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Abstract: To move the world toward a more sustainable energy future, it is crucial to use the limited
hydrocarbon geological resources efficiently and to develop technologies that facilitate this. More
rational management of petroleum reservoirs and underground gas storage can be obtained by
optimizing well control. This paper presents a novel approach to optimal well control based on
the combination of optimal control theory, innovative artificial intelligence methods, and numer-
ical reservoir simulations. In the developed algorithm, well control is based on an auto-adaptive
parameterized decision tree. Its parameters are optimized by state-of-the-art machine learning,
which uses previous results to determine favorable parameters. During optimization, a numerical
reservoir simulator is applied to compute the objective function. The developed solution enables full
automation of the wells for optimal control. An exemplary application of the developed solution to
optimize underground storage of gas with high nitrogen content confirmed its effectiveness. The
total nitrogen content in the gas decreased by 2.4%, increasing energy efficiency without increasing
expense, as only well control was modified.

Keywords: optimal control; auto-adaptive decision tree; artificial intelligence; machine learning;
sequential model-based algorithm configuration

1. Introduction

The geological resources of hydrocarbons are limited, and therefore, it is necessary
to use them efficiently. In industrial practice, well control is most often selected based on
production scenario analysis. Testing various production variants is a manual iterative
process based on expert knowledge. However, such an approach does not guarantee
obtaining the best (optimal) solution in terms of the adopted quality criterion. Therefore,
the effectiveness of the production process is low. One of the possibilities to increase the
technical and economic efficiency of the production process is to optimize well control,
which translates into more rational management of natural resources.

An important aspect of rational management of resources related to short-term (oper-
ational) and seasonal (tactical) energy security is the storage of large volumes of natural
gas. The gas stored in periods of low consumption (summer) can then be used to cover
increased demand for gas in winter. The stored gas can also be used in the event of a
break in gas supplies as the result of extraordinary situations or to cover differences in
demand during the day. In practice, the storage of large volumes of natural gas is possible
through underground gas storage (UGS) in partially depleted gas reservoirs [1]. Optimal
well control is increasingly important in this case.

Underground gas storage in partially depleted reservoirs is most often associated with
the problem of water coning, which can reduce gas withdrawn effectiveness [1]. The gas
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cushion in the reservoir is designed to keep water a safe distance from the production
wells. However, improper gas injection and withdrawal may lead to undesirable water
production. Moreover, during underground gas storage in a partially depleted reservoir,
the cushion gas mixes with the active gas [1]. Typically, the stored gas has properties similar
to those of the cushion gas. However, in the case of large differences in the properties
of the gas from these two parts, the produced gas may have a different quality than the
gas that has been injected into the storage. A problem occurs if the stored gas is of a
higher quality (e.g., methane) than the cushion gas (e.g., nitrogen). The quality of the
withdrawn gas is then significantly influenced by the injection and withdrawal. Hence, it is
important to operate the storage in a way that reduces the adverse impact of the factors
mentioned above.

To correctly determine the optimal control, it is necessary to take into account the
control theory, including the optimal control theory. Control acts on a given system to
achieve the desired behavior of this element of the environment [2]. An object under control
is called the control process. The control signals are generated by the controller. The control
process together with the controller constitute the control system [2]. When the control
process is a real industrial process, the problem of control becomes difficult to solve due to
the high complexity of such processes. When the control problem aims to obtain the best
quality indicator, then it comes down to the optimal control problem. The solution to this
problem is even more difficult.

One of the basic tools for solving the problem of optimal control is the theorem known
as Pontryagin’s maximum principle. This method allows determination of the optimal
process control depending on the state variables and the introduced conjugate variables [2].
Then, after solving a system of state equations and a system of conjugate equations, it is
possible to determine the optimal process control as a function of time [2]. Another way
to solve the problem of optimal control is Bellman’s optimality principle. This principle
introduces the statement that optimal control depends only on the current state of the
system, not on the previous states [2]. Therefore, for a given optimal trajectory, each final
section is an optimal trajectory for itself. Therefore, with the use of dynamic programming,
it is possible to determine optimal control [2]. In some special cases, dynamic programming
is a very useful method, but in most optimal control problems, the calculation effort for this
method is much greater than that required for the maximum principle [2]. Apart from the
mentioned main analytical methods that enable determination of the optimal control, there
are many others, such as functional analysis [2]. However, determining the optimal control
of real industrial processes using analytical methods is difficult, and sometimes even im-
possible due to the high complexity and nonlinear nature of the problem. Then, numerical
methods are most often used. However, numerical methods also have some limitations,
such as considerable computation time. Therefore, artificial intelligence methods are in-
creasingly used to control industrial processes. Artificial intelligence (AI) is a branch of
computer science that includes techniques allowing computers to assist or replace humans
in solving nontrivial problems perceived as requiring human intelligence [3]. Advantages
of AI-based solutions to the optimal control problem include a better understanding of
the controlled process by defining rules, using expert knowledge, reducing process costs
by automating activities, and improving process efficiency as a result of learning from the
experience gained [4]. Moreover, their combination with industrial data enables automatic
control of real processes [5].

Currently, there is a growing interest in the application of artificial intelligence to
optimize various processes related to hydrocarbon production. This has translated into an
increasing number of scientific publications in renowned journals related to this topic [6–8].
To develop an optimal production strategy, more and more often nature-inspired optimiza-
tion algorithms that mimic natural mechanisms increasing the evolutionary adaptability
of individuals to the environment are applied. Nature-inspired algorithms encompass
evolutionary algorithms; swarm intelligence-based algorithms such as particle swarm
optimization inspired by the social behaviors exhibited by swarms of animals; and physics-
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based algorithms inspired by physical rules in nature, such as simulated annealing that
mimics steel annealing [7]. Several nature-inspired optimization algorithms, such as par-
ticle swarm optimization and the genetic algorithm, have been evaluated by the authors
to optimize polymer injection [7] and gas condensate reservoirs [9]. In [9], the authors
confirmed that nature-inspired algorithms outperform gradient optimization. However, the
main disadvantage of the solutions most often proposed in the literature, such as genetic
algorithms or other evolutionary methods, is the fact that they require thousands of simula-
tions. In solutions where the numerical simulation is used to evaluate the objective function,
convergence speed is the crucial parameter. Moreover, most of the research is carried out on
synthetic, significantly simplified reservoir models, for which these methods are performed
in finite time and give positive results. However, in the case of a real hydrocarbon reservoir
model with a high degree of complexity (resulting from the complex geological structure
and heterogeneity of the reservoir), the duration of a single simulation can take several
hours. For such cases, these methods are no longer applicable due to their duration.

In this study, a novel procedure that automatically optimizes hydrocarbon reservoir
and underground gas storage well control is proposed. The idea of the developed solution
is to determine well control based on an auto-adaptive parameterized decision tree. The
limit values for the particular attributes of the decision tree are replaced with parameters
that are optimized with the use of state-of-the-art machine learning. During optimization,
the objective function is computed with the numerical reservoir simulator. The auto-
adaptive decision tree is linked to the reservoir simulator and the optimization tool by the
novel procedure proposed in this paper. In contrast to existing solutions, the developed
algorithm ensures high time and computational efficiency, enabling its application to real
industrial problems.

This work is divided into six parts. The first part is an introduction to the subject of
the paper and an introduction to the theoretical basis of industrial process control. Then,
the problem of optimal well control is defined, and the possibility of applying potential
solutions to the analyzed problem by using artificial intelligence is analyzed. In part three,
the algorithm developed for determining well control based on auto-adaptive decision
trees is described. In the next part, an example of the developed solution is presented. The
fifth part contains the results and discussion, including potential limitations. The last part
contains the conclusions.

2. Optimal Well Control
2.1. General Overview of the Optimal Well Control Problem

The use of classical methods to optimize well control is difficult because, in this
case, it is impossible to link the decision variables to the optimized quality indicator in a
functional manner [10]. This is due to the properties of hydrocarbon reservoirs, which are
characterized by a complex geological structure with complicated geometry and spatial
heterogeneity of petrophysical parameters, as well as the multidimensional physics of
fluid flow, which complicates the description of the system’s dynamics [11]. Hence, the
processes taking place in hydrocarbon reservoirs are modeled by reservoir simulators,
which forecast reservoir behavior. Reservoir simulators are based on the following general
equation describing the dynamics of a hydrocarbon reservoir [12]:

dx
dt

= f
(

x,∇x,∇2x, u
)

(1)

where

x state vector,
f function describing the reservoir condition,
u control.

The form of the state vector and the shape of the function describing the state of
the reservoir depend on the mathematical model adopted to describe the dynamics of
the reservoir.
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The purpose of an optimal reservoir or UGS control is to define a production strategy
that minimizes or maximizes the quality indicator, taking into account the limitations
resulting from the physical nature of the problem presented in the form of differential
equations describing the dynamics of the analyzed system [12]. The optimization objective
may include: minimizing water production, maximizing the calorific value of the extracted
gas, or maximizing the economic value of the project. Therefore, the problem discussed
in this paper is the selection of such control that allows the extremization of the adopted
objective function.

In the case of hydrocarbon reservoirs, there are two possible well control options.
One of them is to maintain a constant top hole pressure (THP), which results in variation
in well performance. The second option is to assume a constant flow rate, which causes
pressure variability. Reservoir control depends on the functions controlling individual
well performance:

u(t) = q(t) ∨ u(t) = p(t) (2)

where

u(t) well control function,
q(t) well performance as a function of time,
p(t) THP as a function of time.

During the production of a reservoir/UGS, the flow rates of the wells change over
time. For practical reasons, the wells’ performance changes over a period of time, during
which it is kept constant. As a result, the reservoir/UGS control can be presented in the
form of a vector including controls in subsequent periods:

ur =
(

ur1 ur2 . . . urM

)
(3)

where

ur reservoir/UGS control,
M number of time steps.

Moreover, the control of the reservoir/UGS depends simultaneously on the operation
of all wells located there. Thus, the reservoir/UGS control problem consists in determining
the control of all wells in each time step and takes the following form:

uri =


u1i
u2i
...

uWi

 (4)

where

uri control of the reservoir/UGS in a particular time step,
ui well control in a particular time step,
W number of wells located in the reservoir/UGS.

Taking into account the above assumptions, optimization of the reservoir/UGS opera-
tion is aimed at determining optimal control in the following form:

ûr =


û11 û12 . . . û1M
û21 û22 . . . û2M

...
...

. . .
...

ûW1 ûW2 . . . ûWM

 (5)

where

ûr optimal control of the reservoir/UGS,
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û well optimal control,
M number of time steps,
W number of wells located in the reservoir/UGS.

Moreover, when determining the optimal control of a reservoir/UGS, it is necessary
to take into account inviolable constraints in the form of:

• bottom hole pressure (BHP) in each of the wells,
• allowed performance of each well, i.e., the maximum flow rate with which a given

well can produce reservoir fluids.

2.2. Potential AI-Based Solutions to the Optimal Well Control Problem

As the use of commonly known methods of determining optimal control to solve the
problem of optimal well control is limited, it is justified to consider the possibility of using
artificial intelligence methods. To solve the analyzed problem, various decision models
based on a wide variety of artificial intelligence techniques can be used. The solutions most
suited to the analyzed problem are discussed below.

2.2.1. Support Vector Machine

A possible solution to the problem of well control is to initially select a very large
number of features of the reservoir simulation model, and then build a model that imitates
the behavior of the reservoir simulation. For this purpose, a support vector machine (SVM),
commonly used in regression and classification problems, could be applied. In the case
of regression, this algorithm allows determining the hyperplane around which the points
from the training set are as close as possible (the least squares method) [13]. This algorithm
can be effectively used for multivariate problems by applying a nonlinear transformation
(kernel) to the training data [14]. The kernel transforms the nonlinear input data into a
certain multidimensional space in which the data is arranged linearly [14]. In this solution
to the analyzed problem, linear regression regularization methods such as LASSO or ridge
regression could then be used to extract the most relevant features. LASSO minimizes the
absolute sum of the coefficients of the regression model (L1 regularization), whereas ridge
regression minimizes the sum of squared coefficients (L2 regularization) [15].

In the case of the analyzed problem, the issue with applying the discussed solution
would be the selection of initial features because the reservoir simulation model is char-
acterized by a large number of reservoir and production parameters. Selecting the most
essential features to be taken into account would be difficult and ambiguous. Moreover,
an additional problem would be the limited amount of historical data available, which
could lead to overfitting of the surrogate model. As a result, this would translate into low
reliability of the final results.

2.2.2. Deep Neural Networks

Another potential solution to the analyzed problem is the use of deep neural networks
that effectively solve difficult and complex problems for which traditional mathematical
methods are ineffective [16]. Deep neural networks are a key group of deep learning
algorithms. Deep learning is a new branch of machine learning that includes algorithms
that enable a more abstract representation of high-level features through the use of a
large number of layers of nonlinear transformations [16,17]. The successive layers of the
deep network represent the features ordered from the least to the most abstract. The
representation of higher-level features is created using many hidden layers connected to
the low-level features [17]. The discussed solution enables automatic extraction of features
that are important for a given problem based on a given dataset [17]. Traditional feature
extraction methods are often limited by the prior knowledge of experts, whereas deep
neural networks can select the most important features without their participation.

In the case of the analyzed well control problem, it would be possible to learn the deep
network of interesting features of the reservoir simulation model based on historical data.
If the deep network model were to mimic the simulation, the final layer of the deep neural
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network could be torn off and the rest of it would constitute the feature model. Then, a
layer that returns performance for each well could be added to such a model. In such a
case, the network would make control decisions in a given time step based on the most
important features of the reservoir simulation model that had been learned previously.
However, deep neural networks have several major disadvantages. The biggest one is that
the greater the number of hidden layers, the greater the number of parameters need to be
learned. Thus, a very large amount of training data is required, which is often difficult
to obtain for a real object. When many layers are trained on a small amount of data, the
network overtrains very quickly, losing the ability to generalize, which negatively affects
the final results.

2.2.3. Convolutional Neural Network

A possible solution is also the use of a convolutional neural network, the idea of which
is to filter the input signal to discover the characteristics of the input data. The purpose of
the convolution operator used is to capture the neighborhood features of a given element by
moving the filter (weight matrix) over the input signal within a smaller window [18]. In the
case of convolutional neural networks, not all neurons of subsequent layers are connected,
which reduces the number of network parameters [17]. The convolutional network consists
of a convolutional layer, which is a set of filter maps, a pooling layer, the task of which is
to reduce network size by calculating simple activation statistics, and a full (output) layer,
which, based on the discovered features, provides conclusions adequate to the analyzed
problem [18].

In the case of the analyzed problem, the output of the convolutional network would
represent the features of the simulation model. This convolutional network output would
be the input to the next network, which would select the performance of production wells
based on these characteristics. In addition, the advantage of the discussed solution is the
ability to check the vicinity of the sample, which would allow reacting to the situation near
the well. However, despite the advantages of a convolutional network, the interpretation of
its parameters is difficult. For the analyzed problem concerning a real object, the physical
interpretation of the chosen decision model is essential. In addition, there is still the
problem of the finite amount of historical data on which the network would learn, which
could lead to overfitting of the network.

2.2.4. Decision Trees

Another potential solution to the analyzed problem is the use of decision trees. In
the internal nodes of the decision tree, there are individual attributes whose limit values
are assigned to the branches, whereas the possible inference results are contained in the
leaves of the tree [19]. The path from the root of a decision tree to a specific leaf is a
conjunction of the conditions determining the decision. ID3 is the most famous decision
tree learning algorithm, which enables automatic generation of a decision tree based on a
labeled dataset [19]. The selection of subsequent attributes is made based on the greatest
information gain.

Due to the practical limitations related to the production of petroleum reservoirs/UGS,
it is sufficient for the decision model to determine the control of a single well in a particular
time step. Then, such a decision model can be used for each well located on a given
reservoir/UGS during all time steps. Decision trees constitute a solution that is well suited
to the described situation. They represent a structured scheme enabling easy interpretation
of the physical basis of the decisions made. At the nodes of the decision tree, there could be
attributes such as the reservoir pressure and leaves that could define control.

However, the direct application of the algorithm generating the decision tree would
be difficult due to the large number of time-varying attributes that could be analyzed.
Moreover, historical control decisions are most often made solely based on the operator’s
knowledge. Thus, control based on the decision tree generated using such historical data
would also not be optimal.
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Therefore, the structure of the decision tree would have to be developed based on
engineering experience and good industrial practices that would enable a fairly accurate
identification of the attributes influencing the decisions made. The problem with this
approach would be how to select the limit values for decision tree attributes. Making
decisions about their values based on engineering knowledge and experience does not
guarantee the determination of optimal control.

2.2.5. Parameterized Decision Trees

A concept similar to the discussed decision trees, but enabling the elimination of the
problem resulting from arbitrary selection of the limit values for decision tree attributes,
is the use of parameterized decision trees (Figure 1). Parameterization by replacing the
limit values assigned to tree branches with parameters enables the optimization of decision
conditions. Artificial intelligence methods can be used to optimize tree parameters, in par-
ticular machine learning algorithms, enabling the automatic determination of parameters
of a given decision model.

Figure 1. Parameterized decision tree diagram.

The discussed solution could be successfully used for well control due to its versatility
and simplicity of interpretation. In addition, this method allows the enrichment of engineer-
ing knowledge and good industrial practices used to develop a decision tree structure using
artificial intelligence methods that allow the selection of optimal limit values of attributes,
which would improve the quality of decisions. Moreover, the advantage of the discussed
solution is the possibility of using the decision tree constructed for a given problem even
in conditions different from the base ones, through its reconfiguration consisting of the
selection of the optimal limit values of the attributes under changed conditions.

A complication is the fact that reservoir simulations are used to calculate the value
of the objective function when optimizing the operation of reservoirs/UGS. Moreover,
commonly used optimization methods require a very large number of iterations. Therefore,
the possibilities to use artificial intelligence methods that enable the optimization of param-
eters, such as genetic algorithms, are limited due to the long evaluation time of a single
simulation of a real reservoir.
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2.2.6. Model-Based Sequential Algorithm Configuration

A method designed to solve “black box” problems with high computational cost
is the sequential configuration of algorithms based on search space [20]. The algorithm
configuration procedure consists in adapting the existing general algorithm to the given
problem, allowing the replacement of the expert’s attempts by automatic determination
of algorithm parameters [21]. The use of surrogate models in the optimization process
speeds up the calculation, and the use of the sequential strategy improves the quality of
the surrogate model during optimization [21,22]. The discussed method is characterized
by high calculation efficiency due to the use of adaptive sampling, in which parameter
values are selected based on the criterion of expected improvement of the solution [22].
These parameters balance the exploration of the search space to improve the quality of the
surrogate model and the exploitation of this model to improve optimization [22].

Based on the discussed method, an optimization tool named Sequential Model-based
Algorithm Configuration (SMAC) was developed. SMAC learns from the results collected
during optimization which parameter values have a greater chance of improving the quality
of the solution. Based on user-defined domains of decision variables (parameters of a given
model) and their initial values, this tool repeats the three main steps in each iteration [20,21]:

• builds a model of the search space in the form of a random forest, based on the data
collected so far,

• selects such parameter values which, based on the constructed model, enable the best
improvement of the quality of the solution, i.e., those that are expected to be good and
those that are located in the area that has not yet been tested,

• determines the value of the objective function using the target algorithm, which
enables the determination of the exact value of the quality index for a given set of
parameters, thus creating a new dataset.

The result of SMAC is a set of parameter values of a given model that minimizes a
given quality [20].

Sequential configuration of the algorithms based on search space is a potentially well-
suited solution to the well control optimization problem. Due to the use of a surrogate
model limiting the number of evaluations of the target algorithm itself, the reservoir
simulation would be run in each iteration only for initially optimized parameters, which
would reduce computation time. In the case of the oil and gas industry, most model-based
solutions consist of a complete replacement of the reservoir simulation with a surrogate
model (most often in the form of an artificial neural network). However, such an approach
does not guarantee the correctness of the calculations performed. Thus, an additional
advantage of the discussed method is the fact that the solutions selected as potentially
optimal would be evaluated directly with the use of a reservoir simulation mapping the
behavior of the reservoir with high accuracy.

Moreover, the combination of the discussed concept of parameterized decision trees
with the SMAC optimization tool would constitute a clear and computationally effective
procedure for optimizing reservoir/UGS control [1,23].

3. Proposed Solution to Optimize Well Control

In this study, the combination of a parameterized decision tree with the SMAC op-
timization tool linked directly to the ECLIPSE reservoir simulator is proposed to solve
the reservoir/UGS control problem. Determination of control based on the decision tree
enables its unambiguous physical interpretation. SMAC determines optimal values of
the parameters assigned to tree branches at a low calculation cost. The use of a highly
complex reservoir simulation model to calculate the value of the quality indicator during
the optimization process, instead of relying solely on the surrogate model, increases the
reliability of the obtained results. The proposed solution is a new concept of auto-adaptive
decision trees—parameterized decision trees that automatically adjust to a specific case.
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3.1. Automation of Control Determination

As in the proposed solution, the decision tree limit values are changed by parameters;
the reservoir/UGS control system is characterized by incomplete initial information. To
automatically determine the control, an extreme control system has been developed. It
finds the optimal settings of the controller parameters, which in the analyzed case is a
decision tree.

The extreme control system enables the automatic determination of the operating point,
which is extreme on the characteristic showing dependence of the given quality indicator
on the tuned parameters. In such systems, there is no explicit input signal, and the change
of the control signal is to keep one of the output signals at the minimum or maximum
value [2]. The extreme control system is obtained by supplementing the conventional
control system with an optimizing element, to automatically select the optimal values of
the controller, parameters may use not only information about the quality indicator value
but also about [2]:

• output—y,
• control—u,
• noise—z.

The implementation of this type of control in a closed-loop system does not require
the knowledge of noise values, which is a big asset in the case of real industrial processes.
The diagram of a closed-loop extreme control system, in which the quality indicator is
related to the dynamics of the object, and the goal is to search for the optimal settings of
the controller parameters, is presented in Figure 2.

Figure 2. Closed loop extreme control system with optimization of the controller parameters.

The main part of the presented diagram is an optimizing element (automatic opti-
mizer), which examines the effect of changes in the value of the control signal on the quality
indicator J and changes it to achieve the maximum or minimum of the objective function [2].
Such an automatic search method reduces the necessary initial information, as the auto-
matic optimizer collects the necessary information about the search space by examining the
object’s response to a trial input signal [2]. However, in the case of real industrial processes,
it is often impossible to use the real object to determine optimal working conditions. In such
cases, the object model in the form of a system of equations or simulation of the object’s
behavior is used, and only the obtained results are transferred to a real industrial object [2].

Due to the presented characteristics of extreme systems, they are a good representation
of the developed solution. For the considered reservoir/UGS control problem, consisting
of the determination of well control, a closed-loop extreme control system was constructed,
as presented in Figure 3. In the proposed solution:

• the real object model is used in the form of a reservoir simulation model (reservoir
simulator ECLIPSE),
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• the operation of the reservoir/UGS during a single simulation depends on the control
u in the form of the flow rate of all operating wells,

• a parameterized decision tree is used as the controller,
• the control of each well depends on the values of the tree attributes a returned by the

simulator at each time step,
• the decision tree parameters p are processed by the automatic optimizer,
• the SMAC tool is used as an automatic optimizer,
• the SMAC tool extremizes the quality indicator J,
• the procedure calculating the quality indicator J is implemented directly into the

ECLIPSE reservoir simulator so that one of the output values of the object model is
the value of the objective function.

Figure 3. Diagram of the constructed closed-loop extreme control system.

Thus, in the proposed solution to the reservoir/UGS control problem, control of
each well in the reservoir is determined. At each time step of the reservoir simulation,
reservoir/UGS control is determined based on the parameterized decision tree, and it is
valid in the next time step. The optimizer (SMAC tool) receives the value of the quality
indicator at the end of the entire reservoir simulation. Based on this value, the SMAC tool
returns the next set of decision tree parameters. After performing the assumed number of
iterations, the decision tree parameter values that maximize the given quality indicator
are determined.

3.2. Implementation of the Developed Solution

To automatically determine reservoir/UGS control, the developed extreme control sys-
tem, which combines a parameterized decision tree, the ECLIPSE reservoir simulator, and
the SMAC optimization tool, is implemented in the developed solution using the Python
programming language and the internal programming option offered by the ECLIPSE
reservoir simulator.

Internal programming in the ECLIPSE reservoir simulator enables a direct declaration
of the procedure for calculating the quality indicator. In the developed solution, it is
also used for the direct implementation of a parameterized decision tree in the simulator.
After declaration of the tree parameters, which are updated in subsequent iterations of
the developed procedure, a set of actions—that are triggered when the conjunction of
conditions assigned to tree branches is met—is defined.

The element requiring the development of an external IT procedure is the combination
of the SMAC optimization tool and the reservoir simulator as well as the connection of the
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remaining elements of the developed extreme control system. Integration of the tools used
in the proposed solution was carried out using the Python programming language. The
following actions were programmed in the developed solution:

• reading the parameter values returned in subsequent iterations by the SMAC tool,
• saving read parameter values to a file loaded into the reservoir simulator,
• automatically running the reservoir simulation with updated decision tree limit values,
• loading the output file from the reservoir simulation,
• reading the value of the quality indicator from the loaded output file,
• passing the read value of the objective function to the SMAC optimization tool.

In practice, the developed solution begins by preparing the SMAC tool configuration
file, containing, among other things, domains and starting values of the decision variables.
The configured SMAC tool is then run. At each iteration, this tool calls a developed
computer program written in the Python programming language.

Arguments of the developed program constitute the values of the decision tree param-
eters. This program reads the values of the parameters provided by the SMAC tool and
runs the updated reservoir simulation. The simulation iteration depends on the well control
determined at each time step based on the configured decision tree and attribute values
calculated by the simulator. At the end of the simulation, the value of the quality indicator
for a given control is calculated. The returned value of the quality indicator is transferred
by the developed program to the optimization tool and is the basis for determining the
next values of the decision tree parameters.

After performing the assumed number of iterations, the developed solution, which
automatically improves the quality of the reservoir/UGS control, returns the values of tree
parameters at which the wells are controlled in a way that extremizes the given quality in-
dicator. Therefore, the developed procedure enables full automation of decision tree param-
eter optimization, which translates into automatic optimization of reservoir/UGS control.

4. Case Study—Underground Gas Storage with High Nitrogen Content

To confirm the effectiveness of the developed solution to optimize control, an example
of its application was carried out on a simulation model of underground gas storage with
unconventional cushion gas with high nitrogen content. In the analyzed case, gas with
a high methane content is stored in the depleted nitrogen-rich natural gas reservoir. The
presented nitrogen-rich UGS is only an example of a production problem that requires
control optimization and can be solved with the proposed approach. It needs to be empha-
sized that the developed methodology is general and applicable to all kinds of UGS and
hydrocarbon reservoirs.

4.1. Object and Model Definition

The reservoir in which the analyzed UGS was built has a complicated geological
structure and the shape of an approximately semicircular elevation. The reservoir rock is
Zechstein Dolomite with permeability 5–160 mD and porosity 2–22%. It is characterized by
a double porosity system with a porous rock matrix and a fracture system. The area of the
reservoir is 24 km3 with an effective thickness 31–39 m. The initial reservoir pressure was
164 bar. The primary geological resources of the reservoir were estimated at 11.9 billion m3.
The native gas is nitrogen-rich, with an original nitrogen content of 30.7%.

After 23 years, the reservoir was converted into UGS. During this period 7.8 billion m3

of nitrogen-rich gas was recovered, which equals 65.5% of resources. The remaining
4.1 billion m3 is a cushion gas, which maintains pressure in the UGS and controls the
movement of reservoir water [24]. The analyzed UGS is used to compensate for seasonal
fluctuations in the demand for high-methane gas. Gas injection and withdrawal are
performed with the use of 12 regularly distributed wells. Some of them were used during
the reservoir production period, and some were drilled after the reservoir was converted
into UGS. The analyzed UGS has been operating for 27 years, and initially its working
capacity equaled 0.6 mld s·m3. After 10 years of operation, the working capacity was
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increased to 1.2 mld s·m3. The most important parameters of the storage installation are
included in Table 1.

Table 1. Parameters of the analyzed storage installation.

Parameter Value

working capacity 1.2 mld s·m3

maximal injection rate 9.6 mln s·m3/day
maximal withdrawal rate 14.4 mln s·m3/day

nominal injection time 150 days/year
nominal withdrawal time 110 days/year

The simulation model of the reservoir in which the analyzed UGS is located was
made with the use of a compositional simulator ECLIPSE 300 (Schlumberger Limited,
Houston, TX, USA). It includes a three-component reservoir fluid containing hydrocarbon
components from C1 to C2 and also N2. The reservoir simulation model consists of
7920 blocks defined by the coordinates of their vertices and includes six layers. As the
reservoir rock is characterized by double porosity, the simulation model is divided into two
identical regions (one reflecting the properties of the rock matrix and one of the fracture
system). The reservoir model was created based on data collected from wells located on
the reservoir as well as seismic records and then calibrated to historical production data.

4.2. Parameterized Decision Tree Model Definition

The considered UGS is an object that specifically requires optimization, as it stores
high-methane gas while the cushion gas is nitrogen-rich. In the injection cycle, nitrogen-rich
gas is displaced into further parts of the structure, but during withdrawal it flows to the
wells, reducing the quality of the produced gas. As a result of the undesirable mixing of
high-methane injection gas with nitrogen-rich native gas, the gas withdrawn from the UGS
is of lower quality than the injected gas. The quality of the produced gas is significantly
influenced by the UGS control method. The UGS should be controlled in such a way as to
produce gas of the best quality, i.e., the highest energy.

Therefore, the problem of optimal control of the analyzed UGS is to determine the con-
trol that maximizes the total amount of energy that can be obtained from the gas produced
during the withdrawal cycle, subject to the limitations in the form of differential equations
describing the dynamics of the reservoir in which the storage is located. The simplified
mathematical model of the analyzed optimization problem takes the following form:

Ek(u) =
D

∑
j=1

S

∑
i=1

Ciyi,j,kuj,k (6)

J(u) =
W

∑
k=1

Ek(u) (7)

J(û) = max
u

J(u) (8)

where

Ek energy contained in gas withdrawn from k-th well,
J total energy contained in gas withdrawn from storage, objective function,
uj,k k-th well flow rate on the j-th day (control),
û optimal storage control,
Ci heat of combustion of the i-th component of the withdrawn gas,
yi,j,k mole fraction of the i-th component in the withdrawn gas at the k-th well on the

j-th day,
W number of wells,
S number of components in the withdrawn gas,
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D number of days in the withdrawal cycle.

In the case of the analyzed UGS, the three main components are methane, ethane, and
nitrogen. Thus, the higher the nitrogen content, the lower the mole fraction of hydrocarbon
components in the withdrawn gas mixture. Moreover, the heat of combustion of methane
is 39.831 MJ/m3, of ethane 70.330 MJ/m3, while nitrogen’s is zero. Therefore, increasing
the mole fraction of nitrogen reduces the heat of combustion of the withdrawn gas. Thus,
the nitrogen content directly affects the amount of energy that can be obtained from the gas
produced during withdrawal. To maximize energy, the gas withdrawn from the storage
must have the lowest nitrogen content possible.

Based on the conducted analysis of the behavior of the considered UGS during his-
torical withdrawal cycles, a parameterized decision tree was developed, as presented in
Figure 4. The presented diagram describes the decision-making process that determines
the control of a given production well applicable to each subsequent day of the withdrawal
cycle. The decision tree structure was based on analysis of the UGS control strategy used
thus far, based on the engineering experience and practice of the operators.

Figure 4. Developed parameterized decision tree.

In the proposed decision tree, nitrogen content is the most important factor influencing
the total amount of energy that can be obtained from the withdrawn gas. Depending on
the mole fraction of nitrogen in the gas mixture produced from the well, the production
wells have been divided into three groups:

• low nitrogen content, the mole fraction of nitrogen in the withdrawn gas is greater
than zero but lower than the value of p1,

• medium nitrogen content, the mole fraction of nitrogen is greater than or equal to the
value of p1 and less than p2,

• high nitrogen content, the mole fraction of nitrogen is between p2 and the total
nitrogen content.

In the proposed control scheme, the relationships that determine the control of a well
belonging to a given group have been assigned to individual groups of wells.

When the gas withdrawn from a given production well has a high nitrogen content,
its performance is reduced by a percentage corresponding to the value of p3:

qi+1 = (1− p3)qi (9)

where

qi+1 flow rate of the well in the next time step,
qi flow rate of the well in a given time step.
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If the mole fraction of nitrogen in the produced gas is at a medium level, the perfor-
mance of such a well in the next time step remains unchanged:

qi+1 = qi (10)

where

qi+1 flow rate of the well in the next time step,
qi flow rate of the well in a given time step.

The output of wells with low-nitrogen gas is increased. Due to the fact that the volume
of gas withdrawn daily from storage is an imposed value, the increase in the output of
these wells depends on the control of other production wells. In this case, three situations
can be distinguished, depending on the size of the group of high-nitrogen wells:

• if there are no high-nitrogen wells in a given time step, then the performance of the
wells in the analyzed group remains unchanged (Equation (10) is applied).

• if there are high-nitrogen wells and no low-nitrogen wells in a given time step, the
flow rate of all wells is increased. The difference between the assumed daily output
from the UGS and the volume of gas that could be withdrawn by the remaining wells
after decreasing the output of high-nitrogen wells is evenly distributed:

qi+1 = qi +
∆Q
W

(11)

where

qi+1 flow rate of the well in the next time step,
qi flow rate of the well in a given time step,
∆Q the difference between the assumed daily production from the UGS and the

volume of gas withdrawn by the remaining wells (those with medium and high
nitrogen content),

W total number of production wells located in the UGS;

• at each time step in which there are wells with high and low nitrogen content in
the produced gas, the difference ∆Q is distributed evenly between the wells in the
analyzed group:

qi+1 = qi +
∆Q
N

(12)

where

qi+1 flow rate of the well in the next time step,
qi flow rate of the well in a given time step,
∆Q the difference between the assumed daily production from the UGS and the

volume of gas withdrawn by the remaining wells (those with medium and high
nitrogen content),

N number of production wells with low nitrogen content in the gas withdrawn from
the storage at a given time step.

In the proposed solution, the performance of all production wells located in the UGS
is dependent on their share of the total production. The initial shares of all wells are
proportional to their productivity indexes. Then, on each day of the withdrawal cycle, well
rates are automatically updated according to the proposed decision tree and the presented
mathematical relationships. The developed decision scheme determines the withdrawal
process while maintaining the assumed total daily production, which is essential from a
practical point of view. To optimize gas withdrawal, the value by which the performance
of wells with high nitrogen content should be reduced and the limit values separating
individual groups of wells have been replaced by parameters determined by the SMAC
optimization tool.
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5. Results and Discussion
5.1. Reservoir Results

As a result of the application of the developed solution, the time-varying control of
the analyzed UGS was determined automatically. The performance of the production wells
for each day of the withdrawal cycle was determined based on the optimized decision
tree. These performance values guarantee maximization of the energy obtained from the
withdrawn gas.

To illustrate the effectiveness of the developed procedure and validate the optimization
results, application of the developed methodology was performed on the historical with-
drawal cycle performed on the analyzed UGS. This allowed historical data to be compared
with the optimization results obtained for the same cycle. The most important parameters
related to the analyzed problem were compared, i.e., the total nitrogen content in the gas
mixture withdrawn from the UGS and the amount of energy that can be obtained from
the gas produced during the analyzed withdrawal cycle. To present the computational
efficiency of the developed procedure, the change in the objective function during the
optimization process was also analyzed.

The domains of individual parameters of the developed decision model and their
initial values, constituting the starting point in the process of UGS control optimization,
are presented in Table 2. Since p1 and p2 represent the mole fraction of nitrogen in the
produced gas, categorizing individual groups of wells, their values theoretically range
from 0 to 1. The p3 parameter, which specifies the percentage by which the performance
of wells with high nitrogen content should be reduced, can also take values from 0 to 1.
However, in the developed solution, both the exact domains of the parameters and their
initial values were determined based on the simulation tests performed and the analysis of
historical data.

As a result, the domains of parameters were limited only to the technologically justified
scope, which made it possible to reduce the search space and for faster convergence of
the developed IT procedure. Additionally, a condition that p2 cannot take a lower value
than p1 was defined. This is connected to the fact that these parameters correspond to the
values separating groups of wells with increasing nitrogen content in the produced gas.
The definition of an additional condition concerning the relationship between parameters
also limits the space of possible solutions.

Table 2. The domains and initial values of the parameters of the developed decision model.

Parameter Domain Initial Value

p1 0.02–0.05 0.030
p2 0.02–0.05 0.037
p3 0–0.5 0.100

The optimized decision tree parameters were determined after only 100 iterations of
the developed procedure. Such a high efficiency of the developed solution was achieved
thanks to the limited parameter domains, the additional condition regarding the relation-
ship between the parameters, and the selection of initial values guaranteeing a potentially
good quality of the solution. As a result of the optimization of gas withdrawal, the values
contained in Table 3 have been assigned to the defined parameters of the decision tree.

Table 3. Optimized values of decision tree parameters.

Parameter Optimized Value

p1 0.0212
p2 0.0347
p3 0.4902
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Although the initial values of the parameters determined based on the simulation
tests suggested the best solution, only p2 was slightly changed. In the optimization process,
the limit value separating the group of wells with low nitrogen content in the produced
gas was reduced. Hence, more wells were classified into the group with medium nitrogen
content. In addition, high-nitrogen well output was significantly decreased. The difference
between the initial and final values of the decision tree parameters confirms the importance
of applying the developed optimization procedure.

In addition, the developed procedure rapidly increased the value of the objective func-
tion, as illustrated in Figure 5. Beyond 80 iterations, the quality of the solution improved
only slightly. Moreover, the quality indicator (energy obtained from the gas produced
during the analyzed withdrawal cycle) after 100 iterations is very similar to that obtained
after 50 iterations. Thus, even such a small number of iterations could potentially be enough
to effectively determine an approximately optimal solution. Comparing this result with the
nature-inspired optimization algorithms evaluated by the authors in [7,9], such as particle
swarm optimization and the genetic algorithm, the result obtained in this study confirms
that the optimization tool used converges very quickly. As in the proposed methodology,
the numerical simulator is used to evaluate the objective function (resource/time intensive
step); convergence speed is the crucial parameter. For the optimization method used, the
greatest increase in the objective function was observed in the initial iterations. Therefore,
it outperforms the analyzed nature-inspired optimization algorithms, as, even with the
limited number of iterations, the final results were more robust. This confirms the high
computational efficiency of the proposed procedure for determining optimal well control.
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Figure 5. Change of the quality indicator in subsequent iterations.

5.2. Model Performance in Contrast to Expert Knowledge

The influence of the developed solution on the total nitrogen content in the gas
produced from the storage during the analyzed withdrawal cycle is presented in Figure 6.
As a result of the optimization of the control of the analyzed historical cycle, the total
nitrogen content in the produced gas decreased by 2.4%. During the historical withdrawal
cycle, the average heat of combustion was 38.72 MJ/m3, while, thanks to the reduction of
nitrogen content in the produced gas, it increased to 39.06 MJ/m3. The increase in the heat
of combustion of the produced gas directly influences the increase in energy that can be
obtained during the gas withdrawal cycle.
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Figure 6. Influence of the developed control on the total nitrogen content in the gas withdrawn from
the analyzed UGS.

Moreover, application of the developed solution made it possible to increase the energy
efficiency of the analyzed UGS in relation to historical data. The influence of the developed
control on the energy withdrawn from storage during the analyzed cycle is presented in
Figure 7. The amount of energy withdrawn from storage during the historic withdrawal
cycle increased by 2.4% for the same volume of gas produced. In the case of the analyzed
UGS, this value translates into 578 mln MJ of energy. Assuming the energy price at the level
of 0.006 EUR/MJ, the use of the developed method to automatically optimize UGS control
allowed for an increase in the value of gas produced during a single withdrawal cycle by
3.5 mln EUR. It needs to be taken into account that the analyzed UGS is a small object used
to illustrate the idea of the proposed method. In the case of large objects, the increase will
be much greater. The analyzed example shows that even with a small object, the proposed
solution allows an energy increase, which translates into additional income. Moreover, this
additional income does not require any expenses, as the only modification introduced in
relation to the historical data is the change of well control. Hence, the application of the
proposed solution requires only the implementation of different gas production using the
existing infrastructure, machines, and systems.

The comparison of the gas production rate before and after optimization for two
exemplary wells is presented in Figure 8. The P1 well is one of the wells that was used
during the reservoir production period, and the P2 well was drilled after the reservoir was
converted into UGS. This is the reason why the flow rate of the P2 well is much greater than
that of the P1 well. It can be seen that the optimized flow rate for the P1 well is greater than
it was historically, but for P2 the proposed flow rate is smaller than what was performed
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by the operator. This shows that, thanks to the artificial intelligence-based method, even
non-intuitive solutions can be selected if they guarantee quality indicator optimization; this
could be difficult relying only on the decisions made by a qualified operator. It needs to be
highlighted that the technical and technological limitations that ensure safe UGS operation
were taken into account in the optimization process. Moreover, the proposed solution is
developed in such a way that ensures that the assumed flow rate from the entire UGS is
produced, and only the share of individual wells in total UGS output changes with time.
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Figure 7. Influence of the developed control on the energy obtained during the gas withdrawal cycle.

An important issue is that in the case of both analyzed parameters (Figures 6 and 7), the
difference between the optimized option and the historical data increases with the duration
of the gas withdrawal cycle. Therefore, a solution based on artificial intelligence methods
is more effective than the control defined by a qualified operator when the situation in
the UGS is more complicated due to increased nitrogen content around the production
wells. This is connected to the fact that solutions based on artificial intelligence methods
constantly optimize decisions, but the operator cannot cope as well with difficult and
non-intuitive situations. This confirms the sense of using innovative solutions based on
artificial intelligence and control theory to optimize industrial processes.

As historic USG control and quality (energy) data are available for the analyzed
withdrawal cycle, the results presented in Figures 6 and 7 can be treated as the verification of
the optimal results. Moreover, the optimization was performed on the reservoir simulation
model calibrated to the whole history of 23 years of the reservoir production and then
more than 20 years of UGS operation. Hence, it can be assumed that the results of the
control strategy proposed based on the optimized decision tree are in line with the expected
field application.
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Figure 8. Influence of the developed control method on the gas production rate from P1 well (top)
and P2 well (bottom).

5.3. Limitations and Recommendations

In the proposed solution, the structure of the decision model for a given problem is
developed manually because control based on a decision tree generated by an algorithm
based on artificial intelligence and historical data would not be optimal, as historical control
decisions are most often made solely based on the operator’s knowledge. On the one hand,
the use of engineering experience and good industrial practices allows for quite accurate
identification of the attributes influencing the decisions made. However, on the other hand,
it may be a limitation of the proposed solution, because this step is not automatic and
still depends on human knowledge. It is recommended to use engineering experience
and good industrial practice to develop a decision tree structure, and then select the limit
values for the decision tree attributes using the solution proposed in this article. Making
decisions about their values based on experience does not guarantee the determination of
the optimal well control, whereas optimization of the limit values of the parameters allows
optimization of the entire control.

Another limitation of the proposed solution is the fact that reservoir simulators are
used to calculate the value of the objective function when optimizing the reservoir/UGS
control. However, in the case of the reservoir/UGS control optimization problem, it is
impossible to link the decision variables to the optimized quality indicator in a functional
manner, which makes the use of simulators necessary. Moreover, the use of a highly
complex reservoir simulation model to calculate the value of the quality indicator increases
the reliability of the obtained results.

The advantage of the developed optimization procedure is that it is widely applicable.
In the case of the optimal well control problem, the developed optimization approach
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is used to optimize the parameters of the decision tree defining the well control. In this
way, any production problem requiring well control optimization can be solved, from
optimization of primary production, to more advanced production processes such as CCS-
EOR, as in [23]. It can be adopted also for any optimization problem related to reservoir
management, such as optimization of well design problem covered by [25]. It can be used
to enhance the recovery factor of the reservoir or reduce water production by finding
the optimal wellbore design, e.g., the shape and location of perforations. An additional
advantage of the proposed method is that the optimization tool is directly linked to the
reservoir simulator. It is not required in the proposed approach to link the optimization
tool with the reservoir simulator, it can be any model of the analyzed problem, from
simple mathematical models to complex numerical models. Thanks to that, the proposed
optimization procedure can be also adopted for any parameter estimation problem of any
model. In the case of adaptation of the proposed optimization procedure to other cases,
such as parameter estimation in history-matching of production data, as in [26], it can be
directly used to find optimal values for the parameters of the model/system.

6. Conclusions

In this work, a new concept of autoadaptive decision trees was proposed and im-
plemented. It enables automatic optimization of hydrocarbon reservoir and UGS well
control. The developed method combines a parameterized decision tree with the SMAC
optimization tool linked directly to the reservoir simulator. A parameterized decision
tree determines the reservoir/UGS control, a SMAC tool uses sequential configuration
of algorithms based on search space to optimize the decision tree parameters, and the
reservoir simulator models reservoir dynamics.

Automation of determining the control is ensured by the combination of all elements
of the developed algorithm (decision tree, reservoir simulator, and SMAC optimization
tool) using the Python programming language. The constructed algorithm and tools used
ensure high time and computational efficiency of the procedure, enabling its application
for real reservoirs/UGS. The potential limitation of the proposed method is the need for a
reservoir model, which is required to optimize well control.

To assess the effectiveness of the developed solution, it was used to determine the
control of UGS located in a depleted natural gas reservoir. The obtained results confirm
the benefits that can be obtained by using the created algorithm to optimize the control
of complex reservoir/UGS production processes. The total nitrogen content in the gas
produced in the analyzed withdrawal cycle decreased by 2.4% compared to historical data
based only on operator experience. As a result, the average heat of combustion of the
produced gas increased from 38.72 MJ/m3 to 39.06 MJ/m3, increasing the energy efficiency
of the analyzed UGS in relation to the historical data. The amount of energy withdrawn
from storage during the analyzed withdrawal cycle increased by 2.4% with the same
volume of gas produced. In the case of the analyzed UGS, this value translates into 578 mln
MJ of energy. Hence, the developed methodology allows the energy efficiency of UGS to be
increased and, as a result, more-sustainable energy management to be achieved. Moreover,
these benefits do not require any expenses, as in the proposed method only well control
is modified.
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