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Abstract: This article focuses on developing both statistical and machine learning approaches for
forecasting hourly electricity demand in Ontario. The novelties of this study include (i) identifying
essential factors that have a significant effect on electricity consumption, (ii) the execution of a
Bayesian optimization algorithm (BOA) to optimize the model hyperparameters, (iii) hybridizing the
BOA with the seasonal autoregressive integrated moving average with exogenous inputs (SARIMAX)
and nonlinear autoregressive networks with exogenous input (NARX) for modeling separately short-
term electricity demand for the first time, (iv) comparing the model’s performance using several
performance indicators and computing efficiency, and (v) validation of the model performance using
unseen data. Six features (viz., snow depth, cloud cover, precipitation, temperature, irradiance toa,
and irradiance surface) were found to be significant. The Mean Absolute Percentage Error (MAPE)
of five consecutive weekdays for all seasons in the hybrid BOA-NARX is obtained at about 3%,
while a remarkable variation is observed in the hybrid BOA-SARIMAX. BOA-NARX provides an
overall steady Relative Error (RE) in all seasons (1~6.56%), while BOA-SARIMAX provides unstable
results (Fall: 0.73~2.98%; Summer: 8.41~14.44%). The coefficient of determination (R2) values for
both models are >0.96. Overall results indicate that both models perform well; however, the hybrid
BOA-NARX reveals a stable ability to handle the day-ahead electricity load forecasts.

Keywords: electricity demand; short-term forecast; Bayesian optimization algorithm; SARIMAX; NARX

1. Introduction

Electricity is an essential living need, and it is one of the highly challenging issues
that every country needs to ensure and provide to their citizens as well as support the
related economy. Electricity demand forecasting is crucial in electricity generation capacity,
transmission planning, and pricing. Electricity demand forecasting has distinct attributes
in various forecast perspectives. A long-term forecast of the total demand is required for
capacity planning as a function of economic or demographic variables, while a short-term
(hourly) forecast is necessary for the efficiency of day-ahead markets. The variations in
the short-term estimates have a “regular” component depending on day-to-day routines
and seasonal impacts. Exceptional circumstances (extreme weather conditions, holidays,
sporting events) lead to “irregular” variations that significantly impact this pattern. The
forecasting of the “regular” component of the hourly electricity demand is essential for
planning the day-ahead market, which is, in the long run, on a horizon throughout the
years. It can benefit the policymakers to set future strategies to ensure the continuity of
such essential energy.
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Proper forecasting of electricity demand allows a trustworthy power system manage-
ment decision and has an excellent cost-saving potential for power companies [1–4]. An
inaccurate forecast leads to high economic losses for electricity companies, as a 1% increase
in predicting error can cause a 10 million-fold rise in operating costs [5]. With the increase in
electricity demand and the rapid improvement of artificial intelligence, electricity demand
prediction has drawn significant attention. Novel research techniques, emerging trends,
and novel developments have emerged simultaneously [6]. Several traditional forecasting
methods have been proposed, namely the autoregressive moving average model (ARIMA),
seasonal autoregressive integrated moving average with exogenous inputs (SARIMAX),
components estimation technique [7,8], exponential smoothing models, and regression
models [9,10]. On the other hand, with the recent development of artificial intelligence,
many studies have tried to apply related techniques to augment prediction accuracy, rang-
ing from machine learning methods such as support vector regression (SVR) and nonlinear
autoregressive networks with exogenous input (NARX) neural networks, to bio-mimicking
optimization methods such as particle swarm optimization (PSO), and finally to deep
learning techniques such as a convolutional recurrent neural network [11] or long-short
term memory (LSTM) [12–18] techniques. Notably, several hyperparameters control the
performance of the models. Thus, it is essential to tune these hyperparameters to ensure the
model’s prediction performance. However, selecting hyperparameters based on experience
along with many attempts is time-consuming and has high computation costs for algorithm
training and does not always maximize the model’s performance [19]. Thus, the tuning
process of the model’s hyperparameters requires optimization to improve the model’s
robustness and accuracy. Several tuning techniques, such as the Genetic algorithm (GA)
and the Bayesian optimization algorithm (BOA), can be hybridized with each base learner
to automatically optimize the hyperparameters, delivering hybrid super-learner models.
Related models have been reported [13,20]; however, more studies need to be attempted
with various datasets, including electricity demand.

Numerous studies have been conducted in energy, especially forecasting electricity
demands [21–28]. However, very little research has been performed to analyze the electricity
demand in Canada, the second-largest country in the world [15,29]. Therefore, this study
aims to conduct a more advanced analysis of electricity consumption in Ontario, Canada.
Ontario is the most populous province among Canada’s thirteen provinces and territories.
Based on the Canada Energy Regulator (CER) report in 2017, Ontario is the second-largest
producer of electricity in Canada; Ontario’s annual electricity consumption per capita
was 9.5 megawatt-hours (MWh), and the rank is 11th in Canada for per capita electricity
consumption. Depending on the average hourly demand data for all sectors aggregated
(residential, industrial, commercial/institutional, agriculture, transportation) from 2013
to 2018, the major sectors for electricity demand are commercial at 35%, residential at
33%, and industrial at 30% of the total demand (see Figure 1). This study focuses on the
residential demand in Ontario province, because this is one of the major sectors of electricity
consumption and is the most well-understood among all other sectors. Electricity is mainly
consumed for space heating, water heating, appliances, lighting, and space cooling in the
residential sector.

The primary goal of this study is to develop models for short-term forecasts of electric-
ity demand in the residential sector in Ontario. In this regard, the following key objectives
are addressed:

(1) Explore the details of overall electricity consumption in Ontario.
(2) Investigate the factors that have a significant effect on the electricity consumption in

residential sectors.
(3) Apply modern data science approaches, namely the seasonal statistical method

(SARIMAX) and the machine learning algorithm (NARX), to forecast short-term
electricity demand.

(4) Find the best model by automatic tunning hyperparameters via the Bayesian opti-
mization algorithm (BOA).



Energies 2022, 15, 3425 3 of 26

(5) Compare the proposed models using several performance indicators (viz., MAE,
RMSE, MAPE, R2, adj-R2, RE, FB).

(6) Conduct a robustness analysis to confirm the prediction accuracy of the models.
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Figure 1. Average yearly electricity consumption in Ontario from 2013 to 2018 (note that the pandemic
period, after 2018 onward, is purposely excluded to avoid any bias created by repetitive lockdowns
and consequent increases in residential demand).

It is noteworthy that this study marks the first-time use of a hybrid model (BOA-
SARIMAX, BOA-NARX) to forecast a short-term electricity demand, especially the hourly
forecasting of electricity consumption in Ontario, Canada. Such short-term electrical load
forecasting could play a vital role in the power production and scheduling process’s safety,
stability, and sustainability.

This paper is structured as follows: Section 2 provides the literature review. The main
purpose of this section is to identify and state a clear gap in the current state of knowledge
that is being addressed by the developed forecasting method. Section 3 outlines the details
of the historical data and the model development process. Section 4 provides details of the
results and a discussion. Finally, the concluding remarks are presented in Section 5. To
enhance the clarity and readability of the article, all abbreviations have been tabulated in
Table 1.

Table 1. Acronyms used in the article.

Acronym Description Acronym Description

ABCNN Artificial Bee Colony-based ANN model LSTM-RNN LSTM-based Recurrent Neural Networks

ACF Autocorrelation function NARX Nonlinear autoregressive networks with
exogenous input

ACS Artificial cooperative search MA moving average

AE Absolute error MAE Mean absolute error

AIM Abductory Induction Mechanism MAPE Mean Absolute Percentage Error

ANN Artificial Neural Network MARS Multivariate Adaptive Regression Spline

ANN ABC Artificial neural network with artificial bee
colony algorithm ML Machine learning

ANN BP ANN with backpropagation MLP Feedforward multilayer perceptron
structure



Energies 2022, 15, 3425 4 of 26

Table 1. Cont.

Acronym Description Acronym Description

ANN TLBO ANN with Teaching Learning Based
Optimization MLR Multiple linear regression

APSONN Artificial Particle Swarm Optimization
based ANN MODWT Maximum overlap discrete wavelet

transform

AR Autoregressive MPOE MODWT-PACF-OS-ELM

ARIMA Autoregressive integrated moving average MSE Mean square error

ARMAX Autoregressive moving average MWh Megawatt-hours

BOA Bayesian optimization algorithm NRCan Natural Resources Canada

CER Canada Energy Regulator OPEC Organization of Petroleum Exporting
Countries

CS Cuckoo Search algorithm OS-ELM Online sequential extreme learning
machine

CSNN Cuckoo Search Algorithm utilizing Lévy
flights associated with ANN PACF Partial autocorrelation function

CVRMSE Coefficient of variation RMSE Pj Yearly electricity load

DE Differential Evolution POE PACF-OS-ELM

ELM Legates and McCabe’s Index PSO Particle-swarm optimization

EMD Empirical Mode Decomposition QQ plot Quantile–quantile plot

ENS Nash–Sutcliffe efficiency coefficient R2 Coefficient of Determination

FB Fractional Bias R2 (adj) Adjusted Coefficient of Determination

GA Genetic algorithm RE Relative error

GANN Genetic Algorithm based ANN RF Random Forest

GB Gradient Boosting RRMSE Relative Root Mean Square Error

GP Gaussian process RMSE Root Mean Square Error

HDIP Hydrocarbon Development Institute of
Pakistan RNN Recurrent Neural Network

ICA Independent Component Analysis SARIMAX Seasonal autoregressive integrated moving
average with exogenous inputs

KNN K-Nearest Neighbor SA Simulated Annealing

LEAP Long-range Energy Alternative Planning SVR Support Vector Machine

LR Linear Regression WI Willmott’s Index

LSTM Long–short-term memory

2. Literature Review

Electricity demand forecasting received deep concern from many researchers in differ-
ent countries due to its essential contribution to planning and power system management.
Numerous studies have been conducted to forecast electricity demand during the past
several decades. Various algorithms were used in these studies to achieve the best model
performance, in short-, medium-, and long-term electricity demand forecasting.

Aghay Kaboli et al. conducted a study to forecast the long-term electricity demand
in Iran using the Artificial Cooperative Search (ACS) approach, a recently developed
evolutionary algorithm with a high probability of finding the optimal solution to complex
optimization problems [21]. This study involved the socio-economic indicator, namely
gross domestic product (GDP), population, import, export, and stock index, which may
have a remarkable effect on increasing or decreasing electric energy demand. The annual
energy demand data from 1992 until 2013 were used in this study for model development
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and validation. The authors stated that the developed ACS algorithm is more efficient in
forecasting compared with other optimization methods that had been applied for energy
consumption forecasting, namely, Genetic Algorithm (GA), Practical Swarm Optimization
(PSO), Independent Component Analysis (ICA), Cuckoo Search algorithm CS, Simulated
Annealing (SA), and Differential Evolution (DE). In addition, linear, quadratic, exponential,
and logarithmic mathematic models were implemented for the path coefficient analysis
to detect the best weighting factors. Finally, the results of this study confirmed that ACS
achieved high performance in forecasting the electricity demand with the lowest errors
measured with the evaluation metrics, namely, Absolute Error (AE), Root Mean Square
Error (RMSE), U-statistic, and Mean Absolute Percentage Error (MAPE).

Ur Rehman et al. have applied three energy forecasting models based on the Au-
toregressive Integrated Moving Average (ARIMA), Holt-Winter, and Long-range Energy
Alternative Planning (LEAP) methods to predict the energy consumption of five essen-
tial fuels, i.e., electricity, natural gas, oil, coal, and liquefied petroleum gas in six fields,
namely domestic, industrial, commercial, transportation, agriculture and other govern-
mental sectors in Pakistan [22]. In [22], the researchers retrieved annual energy data from
the Hydrocarbon Development Institute of Pakistan (HDIP) from 1992 until 2014. Later,
the study forecasted the energy consumption for the coming 21 years. The ARIMA and
Holt–Winter algorithms were used in this study, and the results were tested and validated
by RMSE and MAPE. The LEAP software tool was also used in this study to build the
forecasting model, which was highly suggested for different applications related to energy
demand forecasting at many spatial levels such as cities, states, or countries due to their
enormous potential and ability to forecast using minimum data. However, the authors
of [22] proved that the ARIMA model was the most appropriate model to predict energy
demands with a confidence interval of 95% compared with the other two models.

In [23], Kankal et al. developed models to forecast the electricity demand in Turkey. In
that study, the data were retrieved from different local and international resources from
1980 to 2012 to collect data about the independent variables, GDP, population, import, and
export. A new optimized algorithm based on Artificial Neural Network (ANN) called
ANN-Teaching Learning Based Optimization (ANN-TLBO) was used in this study to de-
velop a forecasting model of electricity demand. This proposed algorithm was inspired by
the teaching–learning process, where the effect of an excellent teacher reflects positively
on the student performance in the exam, and the effects of students’ interaction among
each other also affect their performance. The prediction performance of this proposed
algorithm was evaluated by comparing it with the performance of the artificial neural
network with backpropagation (ANN-BP) and the artificial neural network with artificial
bee colony algorithm (ANN ABC) models. The ANN-TLBO defeated the other two mod-
els; the root mean square error (RMSE) was reduced by 42.3% and 39.3%. The authors
also stated that the ANN-TLBO algorithm had a significant advantage in decreasing the
computational complexity.

In [24], Khan et al. forecasted the electricity consumption in the 12 countries in
the Organization of Petroleum Exporting Countries (OPEC), namely Algeria, Angola,
Ecuador, Iran, Iraq, Kuwait, Libya, Nigeria, Qatar, Saudi, the United Arab Emirates, and
Venezuela. The dataset was collected by yearly electric consumption from 1980 till 2012
to predict the demand 3 years ahead, 6 years ahead, 9 years ahead, and 13 years ahead.
The Cuckoo Search Algorithm utilizing Lévy flights associated with the ANN was used in
this study to construct the CSNN model for forecasting electricity consumption. For model
performance evaluation, the study compared the results of the MSE with other models,
namely, the Artificial Particle Swarm Optimization-based ANN model (APSONN), the
Genetic Algorithm-based ANN model (GANN), and the Artificial Bee Colony-based ANN
model (ABCNN). The results illustrated that CSNN achieved the best performance among
the other models.

Some research was conducted to study the forecasting methods for both short and
long prediction periods. Yukseltan et al. used the Fourier series expansion in electricity
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demand forecasting in Turkey [25]. In that study, the researchers applied the feedback-based
forecasting methodology to forecast the electricity consumption for the next hour based
on the error found in the present hour. The dataset was obtained from 2012 to 2017 and
was used to forecast the consumption in an hourly, daily, and yearly manner. A two-year
observation period was applied to generate hourly forecasting for the coming year.

Moreover, the last two-year period data were used to predict the coming day and the
next hour based on a feedback mechanism. The result of the proposed model achieved a
high performance in forecasting the electricity demand, and it was validated by testing the
MAPE with 0.87%, 2.90%, and 3.54% in the hourly, daily, and yearly forecasts, respectively.
Additionally, the study utilized an autoregressive (AR) model to enhance the predictions
by the Fourier series expansion and provide better accuracy.

In [15], Bouktif et al. forecasted the short–medium term electric load in Canada using
monthly data retrieved from France metropolitan’s electricity consumption for nine years.
The long–short-term memory (LSTM)-based Recurrent Neural Networks (LSTM-RNN)
and other machine learning models, namely Linear Regression (LR), Ridge, Regression
K-Nearest Neighbours (KNN), Random Forest (RF), Gradient Boosting (GB), and ANN
and Extra Trees Regressor, were used in this study. The forecasting performances of the
developed models were then compared to identify the best predictive model. Additionally,
this study included several features such as time lags, temperature, humidity, wind speed,
and schedule-related variables (month number, weekends, weekdays). The genetic algo-
rithm (GA) was used in this study to select the best features and time lags to optimize the
model performance. The results showed that LSTM-RNN achieved a better performance
in forecasting electricity load than the ML models, with the coefficient of variation RMSE
(CVRMSE) of 0.61% for the short term and an average of 0.56% for the medium term.

Several studies focused on developing short-term forecasting models. In [26], Bedi
et al. delivered a hybrid model to estimate the short-term electric energy demand forecast
in the city of Chandigarh in India. This study used deep learning-based algorithms, namely
the long–short-term memory network (LSTM) and Empirical Mode Decomposition (EMD),
to develop the proposed hybrid model. The dataset was retrieved for five years (from
January 2013 to January 2018) in addition to a recorded electric consumption every 15 min
each day to estimate the short-term forecasting. In addition, multiple regression models
were applied to compare the results with the proposed hybrid model, such as Recurrent
Neural Network (RNN), LSTM, and EMD-based RNN (EMD + RNN) models. RMSE and
MAPE were used to evaluate the model performance, and the results showed that the
hybrid model (EMD + LSTM) achieved better accuracy than the regression models from
5 to 8%.

In [27], AL-Musaylh et al. aimed to construct an artificial neural network (ANN) model
for short-term electricity demand forecasting over other models based on multiple linear
regression (MLR), MARS, and ARIMA. The dataset in that study was obtained from July
2014 to June 2017 in around 200 suburbs in Southeast Queensland, Australia. That study
included six climate variables, namely maximum temperature, minimum temperature,
rainfall, evaporation, solar radiation, and vapor pressure to estimate the daily electricity
consumption and six-hour ahead prediction. Further, to evaluate the model performance,
the study applied six evaluation metrics, namely Legates and McCabe’s Index (ELM),
Willmott’s Index (WI), and Nash–Sutcliffe efficiency coefficient (ENS), MAE, RMSE, MAPE,
and RRMSE. The results showed that the ANN model outperformed the other models.
Moreover, a hybrid ANN model was developed in that study by merging the forecasts of
ANN, MARS, and MLR. This hybrid model’s highest predictions were compared with other
models, with the RMSE of 3.85% for the six-hour forecasting and 4.37% for daily forecasting.

Al-Musaylh et al. developed forecasting models utilizing various algorithms, namely
Multivariate Adaptive Regression Spline (MARS), Support Vector Regression (SVR), and
the statistical (ARIMA) model to forecast the short-term electricity demand in Queensland,
Australia [30]. These models predicted the electric energy at 0.5 h ahead, 1.0 h ahead,
and 24 h onwards. The dataset used in this study contains electricity consumption from
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January 2012 to December 2015. This study utilized multiple evaluation metrics for model
performance, including the Pearson Product Moment Correlation coefficient (r), RMSE, and
MAE. The results illustrated that, by forecasting the short-term horizons of 0.5 h and 1.0 h,
the MARS model achieved better performance than the ARIMA and SVR models with MAE
values of 0.765 and 1.446, respectively. On the other hand, the SVR model outperforms the
other two models in forecasting daily electricity consumption with 2.717 MAE.

K. Chapagain et al. developed short-term electricity demand forecasting models and
analyzed the impact of temperature and other deterministic features on the Thai electricity
demand [28]. The whole dataset was divided into four subgroups based on demand
characteristics, and models were developed for each subset. The feedforward artificial
neural network was developed in this study, and the model accuracy was compared
with regression methods, namely ordinary least square and general least square. The
authors state that regression methods have better forecasting accuracy than the developed
feedforward artificial neural network. The authors also found that the temperature is
linearly related to the Thai electricity demand. The maximum effect of temperature during
the night hours occurs at 11 p.m., is 300 MW/◦C, about a 4% rise in demand. However, the
temperature impact is only 10 MW/◦C to 200 MW/◦C during day hours, about a 1.4% to
2.6% rise in demand.

Elnakla et al. compared the electricity demand per capita in Saudi Arabia with the
United Arab Emirates (UAE) and Australia [31]. The results showed that Saudi Arabia
consumes less electric energy than the UAE and higher electricity than Australia. Moreover,
this study forecasted the electricity consumption in Saudi Arabia based on three scenarios.
The first scenario was ‘Optimistic’, which estimated the average population growth would
be 2.5% per year while the electricity consumption would increase by 1% per year. The
second scenario was ‘Moderate’, which assumed that population growth would increase
by 3% per year. The third scenario was ‘Pessimistic’, which assumed that the average
population growth would continue along the same trend as the previous 40 years and the
annual electricity consumption would be the as same as the last 20 years. Further, this
study forecasted electricity consumption from 2014 until 2040. The results showed that to
provide reliable electricity consumption and ensure availability for all sectors, KSA should
increase the electricity generation by 215% based on the ‘Optimistic’ scenario and by 514%
to meet the population demand based on the ‘Pessimistic’ scenario.

Abdel-aal et al. forecasted the consumption of electrical energy for the Eastern
province of Saudi Arabia based on weather parameters and demographic and economic
variables [32]. This study applied a Univariate Box–Jenkins time-series analysis on monthly
data for six years from August 1987 to July 1993; the first five years were used to develop
the model, while the dataset for the 6th year was used for validating the models. The
non-seasonal and seasonal autoregressive models were used in this study. Moreover,
different models were developed using the Abductory Induction Mechanism (AIM) and
multivariate regression models. The results showed that the ARIMA models had the best
forecasting results compared with the AIM and multivariate regression models, with an
average percentage error of 3.8% compared to 8.1% and 5.6%, respectively.

In [33], N. Liu et al. constructed two different short-term electricity consumption
forecasting models based on the ANN approach and the Seasonal Autoregressive Inte-
grated Moving Average with exogenous variables (SARIMAX) to predict a week ahead of
electricity demand. An hourly electricity consumption dataset from 2010 to the middle of
2011 in Abu Dhabi, UAE, was utilized in this study. This study considered the impact of
the dry bulb temperature as a variable that affected the electricity load. This study showed
that the ANN model reacted better in the estimation stage than the SARIMAX. In contrast,
the forecasting results illustrated that SARIMAX outperformed the ANN model with an
RMSE of 62.61 MW; the MAPE was 2.98%, while the ANN model achieved an RMSE of
72.92 MW with a MAPE of 3.57%. Thus, the authors concluded that the SARIMAX model
is comparatively more reliable and better for this forecasting process.
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Similarly, A. Shadkam in [34] applied short-term prediction by using the SARIMAX
model to forecast the peak and daily electricity demand in two university buildings in
Canada. For that purpose, a daily dataset was obtained about these two buildings from
2017 to 2019. The electricity demand from 2017 to 2018 was used in this study to develop
the model, while the data for 2019 was used to test the performance. Additionally, this
study included the impact of the daily average temperature and humidity on electricity
consumption. Ultimately, the SARIMAX model achieved desirable forecasting results for
both buildings. For the first university building, the MAPE was 4.1%, while the second
university building reached a MAPE of 12.8%.

J. Buitrago et al. conducted short-term electricity consumption forecasting techniques
on the New England electric grid to forecast the next 24 h to enhance the energy load
resources and the cost [35]. This study used a nonlinear autoregressive with exogenous
multi-variable input (NARX) based on the ANN approach to training the data in an open
loop to optimize the results. Then, the forecasting data was generated in a closed loop
using the predicted values as the feedback input. An hourly dataset was retrieved from
2005 till 2015, and weather data such as wet bulb temperature and dry bulb temperature
were utilized as exogenous. The performance of the proposed model was compared to the
ARMAX model, and the results showed that NARX outperformed with MAPE of 0.85%
while the ARMAX achieved 1.09%.

M. Al-Musaylh et al. in [36] combined the online sequential extreme learning-machine
(OS-ELM) model and the maximum overlap discrete wavelet transform (MODWT) algo-
rithm to forecast the electric demand on three campuses at the University of Southern
Queensland, Australia. Daily electricity consumption data was collected for two periods,
from January 2013 to December 2014 and September 2015 to August 2016. The authors
applied the partial autocorrelation function (PACF) technique to select the most critical
lagged input variables in the time series data. Then, the MODWT-PACF-OS-ELM (MPOE)
model was compared with the non-wavelet equivalent PACF-OS-ELM (POE) model, and
the results illustrated that the MPOE achieved better performance than the POE with a
MAPE of 4.31%, while POE scored a MAPE of 11.31%.

Table 2 summarizes the related studies in their region of application, the available
extra information, the developed method, whether hyperparameter tuning was performed,
the benchmarked methods, and comparison metrics. One can observe that no study focuses
on data from Ontario, Canada. Most of the studies benefitted from extra information, espe-
cially weather information. Very few studies utilized optimization techniques to efficiently
tune their hyperparameters, though it is known that this is a significant bottleneck in the
forecasting pipeline; furthermore, none of these studies investigated BOA. Various machine
learning, deep learning, and evolutionary methods have been utilized for benchmarking
purposes. Moreover, a wide range of metrics is being used for comparison, with some
studies using only one metric. However, only one study also considered time complexity.
On the other hand, the last row of this table lists the features of our study, clearly highlight-
ing the novelty of this study; it is the first study investigating short-term load forecasting
in Ontario, including significant weather data, developing a novel hybrid method based
on NARX (shown to be promising in [35]) and BOA for hyperparameters optimization,
benchmarked with SARIMAX (another promising method as shown in [28,34]), based on a
wide range of metrics, including time complexity.
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Table 2. Comparative table of related studies.

Refs. Region Extra Information Method Hyperparameters
Tuning

Benchmarked
Methods Metrics Performance

[21] Iran Socio-economic indicator ACS

Linear, quadratic,
exponential, and
logarithmic
mathematic models

GA, PSO, ICA, CS,
SA, DE

AE, RMSE,
U-statistic, MAPE

ACS achieved high
performance with the lowest
errors measured

[22] Pakistan ARIMA Holt-Winter RMSE, MAPE
ARIMA confidence interval
of 95% compared with other
models

[23] Turkey GDP, population, import,
and export ANN-TLBO ANN-BP, ANN-ABC RMSE, Time RMSE reduced by 42.3% and

39.3%

[24] 12 OPEC countries CSNN APSONN, GANN,
ABCNN MSE CSNN achieved the best

performance

[25] Turkey MAPE
0.87%, 2.90%, and 3.54% in
the hourly, daily, and yearly
forecasts

[15] France Time lags, temperature,
humidity, wind speed LSTM-RNN GA

LR, Ridge regression,
KNN, RF, GB, ANN,
Extra tree regressors

RMSE Variation of 0.61%

[26] Chandirgah/India Hybrid LSTM and
EMD

RNN, LSTM. EMD +
RNN RMSE, MAPE Better accuracy + 5 to 8%

[27]
Southeast
Queensland,
Australia

Maximum temperature,
minimum temperature,
rainfall, evaporation,
solar radiation, and
vapor pressure

Hybrid ANN +
MARS + MLR

ANN, MLR, MARS,
ARIMA

ELM, WI, ENS, MAE,
RMSE, MAPE,
RRMSE

RMSE of 3.85% for the 6 h
forecasting and 4.37% for
daily forecasting

[30] Queensland,
Australia MARS ARIMA, SVR r, RMSE, MAE MAE values of 0.765 and

1.446, respectively

[28] Thailand
Temperature and other
deterministic features on
Thai electricity demand

Feedforward
artificial neural
network

ordinary least square
and general least
square

Regression had better
accuracy



Energies 2022, 15, 3425 10 of 26

Table 2. Cont.

Refs. Region Extra Information Method Hyperparameters
Tuning

Benchmarked
Methods Metrics Performance

[32] Eastern province of
Saudi Arabia

Weather parameters and
demographic and
economic variables

ARIMA (univariate
Box-Jenkins
time-series analysis)

AIM, multivariate
regression

Average percentage
error

Average percentage error of
3.8% compared to 8.1% and
5.6%

[33] Abu Dhabi, UAE
Dry bulb temperature as
a variable that affected
the electricity load

SARIMAX ANN RMSE, MAPE

SARIMAX outperformed
ANN with RMSE of 62.61
MW (vs. 72.92 MW), MAPE
2.98% (vs. 3.57%)

[34] Two university
buildings in Canada

Daily average
temperature and the
humidity

SARIMAX MAPE 4.1% and 12.8%

[35] New England electric
grid

Wet bulb temperature
and dry bulb
temperature)

NARX ARMAX MAPE NARX MAPE = 0.85% vs.
ARMAX MAPE = 1.09%

[36]

Three campuses in
the University of
Southern
Queensland,
Australia

MPOE POE MAPE 4.31%

This study Ontario, Canada

Precipitation, snowfall,
snow mass, air density,
ground-level solar
irradiation, top of
atmosphere solar
irradiation, cloud cover
fraction

NARX BOA SARIMAX MAE, RMSE, MAPE,
R2, RE, time

BOA-NARX MAPE ~3%,
steady RE 1~6.56%)
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3. Methodology

This section first presents a description of the dataset used in this study and some
fundamental statistical analyses. Afterward, the proposed algorithms’ brief mathemati-
cal background and operational principles are described. This section also summarizes
the Bayesian algorithm’s mathematical formulation and theoretical principles and opti-
mizes the proposed algorithms’ hyperparameters. Figure 2 outlines the major steps of the
methodology adopted in this study.

Energies 2022, 15, x FOR PEER REVIEW 11 of 26 
 

 

 
Figure 2. Overall flow chart of the methodology. Figure 2. Overall flow chart of the methodology.



Energies 2022, 15, 3425 12 of 26

3.1. Data Description

Hourly electricity demand data for the residential sector of the Ontario province
of Canada from 2013 to 2019 was used in this study. Data were collected from Natural
Resources Canada (NRCan). The hourly air temperature and weather data (precipitation,
snowfall, snow mass, air density, ground-level solar irradiation, top of atmosphere solar
irradiation, cloud cover fraction) were collected from ETH Zurich and Imperial College
London. An overall decreasing trend was observed in the yearly electricity (PJ) load from
2013 to 2019 (see Figure 3). Note that a decreasing demand is usually uncommon, but
Ontario is notorious for energy conservation efforts as well as improvements in energy
efficiency. The seasonal effect was analyzed on this dataset. A strong seasonality effect was
observed, with high Summer consumption periods, comparatively less winter consumption,
and low consumption periods in spring and fall (see Figure 4).
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Figure 4. Typical daily load profiles in winter, spring, Summer, and fall.

According to NRCan, space heating accounts for 63% of the energy used in the average
Canadian home and 56% of the energy used in commercial settings. However, electricity
consumption is less in winter than in Summer because oil/gas is used mainly for space
heating based on Canada’s Energy Efficiency Regulations. Based on the daily electricity
load analysis, it is observed that the load is lower on weekends compared to weekdays (see
Figure 5). Furthermore, daily variations are more significant in periods of high average
consumption (see Figure 5). For heating and cooling purposes, electricity consumption
has strong temperature dependence or, more precisely, is dependent on deviations from
comfortable temperatures.
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Figure 5. Typical daily load profiles over two weeks.

3.2. Computational Techniques

In this study, both the statistical approach (SARIMAX) and the machine learning
approach (NARX) were utilized to forecast Ontario’s hourly electricity demand. MATLAB
(version R2021a) was applied for model development and data analysis.

3.2.1. Statistical Approach (SARIMAX)

The Auto-Regressive Integrated Moving Average (ARIMA) model was developed to
analyze non-stationary time series that exhibit a particular trend. It is considered one of the
most general time series models. The standard ARIMA (p, d, q) linear time series model for
a univariate response process yt can be written as:(

1−
p

∑
i=1

∅iBi

)
(1− B)dyt =

(
1 +

q

∑
i=1

θiBq

)
at (1)

where B is backshift operator defined as Byt = yt−1, Bjyt = yt−j, p is the non-seasonal auto-
regressive (AR) order, d is non-seasonal differencing, q is the non-seasonal moving average
(MA) order, and at is the white noise. The values of p and q can be estimated using the
sample autocorrelation function (ACF) and partial autocorrelation function (PACF) plots.
The ACF describes how the current value of a time series is compared with the previous
values. The x-axis is represented by the correlation coefficient, while the number of lags
is represented on the y-axis. While the PACF provides the partial correlation between the
time series and its lagged values.

The main difference between them is that the PACF plot regressed the time series
values at all smaller delays, while the ACF, on the other hand, does not account for
additional delays. It is essential to look for significant lags where the autocorrelation and
partial autocorrelation values in the ACF and PACF plots exceed the confidence interval.
The significant lags can be considered when determining the value of the parameters p and
q. Due to the fact that real-time series do not perform like flawless autoregressive models,
the estimations supplied by the ACF and PACF plots can only be noticed as a hint.

In addition to non-stationary behavior, many time series show seasonal behavior.
The energy demand data usually show intra-day, intra-week, and intra-year seasons. The
SARIMA model combines two ARIMA models, one for the base time series and the other
for describing the seasonality. The SARIMA model or ARIMA(p, d, q) × (P, D, Q)s can be
described as(

1−
p

∑
i=1

∅iBi

)(
1−

P

∑
i=1

ΦiBi

)s

(1− B)d(1− Bs)Dyt =

(
1 +

q

∑
i=1

θiBq

)(
1 +

Q

∑
i=1

ΘiBQ

)s

at (2)

where
(

1−
P
∑

i=1
ΦiBi

)s

(1− Bs)Dyt =

(
1 +

Q
∑

i=1
ΘiBQ

)s

at represents the seasonal part

with parameters P (seasonal AR order), Q (seasonal MA order), D (seasonal differencing),
and S (a period of the repeating seasonal pattern).
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However, energy forecasts depend on exogenous effects, and including these depen-
dencies may help increase the model’s accuracy. The SARIMAX model permits exogenous
parameters by additively or multiplicatively adding a term for the exogenous variable to
the equation. This model can be written as below:

(
1−

p

∑
i=1

∅iBi

)(
1−

P

∑
i=1

ΦiBi

)s

(1− B)d(1− Bs)Dyt =

(
1 +

q

∑
i=1

θiBq

)(
1 +

Q

∑
i=1

ΘiBQ

)s

at +

(
1 +

b

∑
i=1

ηiB
b

)
dt (3)

where ηi are the parameters of the exogenous time series dt and b is the order of this
time series.

3.2.2. Machine Learning Approach (NARX)

Artificial Neural Networks (ANNs) have been adapted and applied in various ap-
plications such as classification, prediction, and recognition due to their structure, which
stimulates the brain’s biological neural system and provides a strong ability to learn, store,
and analyze data [37–39]. ANNs consist of multiple layers, including input, output, and
hidden layers that generate mathematical models based on prior knowledge. ANNs can
be classified based on the information-flow direction. In feedforward neural networks,
nodes are assembled in layers, where inputs are fed to the input layer and passed via
hidden layers to the final output layer. On the other hand, information flows forward and
backward in recurrent neural networks (RNNs). The output of RNNs is recycled as the next
time-step input. The nonlinear autoregressive network with exogenous inputs (NARX)
is a recurrent neural network (RNN), which offers the popular feedforward multilayer
perceptron structure (MLP) by a global feedback connection between input and output
layers. The NARX networks merge ANNs with autoregressive models with exogenous
input (ARX), a well-known statistical approach for time series analysis and modeling. These
collective features of NARX permit acquiring nonlinear characteristics in an autoregressive
time series. The nonlinear autoregressive models with exogenous input relate the current
value of the target time series to past values of the same time series and current and past
values of other exogenous time series. NARX is frequently applied for nonlinear time series
predictions and nonlinear filtering tasks [35,40]. Similar to different types of RNNs, NARX
also has limitations in acquiring long-term dependencies due to the trouble of disappearing
and shattering gradients. However, they can preserve information up to three times longer
than simple RNNs. As a result, they can converge more rapidly and generalize better in
comparison [41–44].

The NARX neural network can be represented mathematically as follows [37,45,46]:

y(t) = f
[
y(t− 1), y(t− 2), . . . , y

(
t – dy

)
, u(t− 1), u(t− 2), . . . , u(t – du)

]
(4)

In Equation (4), y(t) denotes the target time series, u(t) indicates the exogenous time
series, dy is the delay of the target variable (known as feedback delay), du is the delay of
exogenous time series (known as input delay), and f is a nonlinear mapping function of the
neural network, which is typically not known (black-box function). This black-box function
f passes the input and exogenous time series through a specific number of hidden layers,
and certain algorithms train the NARX network to build the best correlation between the
inputs and the target variables.

The NARX neural network model architecture consists of two phases: series-parallel
architecture (open-loop) and parallel architecture (closed-loop). In the open loop, the train-
ing phase contains all the historical data of the variables that will be utilized to determine
the node weights and calculate the output to feed the input of the feedforward network.
Thus, all training is performed in an open loop, including the validation and testing steps.
In addition, only when the network has been trained (which includes validation and test-
ing steps), is it transformed to a closed loop for multistep-ahead prediction, where the
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actual output is excluded. The predicted delayed output is considered to provide the
forecast [35,37].

3.2.3. Hyperparameters Optimization for SARIMAX and NARX

Proper selection of the hyperparameters of SARIMAX (p, q, d, P, Q, D) and NARX
(number of hidden layers, number of neurons in each hidden layer, input delay, feedback
delay) ensures the model’s prediction performance. The Bayesian optimization algorithm
(BOA) was applied in this study to tune the hyperparameters since it provides the best
hyperparameters that generate the lowest validation error. In this respect, the BOA was
hybridized with SARIMAX and NARX separately to automatically find the optimum values
of the hyperparameters.

The BOA is a sequential design procedure for the global optimization of black-box func-
tions with no mathematical differentiation [47]. This optimization framework effectively
uses the complete historical data to enhance the search efficiency, and its most important
theory is to constantly forecast the posterior information through prior knowledge [19].
The proposed BOA-based optimization approach is more appreciable than other frequently
applied optimization techniques, such as grid search, manual search, and random search,
depending on its meaningful advantage of utilizing the acquisition function [48]. In partic-
ular, the Bayesian optimization approach firstly presumes a functional association between
the hyperparameters and the loss function as:

h∗ = argmin
hεH

loss(h) (5)

where H denotes the set of hyperparameters, h indicates the set of hyperparameter combi-
nations in H, h∗ denotes the optimal combination of hyperparameters achieved from the
final optimization, and loss(•) indicates the objective function required to be optimized.
The objective function is the validation error of a predictive model and can be described as:

loss
(
hj
)
=

1
n

n

∑
i=1

∣∣ŷi
(
hj
)
− yi

∣∣ (6)

where hj is the jth hyperparameter combination, and y is the true value, ŷ
(
hj
)

is the model
outputs obtained using hj.

The following process of BOA is creating a surrogate probability model based on Bayes’
rule to contract the data set D = (hi, loss(hi)). Here, hi is the ith set of hyperparameters. In
this process, a prior distribution H(loss) combined with the likelihood function H(D|loss)
is used to obtain the posterior distribution H(loss| D) as the following [19]:

H(loss| D) = H(D|loss) ∗ H(loss) (7)

The posterior probability approximates the objective function, called the surrogate
objective function, and can direct future sampling. The Gaussian process (GP) can be used
as a prior for the observed and unknown values of the loss function. A GP extends the
multivariate Gaussian distribution to an infinite-dimension stochastic process for which
any finite combination of dimensions will be a Gaussian distribution. Similar to a Gaussian
distribution, a GP is a distribution over functions entirely specified by its mean function
µ and covariance function K as f (x) ∼ GP(µ(x), (x, x′)). The GP can be considered as a
function, but it returns the mean and variance of a normal distribution over the possible
values of f at x instead of returning a scalar f (x) for an arbitrary x. When using the
Gaussian process for Bayesian optimization, it is assumed that the domain of the Gaussian
process is the space of hyperparameters.

To sample efficiently, Bayesian optimization uses an acquisition function, a mathe-
matical technique that guides how the parameter space should be explored during the
BOA process. The acquisition function uses the predicted mean and variance generated
by the Gaussian process model. Generally, acquisition functions are described such that
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high acquisition corresponds to potentially high values of the objective function, whether
because the forecasting is high, the uncertainty is high, or both. Augmenting the acquisition
function is utilized to take the next point to assess the objective function. Thus, the next
observation is chosen using the acquisition function as follows:

h∗ = arg max
hεH

a(h|D) (8)

where a(•) is the generic symbol for an acquisition function. For more details on the
Bayesian optimization, readers are referred to articles published elsewhere [13,14,49,50].

3.2.4. Performance Evaluation Metrics

It is essential to apply multiple statistical metrics to assess the model’s accuracy,
because it may perform well with one statistical metric but perform poorly with another
indicator. Five performance evaluation metrics are calculated using the following equations
to evaluate the performance of the constructed models.

Mean absolute error (MAE) =
1
n ∑|Av− Pv| (9)

Root Mean Square Error (RMSE) =

√
∑(Av− Pv)2

n
(10)

Mean Absolute Percentage Error (MAPE) =
1
n ∑

|Av − Pv|
|Av|

∗ 100 (11)

Coefficient of Determination
(

R2
)
=

(
∑ X Y
n σxσy

)2
(12)

Relative Error (RE) =
Av − Pv

Av
(13)

Fractional Bias (FB) =
2 ∑n

i=1(Av− Pv)
∑n

i=1(Av + Pv)
(14)

where n is the number of data points, Y is the datasets of the dependent variable, X is
the datasets of explanatory variables, σx is the standard deviation of dataset X, σy is the
standard deviation of dataset Y, Av is the actual value of the data point, and Pv is the
predicted value of the data point.

4. Results and Discussions

The hourly electricity consumption data on weekdays from 2013 to 2018 was used to
train the model, and the model was tested on 2019 data to examine the forecasting errors
and avert overtraining. Initially, eight weather-related features were included in this study.
Several feature selection techniques, including univariate feature ranking for regression
using F-tests, sequential feature selection, and neighborhood component analysis, were
used to select the most relevant and significant features of electricity consumption. The
best result was obtained from the neighborhood component analysis (see Figure 6). It is
evident that snowfall and air density are not relevant features, as the weights for these two
features are very close to zero. The other six features (namely snow depth, cloud cover,
precipitation, temperature, irradiance toa, and irradiance surface) are relevant and are
considered in this study to develop the predictive models.
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4.1. Development of Hybrid BOA-SARIMAX Model

The performance of the SARIMAX model depends intensely on its hyperparameters.
Thus, the proper selection of hyperparameters is a pivotal task in getting an optimized
model. The ACF and PACF plots of the hourly electricity consumption series were analyzed
to determine the value of the parameters p and q (see Figure 7). However, as shown in
Figure 7, there is no direct indication of the significant lags that can be used for selecting the
value of the parameters p and q. Therefore, the BOA was hybridized with the SARIMAX
to determine the optimum value of the hyperparameters [13,14]. As a result, a hybrid
BOA-SARIMAX model was developed. Based on the ACF, PACF, and the time series plots
of the hourly electricity consumption series, the range [1, 24] was selected for both the p
and q, [1, 2] was selected for both P and Q, and [0, 2] was selected for both d and D. The
optimum values for p, q, P, Q, d, and D were found to be 24, 14, 2, 2, 0, and 1, respectively
(see Table 3). These tuned parameters were used to determine the optimal SARIMAX
model. The goodness of fit of the developed BOA-SARIMAX model was assessed by
analyzing the residual diagnostic plots (see Figure 8). The quantile–quantile plot (QQ-plot)
in Figure 8 shows no apparent violations of the normality assumption. Further, the sample
autocorrelation function (ACF) and partial autocorrelation function (PACF) plots for the
standardized residuals indicate no significant autocorrelation, confirming that the residuals
are uncorrelated.

Table 3. Optimized hyperparameters of the developed models.

Model

SARIMAX

Parameters p q d P Q D S

Range for
BOA [1, 24] [1, 24] [0, 2] [1, 2] [1, 2] [0, 2] -

Optimized
value 24 14 0 2 2 1 24

NARX

Parameters
No. of

Hidden
layers

Hidden
layer size Input delay Feedback

delay
Training
function

Training
error

Range for
BOA - [1, 50] [1, 24] [1, 24] - -

Optimized
value 1 27 24 24 Levenberg–

Marquardt MSE
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Figure 7. ACF and PACF plots of hourly energy load.

Energies 2022, 15, x FOR PEER REVIEW 18 of 26 
 

 

 
Figure 7. ACF and PACF plots of hourly energy load. 

 
Figure 8. Residual diagnostic plots of the developed SARIMAX model. 

0

0.5

1

Au
to

co
rre

la
tio

n

0 5 10 15 20 25Lag

-1

0

1

Pa
rti

al
 A

ut
oc

or
re

la
tio

n

0 5 10 15 20 25
Lag

0 2 4
104

-20

0

20
Standardized Residuals

-5 0 5
Standard Normal Quantiles

-5000

0

5000

Q
ua

nt
ile

s 
of

 In
pu

t

QQ Plot of Sample Data versus Standard Normal

0

0.5

1

Sa
m

pl
e 

Au
to

co
rre

la
tio

n

Sample Autocorrelation Function

0 10 20
Lag

0

0.5

1

Pa
rti

al
 A

ut
oc

or
re

la
tio

n Sample Partial Autocorrelation Function

0 10 20
Lag

Figure 8. Residual diagnostic plots of the developed SARIMAX model.
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4.2. Development of Hybrid BOA-NARX Model

The BOA was hybridized with NARX to develop the hybrid BOA-NARX model and
find the optimal hyperparameters with the simplest structure. In this regard, the number
of hidden layers, hidden layer size, input delay, feedback delay, and training function
were tuned using the BOA. The optimized hyperparameters of the best predictive NARX
model are presented in Table 3, and the network structure is displayed in Figure 9. The
performance plot (MSE versus epoch) of the developed NARX model is shown in Figure 10.
Generally, in each epoch, the neurons’ weight values were revised. A high epoch value
results in high computing times for training, testing, and validating [13]. The training
involving adaptive weight minimization halted at the 18th epoch, with the best validation
performance of 37,628.7618 (see Figure 10). The errors for both the test and the validation
data have similar characteristics, suggesting no overfitting. The regression plots of the
developed network based on the training, testing, validation, and whole dataset were used
to analyze the goodness of fit (shown in Figure 11). The values of R > 0.99 for all cases
suggest a reliable and high predictive performance of the developed NARX neural network.

4.3. Performance Evaluation and Model Comparison

The developed hybrid BOA-SARIMAX and BOA-NARX models were tested for day-
ahead forecasting of five consecutive weekdays in four seasons of 2019. The average MAE,
RMSE, MAPE, R2, adj-R2 and FB values for all five testing weekdays are displayed in
Table 4.
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Table 4. MAE, RMSE, MAPE, R2, adj R2, and FB for five testing days in four seasons of 2019.

MAE (MW) RMSE (MW) MAPE (MW) R2 Adj-R2 FB

BOA-
SARIMAX

January 2019 825.1307 945.8183 4.7468 0.9719 0.9641 0.0101
April 2019 469.5054 573.8192 3.2249 0.9499 0.9360 −0.0059
July 2019 1735.5 1910 10.4028 0.9635 0.9534 −0.0058

October 2019 256.5279 303.7495 1.8782 0.9869 0.9833 −0.0059

BOA-NARX

January 2019 553.0839 614.9764 3.2299 0.9687 0.9600 0.0168
April 2019 471.7548 555.9796 3.1555 0.9512 0.9377 0.0005
July 2019 610.4919 719.0792 3.7649 0.9674 0.9584 −0.0112

October 2019 480.9545 570.1857 3.4114 0.96179 0.9512 −0.0325

The performance comparisons of the historical data and forecasted electricity demand
of all five testing weekdays are shown in Figure 12. Clearly, both models demonstrate the
promising ability to handle the day-ahead electricity load forecasts. The forecasted curves
presented by the models closely follow the load shapes of several weekdays and describe
the peak load changes against various meteorological conditions.
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According to Table 4, the prediction performance of the BOA-NARX model is more stable
and robust, for example, the average MAPE of five consecutive weekdays for all seasons in
the BOA-NARX model is about 3%, while in the BOA-SARIMAX model, there is a remarkable
variation in the value of averaged MAPE between the seasons. However, an outstand-
ing prediction of the BOA-SARIMAX model (MAPE = 1.8782, R2 = 0.9869, adj-R2 = 0.9833,
FB = −0.0059) compared to BOA-NARX model (MAPE = 3.4114, R2 =0.96179, adj-R2 = 0.9512,
FB = −0.0325) was observed for the selected days in the Fall season. For load uncertainty,
the performance gap between the BOA-SARIMAX model and the BOA-NARX model was
most considerable in Summer, which had the highest peak load and the highest part of
the uncertainty. This is intuitively reasonable, as the BOA-SARIMAX model is made of a
linearity assumption, whereas the true temporal association and covariance are primarily
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nonlinear. Moreover, the considerable uncertainty in the time-series electricity load data
may greatly reduce the performance of the BOA-SARIMAX model since regression-based
approaches guess that both input and output parameters follow the Gaussian distribution.
Overall, the BOA-NARX model reveals the most favorable and steady ability to handle the
day-ahead electricity load forecasts. Several studies reported that the NARX model works
excellently in forecasting [51,52]. Our results are in agreement with these studies.

An hour-of-day indexed error analysis was conducted for all four seasons to analyze
how the BOA-NARX model improves day-ahead load predictions compared to the BOA-
SARIMAX model. The averaged absolute relative errors (%) of five consecutive testing days
at each hour of the day for both models are shown in Figure 13. As shown in Figure 13, there
are remarkable variations in the absolute relative errors throughout the day in all seasons
except Summer. In Summer, there is not much variation in the hourly forecasting errors of
the models in the first few hours, whereas these values evolve quite differently across the
day. A significant increase in error starts from hour 12, when the BOA-SARIMAX model is
employed. The relative error for the BOA-SARIMAX model is comparatively low (range
0.73~2.98%) in Fall and very high (range 8.41~14.44%) in Summer. On the other hand, the
BOA-NARX model shows an overall steady result in all seasons (range about 1~6.56%).
However, regarding the computation efficiency, the BOA-SARIMAX model shows higher
efficiency (average 74.138 s/run) than the BOA-NARX model (average 1832.465 s/run).
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Although the studies reported in Table 4 have various time ranges, overall, one can see
that with ~3% of average MAPE values of the tested period for all seasons, the BOA-NARX
tests aligned with [25] and outperformed [34,36]. All these findings thus support other
studies published elsewhere [53].

Further, to confirm the prediction accuracy, a robustness analysis was performed. In
this regard, three sets of manipulated testing datasets were created by introducing three
different noise levels into the day-ahead weather data. Specifically, for the five-day hourly
weather profile (5 × 24 = 120 data points), 20%, 40%, and 60% of the original data points
were manipulated with the Gaussian distributed white noise. The SARIMAX and NARX
models were re-run on the noise-introduced datasets. Table 5 shows the averaged MAE,
RMSE, and MAPE values for five testing days under different noise levels. It is indicated
that, with the introduction of up to 60% white noise, the average MAPE values of the
SARIMAX and NARX models increase slightly from 4.7468 to 4.7482 and from 3.2299
to 3.2773, respectively. Therefore, it is verified that both models are robust in terms of
forecasting. However, the prediction accuracy of the BOA-NARX model is much better
than that of the BOA-SARIMAX model.

Table 5. Averaged MAE, RMSE, and MAPE values for five testing days in January 2019 under
different noise levels.

BOA-SARIMAX BOA-NARX

Percentage of
Introduced Noise MAE RMSE MAPE MAE RMSE MAPE

0% 825.1307 945.8183 4.7468 553.0839 614.9764 3.2299
20% 825.1293 945.8161 4.7468 553.3542 615.2964 3.2314
40% 825.2115 945.9330 4.7473 554.3769 616.0434 3.2371
60% 825.4104 946.3487 4.7482 562.3439 620.1726 3.2773

4.4. Practical Applications and Prospects

Although a significant improvement in model development (both statistical and ma-
chine learning-based) for forecasting electricity demand has been made, analyzing the
short-term electricity demand in Canada is still limited. While some predictive models offer
exceptional capability in handling complex nonlinear relationships, model complexity, com-
putation efficiency, and robustness are of concern. It is noteworthy that model performance
greatly depends on its hyperparameters; thus, automatically tuning these parameters is
crucial to achieving an optimum model with less computational effort. In this regard, sub-
stantial time, research, and experiments (computational trials) are required for a particular
dataset. Hence, such a modeling approach is not only a state-of-the-art application, but
also a potential area of study. To the authors’ knowledge, most energy research articles
overlook the auto-tuning process to optimize hyperparameters. In this regard, the Bayesian
optimization algorithm (BOA) could play an important role. As a result, a powerful hybrid
platform (BOA + statistical method or BOA + artificial intelligence approach) may build,
which could be effective in terms of generating excellent and robust predictions.

5. Conclusions

In this study, the residential electricity demand for 2013–2019 in Ontario, Canada, was
analyzed. The neighborhood component analysis was performed to select six significant
weather-related features, namely snow depth, cloud cover, precipitation, temperature,
irradiance toa, and irradiance surface. Hybrid BOA-SARIMAX and BOA-NARX models
were developed for forecasting the short-term electricity demand. The performances of the
models were compared using several performance indicators. Both models’ predicted data
for all tested periods almost overlapped on historical values (R2 > 0.96). BOA-NARX pro-
vides the average MAPE of the tested period for all seasons of ~3%, while BOA-SARIMAX
significantly deviates between the seasons. A steady RE at each hour of the day was
found (1~6.56%) in BOA-NARX for all seasons, while unstable variations (Fall: 0.73~2.98%;
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Summer: 8.41~14.44%) were observed in BOA-SARIMAX. The BOA-SARIMAX model
showed higher computation efficiency compared to the BOA-NARX model. The overall
results indicated that the performances of both models were comparable. However, the
developed BOA-NARX model had a better prediction accuracy and stability performance
than the BOA-SARIMAX model. It can be concluded that the developed predictive platform
successfully estimated the electricity consumption; thus, it could be a potential tool for
policymakers to deliver favorable insights into forecasting and improving energy strategies.
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