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Abstract: Economic dispatch optimization and power management are the main concerns for a
microgrid (MG). They are always studied and are considered to achieve an efficient operation of the
MG by simplifying the control process and decreasing losses. The integration of a small-scale wind
turbine (SSWD) into a direct current (DC) MG has an impact on its power and energy management.
Excess power produced by renewable energy sources (RESs) is one of the problems that face the
reliability of the MG and should be resolved. For this reason, a supervisory system is suggested to
manage the excess of power. During the supervision process, some criteria, such as the physical
limits and tariffs of the components are taken into account. Then, the suggested power management
strategy aims to achieve an instantaneous power balance considering a rule-based power and depends
on the above-mentioned criteria. To better meet the power balance, it is necessary to explore the
constraints related to the control and supervision of the studied DC MG. Performance measures
include the overall system energy cost and renewable curtailment (renewable energy that cannot be
utilized and should be limited). Thus, the power limitation strategy consists of using two types of
“shedding coefficients”, α and γ, to calculate the power that should be limited from each RES in the
case of energy surplus. Simulation tests are carried out using two power management strategies:
optimization and without optimization (i.e., storage priority). The results reveal that the coefficient γ

reduces the overall energy cost and whatever the applied coefficient, optimization still provides good
performances and significantly reduces the global energy cost.

Keywords: DC microgrid; small-scale wind turbine; energy management; power management;
supervisory system; optimization; shedding constraints

1. Introduction

In recent years, providing energy by using fossil fuels has rapidly increased envi-
ronmental pollution and global warming. In addition, a lack of pure and inexpensive
energy persists due to the rising fuel cost and energy demand. In this context, renewable
energy sources (RESs), such as photovoltaic panels (PV) and wind turbines (WTs), have
been introduced and developed to partially solve issues related to energy. In addition, to
increase power supply efficiency and save costs, distributed energy resources (DERs) based
on RESs have also been proposed and studied. Nonetheless, increasing RESs power cannot
be directly exploited or entirely stored due to intermittent power generation. This makes
the management of the electrical network a critical issue. Therefore, the deployment of
conventional and RESs alongside local loads in small-scale networks such as a MG is one
of the newest aspects of electrical networks as well as a solution to solve the intermittency
problem [1].

MG can be described as an integrated power system that functions in a small power
range compared to the public grid. This electrical structure offers many benefits, such as
stability, independence, and flexibility. It also guarantees economic advantages by reducing
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costs owing to the liberalized electricity market and decentralized power management [2].
Thanks to these MG characteristics, the power supply systems in the form of MG have
been studied extensively in recent years. The research in the MG field has tackled different
aspects such as power balance, and energy management by investigating defects and
advantages [3]. The main objectives of all these research works are related to the power
flow distribution and the achievement of the lowest MG operating energy cost by keeping
the power balance among every component, meeting load demand, and encouraging the
use of RESs.

This article studies the impact of integrating a SSWD into a DC MG, including PV
and which is connected to the grid. Three points are approached. First, an algorithm
for both power control and power management for the studied DC MG considering the
grid-connected mode is suggested. The constraints of all physical components of this MG
have been taken into account. Second, in the case of an excess in power produced by PV
panels and SSWD, two types of coefficients called “shedding coefficients” are proposed to
calculate the amount of power that should be limited from each RES. Finally, two strategies
for energy management, i.e., optimization and storage priority (without optimization), are
considered during the simulation.

This article is organized as follows: a literature review about power and energy
management is provided in Section 2. The DC MG modeling is presented in Section 3. The
supervision overview, including power control and energy management, is described in
Section 4. Shedding coefficients are proposed and detailed in Section 5. The performance
of the proposed coefficients is verified using a simulation, and the results and analysis are
discussed in Section 6. The conclusions are given in Section 7.

2. Literature Review

Researchers have made remarkable efforts to increase environmental protection to
overcome the fast depletion of fossil fuels and the energy crisis. In this context, RESs
have been deployed in the power system to meet the energy demand and respond to
environmental issues. Thus, MGs have been introduced as a new electrical structure to
combine DERs, energy storage systems (ESSs), and loads. However, despite the significant
growth in the MG concept, its architectures and control system are still novel and under
continuous development. Some problems, such as the intermittence of PV and WT power
generation, the physical constraints related to the components, the uncertainty of the power
prediction, the overall operating cost, etc., have to be considered while designing a MG.
In this regard, a supervisory system, including a power and energy management system,
is crucial for the optimal exploitation of DERs to ensure a secure, reliable, and intelligent
system. It is based on the collection and communication of the information, a system for
power prediction, an economic dispatch system, and the needs of the end-users. The main
goal is to meet load demand at the lowest operating cost by managing the power flow in
real-time, improving power quality, optimizing a long-term energy schedule, raising the
use of renewable energy, and smoothing power fluctuations from RESs.

In a MG, economic dispatch optimization and power management systems are al-
ways considered to minimize power losses and simplify the control process. The energy
management system (EMS) for a MG can be described as a multi-objective system that
optimizes the economic dispatch, operation, energy scheduling, system reliability, and the
global cost of the system for both grid-connected and islanded modes [4]. Several studies
in the literature suggest different energy management strategies to achieve an optimal and
efficient operation of the MG. Many classifications may exist for the common methods
used for the EMS. Strategies such as rule-based and optimization-based EMS have been
suggested. Yet, a combination of different methods could be a practical solution for EMS.
In general, EMS techniques can be classified into two major categories, i.e., classical and
artificial intelligence methods.

The iterative non-deterministic algorithm is one of the classical methods used for
executing the EMS. It can be utilized to realize several design objective functions, such
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as the single objective optimization or the multi-objective optimization, which can be
optimized. If a single objective optimization approach was adopted by the designer, it
means that a single objective is optimized during the process of the optimization and can
also be extended to many non-conflicting objectives. However, once multiple, conflicting
objectives need to be optimized simultaneously, single-objective optimization deteriorates
some objectives to achieve only one. In such a case, multi-objective optimization makes
a trade-off and provides the best values for all objectives. Many works using iterative
algorithms for the exploitation of RESs can be found in the literature [5,6]. Most studies
investigating deterministic optimization in the literature employ a forecasting algorithm to
predict future energy pricing, load profile, and power generation from RESs. The authors
of [7] proposed an optimization technique based on linear programming for sizing and
simulating a stand-alone hybrid PV-WT-battery storage system located in rural areas in
favor of reducing the total cost by measuring power supply probability losses. Mixed-
integer linear programming is another deterministic method that has been used by several
authors for MG EMS. It takes advantage of its ability to use integer and binary variables to
decide on the operating system. In [8], researchers highlighted and designed an EMS model
through a mixed-integer linear programming optimization for a residential MG system.
The conclusion placed the batteries as an uncompetitive element in the case of residential
applications because of their high investment and replacement cost in the residential
market. Many authors have suggested stochastic economic dispatch techniques to address
constrained optimization with uncertainty in the MG system. The MG is characterized by
an increasing number of variable and volatile generation sources under fluctuating energy
markets. A two-stage stochastic optimization model was presented by several authors.
The authors of [9] presented an optimization built on two stages for the MG operation,
with consideration of load demand and uncertainties of RESs. The first stage performs the
optimization based on the investment cost of the MG and the second stage attempts to
address the energy management operation of the MG. Although many stochastic methods
perform favorably compared to deterministic approaches, their solutions still require a
high level of complexity in the formulation.

Several recent studies have focused on utilizing artificial intelligence methods for
performing the EMS for the MGs. These approaches could be applied to solve both single-
objective optimization and multi-objective optimization problems. First, the fuzzy logic
technique is an artificial method commonly used for EMS in both grid-connected and
stand-alone energy systems. Researchers in [10] enumerated the advantages of the fuzzy
logic-based EMS over other methods by comparing the response capability and the ease of
adaption to sudden changes during the period of operation. Second, the neural network
(NN) is another intelligent approach widely used for control and energy management
in MG systems. It is able to handle complex-nonlinear systems in a reliable way. The
control strategy is based on a NN approach and results showed that this strategy can
keep the voltage stable and continuous during the maximum use of RESs, which can
satisfy consumers’ electricity needs. Finally, evolutionary algorithms, inspired initially
by biological evolution, constitute another subfield of artificial intelligence. The genetic
algorithm is one of the popular algorithms in this category. In several studies [11,12], a
genetic algorithm was used thanks to its powerful optimization capacity. An interesting
study was conducted in [11] where authors applied a genetic algorithm in four different
residential zones in India for an optimal sizing of RESs associated with ESS. Results showed
that a combination of PV, WT, and battery storage guarantees the most cost-effective
solution for residential applications.

Therefore for control purposes, it is necessary that an EMS has a connection with a
power management strategy within a MG to achieve the goals of the supervision. The power
in a MG should be well distributed to keep the power balanced among every component.
For this purpose, power management, including source, storage, and load management,
should be considered. The intermittency related to the power generated by RESs makes
its usage and control necessary and more difficult. Thus, the authors of [13] suggested
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a control and power management system for PV-battery-based hybrid MGs to regulate
the DC and AC bus voltages and frequency under different operating circumstances. Yet,
the battery here is considered limited in terms of capacity, charging, and discharging
current. Then, the public grid is presented as an important power exchange interface
to complete the battery functions and provide a low-cost operation. In [14], the authors
proposed a new control algorithm for effective power management in DC MG with RESs
and ESS. The purpose is to overcome the average power-sharing and bus voltage regulation
problems and maximize the utilization of the source power. The control scheme treats the
additional power available beyond its average rated value as a virtual generation. Thus,
new references are generated considering virtual generation. This proposed algorithm
allows using the virtual generation in the operation to reduce the charging/discharging
cycles of ESS. Hence, it increases the life span of the ESS, reduces power fluctuations, and
regulates the system bus voltage. In [15], a distributed robust energy management scheme
for multiple interconnected MGs was developed. It aims to optimize the total operational
cost of the MGs through energy trading with neighboring MGs and the main grid in the
real-time energy market. To remain consistent with the distributed nature of the multiple
MGs, a distributed adjustable robust optimal scheduling algorithm was suggested. Each
MG energy management system determines its own selling price and operation schedule
via distributed communication of noncritical information with its neighboring MGs. Robust
optimal scheduling and fair energy trading can be collectively achieved.

It is crucial to underline that the use of two intermittent sources of different natures
in both power management and optimization of a MG is little discussed and treated in
literature. Indeed, in most of the studies, the two renewable sources are considered as a
single source and their production is totally consumed by the MG. However, a surplus of
production will require a separation of the two sources by taking into account energy and
financial criteria.

3. DC MG Modeling with the Integration of a SSWD

A MG consists of multiple sources and storages, and a real-time power controller that
achieves different users’ load demands and controls the instantaneous power balance.

3.1. MG System and Power Balance

The proposed DC MG (Figure 1) is composed of its supervisory system, which consists
of an energy management layer and a power management layer. The aim of energy
management is to optimize the energy cost by dispatching power sources according to the
PV, SSWD, and load power predictions as well as measurement data under the constraints
of every physical component. The objective of power management is to control the real-time
power flow for reaching power balance.

In order to keep the power balance and to stabilize the DC-bus voltage, a proportional
(P) controller is used to calculate the amount of power that should be compensated by the
public grid and storage. This power balance neglects the power loss in the conversion and
is expressed in the steady-state as:

∆p = pPV + pWD − pL − pP = pS + pG (1)

where ∆p is the compensation power, pPV is the power of PV sources, pWD is the power of
the SSWD, pL is the DC load power, pP is the system dynamic power for the P controller,
pG is the public grid power, and pS is the storage power. pP can be expressed as follows:

pP = KP(VDC re f − vDC bus) (2)

where KP is the proportional gain of the P controller and vDC bus is the common DC-bus
voltage that should be kept at the reference voltage noted by VDC re f .
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3.2. PV Sources

Many approaches for modeling PV arrays have been suggested in the literature [16,17].
In this study, a mathematical model based on an experimental comparison of PV panel
operating cell temperature was used [18]. To maximize the economic and energetic benefits,
the PV model should generate maximal power by using a maximum power point tracking
(MPPT) method [19]. When the PV power is greater than the needs of the MG, a limited
control [20] should occur to operate PV shedding and protect MG devices. The PV power
is expressed by (3):

pPV = pPV_MPPT − pPV_S (3)

where pPV_MPPT is the MPPT PV power and pPV_S is the shedding power of PV.

3.3. Wind Turbine

The SSWD power is calculated at maximal value (pWD_MPPT) by using the MPPT
strategy. pWD_S is the power that should be subtracted in the case of a surplus of production.
The SSWD power is then expressed by Equation (4):

pWD = pWD_MPPT − pWD_S (4)

where pWD_MPPT is the MPPT SSWD power and pWD_S is the shedding power of the SSWD.

3.4. Public Grid Connection

A MG is a grid-connected system. The public grid can supply and absorb power under
power limitations. Thus, the public grid power pG is limited as in Equation (5):

− PG_MAX ≤ pG(t) ≤ PG_MAX (5)
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where PG_MAX is the maximum power that the public grid can buy or the limit for grid
power injection PGI_MAX , −PG_MAX is the maximum power that the public can sell or the
limit for grid power supply PGS_MAX. These limits are imposed to solve some problems
such as performing peak shaving and avoiding undesired injection, etc.

During DC MG operation, the grid should be controlled as follow:

0 ≤ pG_I(t) ≤ PGI_MAX (6)

0 ≤ pG_S(t) ≤ PGS_MAX (7)

3.5. Storage System

The battery storage can charge and discharge power to keep the MG power balanced.
The stage of charge (soc) is calculated according to (8), where soc0 is the initial state of charge
of the storage, CREF is the battery capacity, vS is the storage voltage, and soc is limited
between SOCMIN and SOCMAX in (9). The storage charging and discharging powers are
limited by PS_MAX and −PS_MAX , respectively, as in Equation (10).

soc(t) = soc0 +
100%

3600CREFvS

∫ t f

t0

pS(t)dt = soc0 +
100%

3600CREFvS

∫ t f

t0

(pS_C(t)−pS_D(t))dt (8)

SOCMIN ≤ soc(t) ≤ SOCMAX (9)

− PS_MAX ≤ pS(t) ≤ PS_MAX (10)

3.6. DC Load

The DC load is the electrical appliances of a building, in which a load shedding real-
time optimization [21] is applied. The problem is formulated and solved by mixed-integer
linear programming in IBM CPLEX [22]. The load power defines the needs of the end-
users that have to be satisfied. However, if the load power cannot be fully met, the load
must be partially shed. The load power pL and the load shedding power pL_S are given
respectively by Equations (11) and (12), where pL_OPT is the load power after the load
real-time optimization, pAVAIL is the total available DC MG power, and pLD is the load
demand power.

pL =

{
pL_OPT i f pAVAIL < pLD

pLD i f pAVAIL ≥ pLD
(11)

pL_S = pLD − pL (12)

4. MG Supervision Overview

The proposed multi-layer supervisory system (Figure 2) [23] is structured into four
main layers that interact among themselves and operate in at different scale times. The aim
of the MG supervisory is to interact with the smart grid (SG) and the end-user. It is able
to receive metadata from external sources, and keep the instantaneous power balance in
the MG. Several works carried out in the Avenues unit research have been based on this
structure [24,25]. Parameters refer to a group of parameters related to the MG and their
physical limitations. The metadata receives the forecast data. The SG is responsible for
exchanging messages and communication with the public grid. Characteristics of each
layer have been explained in detail in [20].
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4.1. Energy Management

The energy management layer aims to optimize and minimize the total energy cost
by dispatching power flow according to the power prediction, SG messages, and mea-
surement data under the constraints of the modeling. In this section, optimization for a
grid-connected mode is studied.

Mixed-integer linear programming was chosen as a solver for the formulated problem,
and the optimization was performed day-ahead by using prediction data. The optimization
results were the power flows of sources and load translated into a distribution coefficient.
This latter is regarded as a predictive control variable responsible for communication with
the operational layer to ensure an optimal operation.

The proposed problem formulation was based on the components characteristics and
constraints already presented in Equations (2)–(12). The stability of the DC bus voltage was
then ensured by the power balance constraint presented in Equation (13). The controller
dynamic considered for the MG was not used in this study.

pPV(t) + pWD(t)− pL(t) = pS(t) + pG(t) (13)

The total energy cost result of the optimization is expressed in Equation (14):

CTOTAL = CPV_S + CWD_S + CL_S + CS + CG (14)

where CPV_S is the PV shedding energy cost, CWD_S is the SSWD shedding energy cost,
CL_S is the load shedding energy cost, and Cs is the storage energy cost, CG is the public
grid energy cost.

The tariffs CPV_S and CWD_S are calculated in Equations (15) and (16) according to the
amount of PV and SSWD shedding power.

CPV_S =
1

3.6× 106

tF

∑
ti=t0

cPVS(ti) · ∆t · pPV_S(ti) (15)

CWD_S =
1

3.6× 106

tF

∑
ti=t0

cWDS(ti) · ∆t · pWD_S(ti) (16)

The cost of load shedding is defined in Equation (17), and it introduces inconvenience
for end-users:

CLS =
1

3.6× 106

tF

∑
ti=t0

cLS(ti) · ∆t · pL_S(ti) (17)
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The grid cost is defined in Equation (18), and it shows that the grid power could be
bought or sold at the same price.

CG =
1

3.6× 106

tF

∑
ti=t0

cG(ti) · ∆t · (−pG_I(ti) +−pG_S(ti)) (18)

where pG_I and pG_S are, respectively, the power grid and supply.
This study took into consideration a single rate for energy purchased or sold and the

grid energy tariff was defined according to peak hour (cPH) or normal hour (cNH).
The storage cost is provided in Equation (19), and it is based on storage aging:

CS =
1

3.6× 106

tF

∑
ti=t0

cS(ti) · ∆t · (pS_C(ti) + pS_D(ti)) (19)

where pS_C and pS_D are, respectively, the storage power charge and discharge.
The optimization under constraints were formulated as follow:
Minimize:

CTOTAL = CPV_S + CWD_S + CL_S + CS + CG (20)

with respect to:

pPV(ti) + pWD(ti) + pS_D(ti) + pG_S(ti) = pL(ti) + pS_C(ti) + pG_I(ti)

pS(ti) = pS_C(ti) + pS_D(ti)

pPV = pPV_MPPT − pPV_S

pWD = pWD_MPPT − pWD_S

pL = pLD − pL_S

i f pPV_MPPT(ti) + pWD_MPPT(ti) > pLD then pL_S(ti) = 0

i f pPV_MPPT(ti) + pWD_MPPT(ti) = 0 then


pL_S(ti) = 0

pPV_S(ti) = 0

pWD_S(ti) = 0

i f pPV_MPPT(ti) + pWD_MPPT(ti) < 0 then

{
pPV_S(ti) = 0

pWD_S(ti) = 0
SOCMIN ≤ soc(ti) ≤ SOCMAX

soc(ti) = soc0 +
100%

3600CREFvS

∫ t f
t0

pS(ti)dt

SOC(t f ) > SOC f

pPV(ti) ≥ 0

pWD(ti) ≥ 0

pL(ti) ≥ 0

pPV_S(ti) ≥ 0

pWD_S(ti) ≥ 0

pL_S(ti) ≥ 0

−PS_MAX ≤ pS(t) ≤ PS_MAX

0 ≤ pG_I(t) ≤ PGI_MAX

0 ≤ pG_S(t) ≤ PGS_MAX

ti = {t0, t0 + ∆t, t0 + 2∆t, . . . , tF}

(21)

All these constraints have been explained in Section 3. The three constraints preceded
by “if” show that no load shedding power is allowed when the load can be fully supplied,
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while no PV and SSWD shedding power can occur when the PV and SSWD power can be
fully consumed. Moreover, neither load shedding nor RESs power shedding can happen
when there is no production from PV and SSWD.

Additional constraints showing that the storage and the grid cannot directly exchange
power are given in Equation (22):

i f pPV_MPPT(ti) + pWD_MPPT(ti) ≥ pLD(ti) then

{
pG(ti) ≥ 0

pS(ti) ≥ 0

i f pPV_MPPT(ti) + pWD_MPPT(ti) < pLD (ti) and then

{
pG(ti) < 0

pS(ti) < 0

(22)

The coefficient kD is given to introduce the day-ahead optimization results into the
power management layer and to decouple the system operation between the power man-
agement layer and the energy management layer. It was calculated according to (23):

kD =
pS

pS + pG
, kD ∈ [0, 1] (23)

where kD is the power distribution rate between storage and public grid.

4.2. Power Management

The power management is performed in the operational layer that is responsible
for keeping the instant power balance and ensuring the DC bus voltage stabilization
concerning the system’s constraints and physical limits. The applied algorithm started
first by reading the fixed parameters, the real measurements, and the updated parameter
value provided from the optimization. Second, the compensation power was calculated
according to Equation (1). Using the resulting power and the distribution parameter, the
power that should be exchanged with the public grid and the storage was calculated to
ensure power balance and voltage stability. The suggested power management strategy is
a rule-based method is presented in the flow chart given in Figure 3.

The kD is calculated in the energy management and introduced in the real-time power
management strategy. As illustrated in the flow chart, the storage reference is updated two
times: the first one is for power balancing before that the grid reaches its limits. Once this
latter occurs a second update of the storage reference happens to perform load shedding or
PV and SSWD constrained production.

Furthermore, the proposed power management strategy consists of two extreme cases:
(i) if there is a shortage of energy for supplying the load, which means that when PV panels
and SSWD produce insufficient power, the grid reaches its limit, and the storage is empty. It
this case, load shedding happens; (ii) if the PV panels and SSWD power production cannot
be totally consumed, which means that the grid reaches its injection limit, the storage
achieves the soc upper limit, and the load is fully supplied or cannot consume enough, the
PV and SSWD energy should be limited.

To separate and calculate the power which must be limited from each source, two
coefficients called “shedding coefficients” have been proposed. The idea is to first calculate
the total power, which must be shed from the two sources, and multiply it respectively by
the shedding coefficients in order to define the power, which must be shed by each source.
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5. Shedding Coefficients

After installation of PV sources and the SSWD, only the maintenance involves costs
while the production does not need extra fees. However, shedding PV and SSWD power
mean that the assets are not fully utilized. So the PV sources and SSWD power shed-
ding are penalized in the optimization and their energy costs are already defined in
Equations (15) and (16).

The total renewable power to be shed is defined as follows:

pREN_SHEDD = pPV_S + pWD_S = pPV_MPPT + pWD_MPPT − (pLD + pS + pG) (24)

The role of the shedding coefficients related to the RESs was not emphasized or even
noticed in the case where the renewable production was completely consumed. In this case,
the two renewable sources (PV sources and the SSWD) were considered as one renewable
source and their production was mainly destined to feed the load and the rest to be stored
in batteries or injected into the public grid (depending on the adopted power management
strategy). Once the production of these RESs exceeds the needs of the MG, namely the limit
of injection into the grid, limits of storage, and the load that is fully supplied, the power
generation from PV sources and the SSWD must be limited. The shedding coefficients
embody the principle of separation of the two sources and the calculation of the power that
must be limited from each source by taking into account different criteria such as the share
of each source in this excess generation and the shedding cost attributed to each source.

5.1. Alpha Coefficients

Alpha coefficients are proposed in order to calculate pPV_S and pWD_S. They are
based on the contribution of each renewable source in generating pREN_SHEDD without
taking into account the PV sources and the SSWD shedding costs. Thus, the source that
generates more and is responsible for the excess of power should be limited more. Here, the
penalization cost associated with each source is not considered. Their expressions showed
the percentage of the contribution of each source in generating the total power that should
be shed and they are calculated as follows:

αPV =
pPV_MPPT

pPV_MPPT + pWD_MPPT
, αWD ∈ [0, 1] (25)

αWD =
pWD_MPPT

pPV_MPPT + pWD_MPPT
, αWD ∈ [0, 1] (26)

αPV + αWD = 1 (27)

The PV and SSWD shed powers are then given in Equations (28) and (29), respectively:

pPV_S = αPV .pREN_SHEDD (28)

pWD_S = αWD.pREN_SHEDD (29)

5.2. Gamma Coefficients

Gamma coefficients are proposed in order to calculate pPV_S and pWD_S. They are
based not only on the contribution of each RESs in generating pREN_SHEDD but also on the
PV sources and the SSWD shedding costs. In fact, the percentage already calculated based
on the coefficient α is added to another coefficient noted ξ. This latter reflects the impact of
the shedding cost of each RESs on the global contribution of each source in generating the
total power that should be shed. They are calculated as follows:

γPV = αPV + ξPV =
pPV_MPPT

pPV_MPPT + pWD_MPPT
+

cWD_S − cPV_S
max(cPV_S, cWD_S)

(30)
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γWD = αWD + ξWD =
pWD_MPPT

pPV_MPPT + pWD_MPPT
+

cPV_S − cWD_S
max(cPV_S, cWD_S)

(31)

γPV + γWD = 1 (32)

where ξPV =
cWD_S−cPV_S

max(cPV_S ,cWD_S)
and ξWD =

cPV_S−cWD_S
max(cPV_S ,cWD_S)

are two coefficients that take into
account the costs of shedding PV and SSWD powers, respectively.

6. Simulation Results and Analysis
6.1. Power Profile

In order to study the shedding coefficients, arbitrary power curves were selected
(Figure 4). As can be seen, the maximum power provided by the WT was limited and fixed
to 600 W, which was the maximal limit of the studied SSWD. The load power curve was
fixed at 1000 W. The PV power curve was calculated according to the weather data recorded
on the 29 June 2019 in Compiegne. In addition, the selected simulation time horizon was
from 07:00 until 20:00. During this period, the DC MG operated only in on-grid mode.
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The choice of such power profiles was to analyze the optimization of the DC MG in the
case of production excess. In the opposite case, PV sources and the SSWD were considered
as a single source of renewable energy since the amount of power that they produced was
completely consumed.

6.2. Simulation Parameters

Table 1 shows the parameters values, which were tested during the simulation. The
grid tariff proposed in normal hour cNH was close to the ones proposed by most energy
providers, while for peak hours, cPH , a penalized purchase tariff was chosen to perform
power peak shaving. Other tariffs were chosen arbitrarily, but they respected the logic of
management strategy, which is an energy trend for the next 20 years. Thus, the energy
tariffs were considered in the order given by Equation (33):

cPVS,WDS,LS � cPH > cNH > cS (33)
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Table 1. Parameters for simulation tests.

Parameters Values

Grid
PGI_MAX = PG_MAX 500 W
PGS_MAX = −PG_MAX −500 W

Storage

PS_MAX 1300 W
SOCMIN 20%
SOCMAX 80%
soc0 50%
CREF 130 Ah
vs 48 V (4 × 12)

DC bus VDC re f 400 V

PV sources
NPV 18
PPV_STC 25 W

SSWD PWD_MPPT 600 W

DC load PLD 1000 W

Tariffs

cG
cNH 0.1 €/kWh
cPH(11:00–13:00 and 18:00 20:00) 0.7 €/kWh

cS 0.01 €/kWh
cPVS 1 or 2 €/kWh
cWDS 1 or 2 €/kWh
cLS 1.8 €/kWh

6.3. Simulation Results and Analysis

The DC MG supervisory control for grid-connected mode was simulated based on the
power profile presented in Figure 4. The system was put into a situation of energy excess
produced by renewable sources and the power flow in two instances, depending on the
value of kD, was analyzed. The first instance was based on a constant value of kD which
was equal to 1. In this case, the simulation was carried out without optimization, and the
power balanced was ensured by the storage first and the grid intervened only when the
storage had reached its limits. This is called “storage priority”. The second instance was
about a power flow simulation controlled by a variable kD provided from the optimization
calculation under CPLEX. This case is called “optimization”. Shedding coefficients men-
tioned in Section 5 were applied for these two power management strategies. The power
management of the DC MG was verified in MATLAB/Simulink, and the optimization was
performed using CPLEX [22].

6.3.1. Simulation Scenarios

The power balancing control in the operational layer was an independent function
that can work with any value of kD(t). Thus, the two scenarios’ cases presented in Table 2
were applied to show the influence of shedding coefficients on the operation cost of the
DC MG.

Table 2. Simulation cases.

Cases α Coefficient γ Coefficient

Storage priority (kD = 1) YES YES
Optimization (kD = kD(t)) YES YES

6.3.2. Simulation without Optimization (Storage Priority)
6.3.2.1. Power Flow Controlled by the Coefficient α for cPVS > cWDS and cPVS < cWDS in
the Case of Priority Storage

The power management strategy mentioned in the flowchart of Figure 3 was imple-
mented using the MATLAB/Simulink environment. kD (cyan bleu curve) and kD_real (blue
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curve) represent the same variable. In fact, kD = 1 was selected to show that the storage
had a higher priority than the public grid to supply the DC MG while kD_real represented
the real value of kD during the simulation depending on the use or not of the storage.

First, in Figure 5, the kD was set to 1 during the period of 07:00–11:05, meaning that
only the storage was used. In the period 07:00–08:00, the soc decreased first which indicated
that the storage was discharging. After that, in the period 08:10–11:05, the storage started
recharging, which is explained by the increase in the soc. At 11:05, kD should switched to 0
(kD_real) and soc stabilize at the upper limit (80%). It is crucial to mention that the evolution
of kD is the same whatever the value of PV or SSWD shedding tariff.
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Figure 5. Evolution of kD, kD_real and soc without optimization by applying the α coefficient.

Regarding the power flow provided in Figure 6, the period 07:00–07:55 was charac-
terized by supplying DC load (red line) using the total power produced by PV sources
(blue line) and the SSWD (purple line) and also discharging the storage (magenta curve).
From 07:55 until 11:05, the power produced by renewable sources was enough to supply
the DC load and contribute to charging the storage. At 11:05, the storage was full, and
turned into 0, allowing the public grid (cyan bleu curve) to ensure the power balance. After
at 11:05, the load was fully fed, the storage was completely charged, and the grid reached
its limit of injection, the PV and SSWD shedding happened. The blue and purple curves
are, respectively, the pPV_MPPT and pWD_MPPT that are usually provided to meet the power
balance and should be limited. The green and the brown curves show the new powers that
should be provided. At 18:40, the power balance was again ensured by the public grid that
was injected until 20:00.

Figure 7 presents the period where the PV and SSWD shedding occurred in the
case of storage priority. As can be seen in this figure, the amount of power that each
renewable source should shed was calculated using the α coefficient. The duration of
shedding lasted for 7 h and 45 min (11:05–18:40). Therefore, in order to compare shedding
powers of PV source and the SSWD (black square and blue star markers, respectively),
percentages (black and blue dashes lines) were calculated depending on the total power
that should be shed pREN_SHEDD (red triangle marker) and the α coefficient. The results
(Table 3) clearly show that these power percentages were identical whatever the used tariffs
(cPVS > cWDS or cPVS < cWDS ). In fact, pPV_S constituted around 75.8% of pREN_SHEDD,
while pWD_S was about 24.2% of this power. Thus, applying coefficient α provided the same
distribution of power that should be shed from each source without taking into account the
shedding tariffs.
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Figure 7. PV and SSWD shedding curves by applying the α coefficient in the case of priority storage.

Table 3. Energy shedding calculation for the α coefficient in the case of storage priority.

Storage Priority
α

cPVS > cWDS (2 > 1 (€/kWh)) or cPVS < cWDS (1 < 2 (€/kWh))

PV SSWD

Total energy shedding (kWh) 6.74
Energy shedding per source (kWh) 5.1 1.64

Contribution of each source (%) 75.8 24.2

6.3.2.2. Power Flow Controlled by the Coefficient γ for cPVS > cWDS and cPVS < cWDS in
the Case the of Priority Storage

The evolution of kD, kD_real , and soc in the simulation without optimization by apply-
ing the γ coefficient are shown in Figure 8a,b. During the period from 07:00 to 11:05 the
kD was set to 1, which indicated that only the storage was used, while kD_real represents
the real value of kD during the simulation depending on the use or not of the storage. In
the period between 07:00 and 07:55, the soc decreased, which means that the storage was
discharging, while in the period from 07:55 to 11:05, the soc increased until reaching the
upper limit. At 11:05, kD switched to 0 (kD_real) and the soc stabilized at 80%.
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Concerning the power flow provided in Figure 9a,b, the period from 07:00 to11:05
was characterized by using the total power produced by PV sources (blue line) and the
SSWD (purple line) to supply the DC load (red line) and recharge the storage (magenta
curve). At 11:05, the storage was full, and turned into 0, letting the public grid (cyan bleu
curve) ensure the power balance. At 11:05, the load was fully fed (1000 W), the storage
was completely charged (1300 W), and the grid had reached its limit of injection (500 W).
Then, the excess of power from PV and SSWD should be limited. Since γ takes into account
the shedding tariff of each source, a difference in the amount of power that should be
limited from each source was then noticed. The blue and purple curves are, respectively,
the pPV_MPPT and the pWD_MPPT that are normally provided and the green and the brown
curves, (pPV and pWD, respectively) show the limited powers that should be provided to
meet the power balance. It can be noticed in Figure 9a (cPVS > cWDS ) that the SSWD power
was totally limited (the SSWD turned off) in the period from 11:05 to 16:40, while the rest of
the power was limited from the PV source. However, when cPVS < cWDS (Figure 9b) and
since an important amount of power was produced by PV sources, only these later were
limited and the SSWD continued to produce at its maximum power. At 18:40, the power
balance was again ensured by the public grid that was injected until 20:00.

Figure 10a,b present periods where the shedding occurred for PV and SSWD in the
case of storage priority by applying γ for cPVS > cWDS and cPVS < cWDS , respectively. As
can been seen in these figures, the amount of power that should be shed by each renewable
source was calculated using the γ coefficient and different shedding tariffs. Durations of
shedding were identical (7 h 45 min). Nevertheless, in the case of cPVS > cWDS , both PV
sources and the SSWD (black square and blue star markers, respectively) were contributing
to limiting the pREN_SHEDD (red triangle marker), while in the case of cPVS < cWDS ,
only PV sources were responsible for the power balance (pREN_SHEDD and pPV_S lines are
combined). Thus, in order to compare shedding powers of PV sources and the SSWD,
respectively, percentages (black and blue dashes lines) were calculated depending on
pREN_SHEDD and the γ coefficient. Table 4 provides these percentages according to the
simulation cases. The results clearly showed that in the case of cPVS > cWDS , pPV_S
and pWD_S constituted 40.2% and 59.8% of pREN_SHEDD, respectively. Otherwise, when
cPVS < cWDS , only PV sources were limited (100% of pREN_SHEDD).
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Table 4. Energy shedding calculation for the γ coefficient in the case of storage priority.

Storage Priority
γ

cPVS > cWDS (2 > 1 (€/kWh)) cPVS < cWDS (1 < 2 (€/kWh))

PV SSWD PV SSWD

Total energy shedding (kWh) 6.74 6.74

Energy shedding per source (kWh) 2.71 4.03 6.74 0

Contribution of each source (%) 40.2 59.8 100 0

6.3.3. Simulation with Optimization
6.3.3.1. Power Flow Controlled by the Coefficient α for cPVS > cWDS and cPVS < cWDS in
the Case of Optimization

The optimization issue was solved by CPLEX in the energy management layer. In-
deed, this latter provided the optimum energy flow management that helped to calculate
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kD(t). The distribution coefficient was then transmitted to the operational layer to run the
power system.

As can be observed in Figure 11, kD (cyan bleu curve) and kD_real (blue curve) were
confused since kD was the result of the optimization. During the period between 07:00 and
07:55, the kD was set to 1, which indicated that only the storage was used. In addition, the
soc decreased during this period, meaning that the storage was discharging. In the period
from 09:10 to12:30, the value of kD evolved between 0 and 1, indicating that both the public
grid and storage supported the MG. It can be notice that, despite the difference in the value
of PV or SSWD shedding tariff, the evolution of kD still remained the same.
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Concerning the power flow provided in Figure 12, the power balance in the period
from 07:00 to 07:55 was ensured by discharging the storage and using the production of PV
sources and the SSWD. From 07:55 to 12:30, the total power produced by PV sources (blue
line) and the SSWD (purple line) was used to supply the DC load (red line), recharged the
storage (magenta curve), and was injected into the public grid (cyan bleu curve). After
12:30, the load was fully fed, the storage was completely charged, and the grid reached
its limit of injection, therefore, PV and SSWD shedding happened. The blue and purple
curves are, respectively, the pPV_MPPT and pWD_MPPT that are normally provided but to
meet the power balance, these powers should be limited. The new powers that should be
provided are shown by the green and the brown curves. At 18:40, the power balance was
again ensured by the public grid that was injected until 20:00.

Figure 13 presents the period where the PV and SSWD shedding occurred in the case
of optimization. As can be seen in this figure, the amount of power that should be shed by
each renewable source was calculated using the α coefficient. The duration of shedding
lasted for 6 h and 10 min (12:30–18:40). Therefore, in order to compare shedding powers of
PV source and the SSWD (black square and blue star markers, respectively), percentages
(black and blue dashes lines) were calculated depending on the total power that should
be shed pREN_SHEDD (red triangle marker) and the α coefficient. The results in Table 5
were identical whatever the used tariffs (cPVS > cWDS or cPVS < cWDS ). In fact, pPV_S
constituted around 76% of pREN_SHEDD, while pWD_S reached 24% of this power. Thus,
applying coefficient α provided the same distribution of power that should be shed from
each source without taking into account the shedding tariffs.
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Table 5. Energy shedding calculation for the α coefficient in the case of optimization.

Optimization
α

cPVS > cWDS (2 > 1 (€/kWh)) or cPVS < cWDS(1 < 2 (€/kWh))

PV SSWD

Total energy shedding (kWh) 5.46
Energy shedding per source (kWh) 4.15 1.31

Contribution of each source (%) 76 24

6.3.3.2. Power Flow Controlled by the Coefficient γ for cPVS > cWDS and cPVS < cWDS in
the Case of Optimization

Figure 14a,b show that kD and kD_real were confused since kD is the result of the
optimization. In the period between 07:00 and 07:55, kD was set to 1 and the soc also
decreased, which means that the storage was discharging, while in the period 09:10–12:30
the value of kD varied between 0 and 1, indicating that both the public grid and storage
supported the MG.
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Figure 14. Evolution of kD, kD_real , and soc with optimization by applying the γ coefficient in the
case of: (a) cPVS > cWDS; (b) cPVS < cWDS.

Regarding the power flow provided in Figure 15a,b, the period 07:00–12:30 was first
characterized by using the power produced by PV sources (blue line) and the SSWD
(purple line) and discharging the storage (magenta curve) to supply the DC load (red line)
(07:00–07:55) and second, by using the total renewable power to feed the DC load, recharge
the storage and to be injected into the public grid (cyan bleu curve) (07:55:12:30). The
PV and SSWD shedding happened at 12:30 since the load was fully fed, the storage was
completely charged, and the grid had reached its limit of injection. The blue and purple
curves are, respectively, the pPV_MPPT and pWD_MPPT that are normally provided to meet
the power balance, these powers should be limited (green and the brown curves). Thus, in
Figure 15a, where cPVS > cWDS, the SSWD was turned off in the period from12:30 to 16:40
and the rest of the power that should be limited was subtracted from the production of the
PV sources. Nonetheless, when cPVS < cWDS (Figure 15b) only PV sources were limited
and the SSWD continued to produce at its maximum power. At 18:40, the power balance
was again ensured by the public grid that was injected until 20:00.
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Figure 15. Power flow curves with optimization by applying the γ coefficient in the case of:
(a) cPVS > cWDS; (b) cPVS < cWDS.

Figure 16a,b present periods where the shedding occurred for PV sources and the
SSWD in the case of optimization by applying γ for cPVS > cWDS and cPVS < cWDS,



Energies 2022, 15, 3421 21 of 24

respectively. The durations of shedding were identical (6 h10 min) and calculated depend-
ing on the γ coefficient and different shedding tariffs. It was noticed that in the case of
cPVS > cWDS , both PV sources and SSWD (blue star marker) powers were limited. Yet,
when cPVS < cWDS , pREN_SHEDD (red triangle marker) and pPV_S (black square marker)
were combined, which means that only PV sources power was limited. Consequently,
percentages (black and blue dashes lines) were calculated depending on pREN_SHEDD and
the γ coefficient with the aim to compare shedding powers of PV sources and the SSWD,
respectively. Table 6 provides these percentages according to simulation cases. The results
clearly showed that in the case of cPVS > cWDS , pPV_S and pWD_S constituted 41.5% and
58.5% of pREN_SHEDD, respectively. Otherwise, when cPVS < cWDS only PV sources were
limited (pPV_S 100% of pREN_SHEDD).
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of: (a) cPVS > cWDS; (b) cPVS < cWDS.

Table 6. Energy shedding calculation for coefficient γ in the case of optimization.

Optimization
γ

cPVS > cWDS(2 > 1 (€/kWh)) cPVS < cWDS(1 < 2 (€/kWh))

PV SSWD PV SSWD

Total energy shedding (kWh) 5.46 5.46
Energy shedding per source (kWh) 2.26 3.2 5.46 0

Contribution of each source (%) 41.5 58.5 100 0

6.3.4. Energy Cost Comparisons

In order to make cost comparisons of energy calculated using shedding coefficients, the
case where cPVS > cWDS was selected. The energy costs calculated by α and γ coefficients
are listed in Table 7. The results showed that the cost of PV energy shedding (CPV_S), SSWD
energy shedding (CWD_S), load shedding energy (CL_S), storage energy (CS), and public
grid energy (CG) differed according to the performed simulation. The total cost of the α
coefficient calculated for priority storage was higher (10.46€) compared to that obtained
after optimization (8.08€) It means that the total cost was decreased by about 22.8%. In
addition, the total energy cost of the γ coefficient calculated after the simulation without and
with optimization was 8.06€ and 6.21€, respectively. This indicates that the optimization
allowed minimizing the energy cost. Indeed, the optimization favored the exchange of
power between the public grid and the storage in order to establish the power balance.
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It can be also noticed that for the same simulation case, the total energy cost obtained
by using the γ coefficient was significantly lower than the one obtained by applying the
α coefficient.

Table 7. Energy cost calculation for α and γ coefficients.

Cost (€)
α γ

Storage
Priority Optimization Cost Decrease Storage

Priority Optimization Cost Decrease

CPV_S 10.21 8.3 5.41 4.54
CWD_S 1.63 1.31 4.03 3.20
CL_S 0 0 0 0
CG −1.4 −1.55 −1.4 −1.55
CS 0.02 0.02 0.02 0.02

CTOTAL 10.46 8.08 22.8 8.06 6.21 23

7. Conclusions

The integration of a SSWD into a DC MG connected to the grid requires a deep under-
standing of many parameters, including factors related to energy and power management.
In this article, the supervision control design was described. In this context, a strategy for
optimizing the MG that permits transactions with the main distribution network and the
participation of the end-user customers has been suggested. The optimization and mini-
mization of the total operating cost were investigated by dispatching power flow according
to the power profiles and measurement data under the constraints of the modeling. Indeed,
in the case of the power excess produced by PV sources and the SSWD, it is crucial to
perform the power limitation to ensure power balancing, which is the main goal of the
supervision. For that, two approaches were suggested:

The first one was based on applying a shedding coefficient called α that was based on
limiting power depending on the percentage of contribution of each source in generating
the excess of power. This coefficient was performed in two different cases: storage priority
and optimization.

The second one was about using a second shedding coefficient called γ This latter
principle was limiting the excess of power by taking into account not only the production
of each RESs but also the shedding cost related to each source. This coefficient was tested
in scenarios with and without optimization.

The results highlighted that the coefficient γ provides good performances in terms
of the cost compared to α since the coefficient γ takes into account the RESs’ tariff in the
case of renewable power shedding. In addition, the results also revealed that whatever
the scenario used, the simulation with optimization conditions leads to reduce the costs
compared to the simulation without optimization. The optimization permits minimizing
the cost by favoring the exchange of power between the public grid and the storage (selling
power to the grid). This study showed the importance of the optimization method and
the impact of the shedding coefficients in obtaining the best energy performances with the
lowest cost. Moreover, the optimization gave better energy performance while minimizing
PV and SSWD power shedding.

To conclude, simulation results showed that the supervision control can maintain
power balancing while performing optimized control, even by using an arbitrary power pro-
file and arbitrary energy tariffs. The optimized power control handles several constraints,
such as storage and grid power limitations.

Further work will focus on experimental validation of the studied DC MG by taking
into account the dynamic efficiency of the converters and real-life random trends. The
supervisory system should be also improved to be able to manage and decrease power
losses in the converters and contribute to the stabilization of the bus voltage.
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