic excerpt over 1 min—see Figure 9.

Figure 9. Intrusion scores of the specification-based NIDS for a corrupted MMS report communication.

In this case, the MMS report time is changed by the attacker (−1 h), which violates
the corresponding MMS report rule. Since no other rules (e.g. TCP/IP or PMU rules)
are affected, the resulting intrusion score equals the rule weight wr = 1/3. A statistical
summary of the network traffic capture is given in Table 2 with a high amount of ARP
packets, which were periodically sent by the adversary to maintain the ARP spoofing.

Table 2. Protocol counts and intrusion scores for the corrupted MMS report communication.

Protocol Counts SR

ARP 40 (20.2 %) -
TCP 82 (41.4 %) 0.00
MMS 76 (38.4 %) 0.33

4.3. Attack Detection via Network Traffic Analysis

The evaluation of the anomaly-based NIDS focused on the amount of abnormal
network packets, which were detected by the OC-SVM model during corrupted and
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noncorrupted network traffic. Figure 10 shows the OC-SVM predictions y and raw scores
(results of the decision function) for an exemplary baseline network excerpt of about 2 s.

Figure 10. OC-SVM predictions and raw scores of the anomaly-based NIDS for a baseline net-
work traffic.

As can be seen, no network anomalies were detected for the baseline traffic, so ŷ = 0
for all network packets. In contrast to that, Figure 11 shows the OC-SVM prediction results
in case of corrupted network traffic by manipulating PMU frequency values within the
MITM attack.

Figure 11. OC-SVM Predictions and raw scores of the anomaly-based NIDS for a corrupted PMU
communication.

In that case, some of the network packets were detected as abnormal such that ŷ = 1
and the corresponding score values decreased. The fraction of detected network anomalies
in the total traffic ηA mainly depends on the chosen hyperparameters of the OC-SVM.
This is illustrated in Figure 12 by comparing the ηA values for the baseline traffic during
training/validation and the manipulated traffic during testing for different RBF kernel
coefficients γ.

As it can be seen, high kernel coefficient values led to an increase in the number of
abnormal network packets detected in both test data sets, while the number of detected
normal network packets during training/validation remained almost constant. For kernel
coefficients γ > 10, a good separation between normal and abnormal network packets
was achieved.
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Figure 12. Number of detected normal and abnormal network packets by the OC-SVM for baseline
and corrupted PMU traffic datasets.

4.4. Attack Detection via Phasor Measurement Analysis

To evaluate the PMU anomaly detection and correction application that was introduced
in Section 3.3, the frequency and voltage phasor measurements were derived from the
dynamic simulations (RMS) of the CIGRE TB 536 reference model (see Section 4.1). The
training data included noncorrupted PMU signals with a fixed reporting rate of 25 f.p.s. and
a window size of T = 25 timesteps from the busbars of all 16 substations. The dynamic
simulation was carried out for three operational points and 20 different contingencies (e.g.,
short-circuits, generator trips) taking the RMS signals until 20 s after the disturbance (approx-
imately 30,000 training and validation samples). During testing, the data manipulations were
created with arbitrary amplitudes, starting times, and durations for the simulated frequency,
voltage magnitude, and voltage angle signals. Based on a simplified attacker model (see
Section 4.1), the naïve attack patterns comprised positive and negative signal steps as well as
the addition of Gaussian white noise. Additionally, the data manipulations could affect a
single PMU or a randomly chosen subset of PMUs (concurrent or shifted manipulations).

To assess the performance of the GRU-AE and GRU-FC models, special evaluation
metrics were defined based on the F1-score. In case of the GRU-AE model, the true positives
tP,max, false positives fP,max, and false negatives fN,max were calculated as maximum values
over all N PMUs and summed up over all t time steps:

tP,max =
t=T

∑
t=0

I
(

max
0≤n≤N

ŷn(t) = 1, max
0≤n≤N

yn(t) = 1
)

, (5)

fP,max =
t=T

∑
t=0

I
(

max
0≤n≤N

ŷn(t) = 1, max
0≤n≤N

yn(t) = 0
)

and (6)

fN,max =
t=T

∑
t=0

I
(

max
0≤n≤N

ŷn(t) = 0, max
0≤n≤N

yn(t) = 1
)

. (7)

The resulting F1-score follows with

ηAE
F1 =

tP,max

fP,max + 0.5(fP,max + fN,max)
. (8)

In case of the GRU-FC model, the true positives tP, false positives fP, and false nega-
tives fN were calculated for all PMUs and time steps within the forecast horizon H without
an additional aggregation, such that

ηFC
F1 =

n=N

∑
n=0

t=H

∑
t=0

tn
P(t)

tn
P(t) + 0.5(fn

P(t) + fn
N(t))

. (9)
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Table 3 lists the selected hyperparameters of the GRU-AE and GRU-FC models, which
were derived from comprehensive training and validation runs.

Table 3. Selected hyperparameters of the autoencoder (GRU-AE) and forecaster (GRU-FC) models.

Hyperparameter GRU-AE GRU-FC

# of hidden units 40 40
Optimizer RMSProp RMSProp

Learning rate 0.001 0.001
Batch size 100 100

Forecast horizon - 5 time steps

For a better understanding of the results, Figure 13 shows an exemplary negative
frequency step manipulation for about 2 s at a single PMU.

Figure 13. Exemplary results of the GRU-AE and GRU-FC models for a frequency step manipulation.

The start of the data manipulation at 10 s simulation time was detected correctly by the
GRU-AE and GRU-FC models, which can be seen in the sudden increase of the respective
model errors as well as the change of the predicted labels. Additionally, the GRU-FC
model successfully identified the corrupted PMU, leading to an F1-score of 100%. After
exceeding the forecast horizon H at 100 ms, the GRU-FC model went into the “idle” mode
(see also Section 3.3). The GRU-AE model failed to correctly predict the end of the data
manipulation, such that the F1-scores decreased to approximately 92%. The total F1-score
results of the GRU-FC model for different step and white noise manipulations as well as
the number of corrupted PMUs are given in Table 4.

As it can be seen, the F1-scores only decreased slightly in case of a high number
of corrupted PMUs. Larger differences arise when comparing the F1-scores between
the step and white noise manipulations. Due to the stochastic behavior, white noise
manipulations appear to be more difficult to be detected by the forecast model compared
to step manipulations. This especially applies to the frequency and voltage angle signals.
The corresponding GRU-AE model results are given in Table 5.

Compared to the GRU-FC model, higher drops of the F1-scores occur in case of a
high number of corrupted PMUs but no significant differences arise between step and
white noise components. Noticeably low F1-scores were achieved when performing step
manipulations for the frequency or voltage angle signals of all PMUs.
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Table 4. Total F1-scores of the GRU-FC model for different PMU step and noise manipulations.

Measurement
Channel

1 PMU 6 PMUs All PMUs

Steps Noise Steps Noise Steps Noise

Frequency 0.84 0.65 0.91 0.65 0.81 0.62
Voltage

magnitude 0.98 0.95 0.94 0.85 0.87 0.85

Voltage angle 0.93 0.73 0.88 0.78 0.82 0.71

Table 5. Total F1-scores of the GRU-AC model for different PMU step and noise manipulations.

Measurement
Channel

1 PMU 6 PMUs All PMUs

Steps Noise Steps Noise Steps Noise

Frequency 0.85 0.87 0.89 0.88 0.26 0.74
Voltage

magnitude 0.72 0.72 0.83 0.82 0.59 0.67

Voltage angle 0.86 0.75 0.87 0.85 0.50 0.75

4.5. Real-Time Capability of the Proposed Applications

To evaluate the efficiency and applicability of the proposed hybrid NIDS (see Section 3.2)
and phasor data anomaly detection and correction (PADC—see Section 3.3) application, com-
prehensive performance tests were performed to prove the real-time capabilities. Assuming a
baseline network traffic, the average computational time for both applications is given in Table 6.

Table 6. Average processing time for the hybrid NIDS and PADC application.

Application No. of Samples Average Processing Time

Hybrid NIDS 55625 0.04 ms/sample
PADC 350 33.47 ms/sample

As it can be seen, the PADC application needs a lot more computational time due to
the increased number of observations per sample and processing steps within the neural
network models. Assuming a maximum data transmission rate of 25 f.p.s. for the PMU data
communication, the real-time processing capability for both applications can be confirmed.

5. Conclusions and Outlook

This paper presents a novel network intrusion and phasor data anomaly detection
system to protect dynamic control centers against cyber-attacks. Different algorithms have
been developed, including a specification- and anomaly-based NIDS (hybrid NIDS) and
a GRU-based autoencoder and forecaster model combination (PADC), to detect different
adversarial network and measurement events within IEEE C37.118 and IEC 61850-8-1
(MMS) communication. For the evaluation, a real-time simulation engine was used to create
network traffic for different steady-state and transient system states considering a 400 kV
reference transmission grid. An adversary was integrated to implement MITM attacks for
network infiltration and data manipulation purposes on both protocols. The results show
the effectiveness of the proposed monitoring applications for different baseline and cyber-
attack scenarios, including MMS report and PMU frequency and phasor measurement
manipulations, during a steady and transient system operation.

Future work will include the implementation of a postprocessing algorithm to combine
and assess the detection results of the different applications, which has been conceptually
investigated in [30]. This can be a basis to further integrate comprehensive monitoring
systems into existing decision processes of the system operation and to develop appropriate
countermeasures against occurring cyber-attacks. Moreover, additional cyber-attack scenarios
(e.g., DoS-attacks, timing-based attacks) including a more sophisticated attacker model should
be integrated in the attack simulation, and additional MMS communication services (e.g.,
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GETDATAVALUES) as well as existing benchmark methods should be considered in the
experimental setup to further evaluate the detection capabilities of the proposed algorithms.
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Nomenclature
Abbreviations

ACSI - Abstract communication service interface
ADC - Anomaly detection and correction
ARP - Address resolution protocol
AE - Autoencoder

DSA - Dynamic security assessment
FACTS - Flexible AC transmission system

FC - Forecaster
GRU - Gated recurrent unit
ICT - Information and communication technology
ID - Identification
IP - Internet protocol

MITM - Man-in-the-middle
MMS - Manufacturing messaging specification
NIDS - Network intrusion detection system
PMU - Phasor measurement unit
RTU - Remote terminal unit

SCADA - Supervisory control and data acquisition
SCL - Substation configuration language
SVM - Support vector machine
TCP - Transmission control protocol

WAMS - Wide area monitoring system
Variables

c - counter variable
EAE,eAE - Reconstruction error matrix or scalar
EFC, eFC - Forecast error matrix or scalar

f - Feature vector
fAE - GRU autoencoder model
fFC - GRU forecaster model
H,h - Forecast horizon
N - Number of PMU sensors
SR - Intrusion score
r - Rule

RMMSError - MMS error rule set
RMMSReports - MMS report rule set
RMMSService - MMS service rule set

RPMU - PMU rule set
RTCP/IP - TCP/IP rule set

T - Window size/sample size
w - Rule weight

XN - (normalized) PMU signals
ŷ, YN - Prediction result
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