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Abstract: The environmental context causes the use of renewable energy to increase, with the aim of
finding alternatives to fossil-based products such as fuels. Biodiesel, an alternative to diesel, is now a
well-developed solution, and its production from renewable resources makes it perfectly suitable
in the environmental context. In addition, it is biodegradable, non-toxic and has low greenhouse
gas emissions: reduced about 85% compared to diesel. However, the feedstock used to produce
biodiesel competes with agriculture and the application of chemical reactions is not advantageous
with a “green” process. Therefore, this review focuses only on bioprocesses currently taking an
important place in the production of biodiesel and allow high yields, above 90%, and with very few
produced impurities. In addition, the use of waste oils as feedstock, which now accounts for 10%
of feedstocks used in the production of biodiesel, avoids competition with agriculture. To present a
complete life-cycle of oils in this review, a second part will focus on the valorization of the biodiesel
by-product, glycerol. About 10% of glycerol is generated during the production of biodiesel, so it
should be recovered to high value-added products, always based on bioprocesses. This review will
also present existing techniques to extract and purify glycerol. In the end, from the collection of
feedstocks to the production of CO2 during the combustion of biodiesel, this review presents the
steps using the “greener” possible processes.

Keywords: biodiesel; bioprocesses; waste oils; crude glycerol; purification; valorization

1. Introduction

The environmental context is resulting in the need to develop new technological
processes using renew5able resources due to the scarcity of fossil resources. Among the
many alternatives based on the use of renewable resources, particularly biomass, the
production of biodiesel from vegetable oils, or even animal fats, is nowadays widely
accepted throughout the world due to its origin. It is biodegradable, non-toxic and has low
greenhouse gas emissions [1]. However, the production of biodiesel creates competition
with agriculture, resulting in high costs due to the cost of raw materials [2]. For this reason,
it is important to focus on other feedstocks, constituting the five generations of biofuels,
excluding petroleum-based diesel [3].

Currently, the first and second generations, including edible and non-edible oil crops,
are the generations that compete with food and land treatment products (pesticides), re-
sulting in higher costs and greenhouse gas emissions. On the other hand, the fourth and
fifth generations, involving the use of algae and genetically modified crops, are a great step
forward. The biodiesel produced from these feedstocks is very expensive, compared to
petroleum diesel, and the production process requires considerable technological devel-
opment. Therefore, third-generation biodiesel, using waste cooking oils as feedstock, is
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currently the best option due to the low cost of this raw material and the lack of competi-
tion with foodstuffs. Moreover, this option represents a good solution to the problem of
recovering waste oils.

The impact of biodiesel from waste oils on engines and their performances must also
be considered [4]. The combustion characteristics of biodiesel from waste oils show that the
cylinder peak pressure value increases and the heat release rate and ignition delay period
decreases. For the engine performances, the brake-specific fuel consumption increases
while brake-specific energy consumption, brake power and torque decrease. The use
of biodiesel from waste oils reduces about 85% of gas emissions thanks to the decrease
in hydrocarbon, SO2, CO and smoke emissions in the exhaust. Nevertheless, CO2 and
NOx increase compared to diesel, depending on its composition. This information can be
confirmed with concrete results conducted by the GECCO company, which specializes in
food waste valorization, as part of the BIOHEC LIFE program [5] with three other partners:
Institut Charles Viollette, research laboratory in Lille University; Pour La Solidarité, think-
tank based in Brussels; and RREUSE, all social companies that specialize in waste reuse.
Table 1 shows results on exhaust gas measurements with two different biodiesels compared
to diesel. The first biodiesel, B30, is composed of 30% of fatty acid ethyl esters and 70% of
diesel and the second biodiesel, B100, is composed of 100% of fatty acid ethyl esters. The
diesel is composed of 7% of fatty acid methyl esters and is called B7.

Table 1. Results on exhaust gas measurements on biodiesel compared to diesel.

Exhaust Gases Measurements GECCO B30 vs. Gas Oil GECCO B100 vs. Gas Oil

Fine particles emissions (PM10) −46% −63%
Unburned products (HC) −37% −50%
Carbon monoxide (CO) −11% −18%
Nitrogen oxide (NOx) Similar +7%

This review will therefore focus on the most “green” and economical processes for
recovering waste oils to produce biodiesel. The biotechnological processes of biodiesel pro-
duction were reported in the first part. To complete this study, it is important to understand
these processes, including the influence of waste oils used on the used processes, i.e., the
impurities found in the waste oils and the impurities created during the reaction, as well as
the present separation and purification techniques. The second part will be largely devoted
to the impurities obtained, and more particularly to the by-product, glycerol. Indeed,
glycerol has great potential for producing high value-added products [6]. However, the
feasibility of converting biodiesel-derived glycerol must consider the impurities present
and their impact on this conversion. Thus, the following review will consider the influence
of impurities on glycerol quality and purification techniques. In the end, the biotechnologi-
cal pathways of glycerol and the impact of impurities will be explained. Figure 1 exhibits
the life cycle of oils through transformation into biodiesel and the valorization of glycerol
into high value-added products. This life cycle is also called “Carbon Neutral Cycle” for
biofuels due to converted plant source and emission with zero carbon dioxide. Indeed,
biodiesel offers the advantage of sustainability since the CO2 released on combustion will
be used again by nature for feedstock preparation [7].

Some results on a life cycle analysis realized by the GECCO company are exhibited in
Table 2. This life-cycle analysis starts with the waste oils collection following their pretreat-
ment, the biodiesel production and distribution, then the use of biodiesel. These results are
compared to gas oil and first-generation fatty acid methyl esters (FAME). To include this
analysis in the supply chain management, more parameters must be considered. Supply
chain management is the sequential arrangement or organizational functions, activities
and facilities required to produce and deliver a product or service [8]. The functions and
activities include different parameters such as purchasing, forecasting, inventory manage-
ment, information management, scheduling, development of websites/mobile applications,
delivery and customer service. Facilities, on the other hand, include production plants,
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warehouses, factories, distribution centers, retail outlets, delivering products or services
and offices. In the case of waste oils, especially waste cooking oils, the supply chain must
include convenient waste collection and sorting systems along with transporting facilities
for the waste feedstock to the biodiesel plants for producing waste-based biodiesel.
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Table 2. Life-cycle analysis on waste oils compared to gas oil and first-generation FAME.

Life Cycle
Analysis Results Gas Oil [9] Rapeseed

FAME [9]
Palm FAME

[9]
GECCO

FAEE
Variation
vs. Gas

Oil

Variation vs.
Rapeseed

FAME

Variation
vs. Palm

FAME

Global warming
(kg CO2 eq./MJ) 9.14 × 10−2 3.73 × 10−2 2.18 × 10−2 1.45 × 10−2 −84% −61% −33%

Human toxicity
(kg 1,4-DB eq./MJ) 4.12 × 10−1 −6.48 × 10−1 −6.46 × 10−1 −6.72 × 10−1 −263% 4% 4%

Eutrophication
(kg PO4 eq./MJ) 3.71 × 10−5 3.64 × 10−4 1.84 × 10−4 2.16 × 10−5 −42% −94% −88%

Non-renewable energy
(MJ primary/MJ) 1.25 4.31 × 10−1 2.71 × 10−1 3.45 × 10−1 −72% −20% 27%

DB: dichlorobenzene.
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1.1. Biodiesel Production Routes

There are different processes to convert oils or fats into biodiesel, such as transes-
terification, esterification, blending, cracking, microemulsion and pyrolysis. However,
transesterification is the most common method for biodiesel production [10]. This method
consists of the reaction between oils or fats and a short-chain alcohol. The biodiesel produc-
tion could be also realized by the esterification reaction when a high level of free fatty acids
is present (Figure 2) [11,12]. More recently, the hydroesterification process is attracting
attention because it allows the production of high-quality biodiesel. It combines the hydrol-
ysis reaction with the esterification reaction; this reaction also occurs at the same time as
transesterification, depending on the level of free fatty acids or water present [13]. Unlike
transesterification, hydroesterification does not involve pretreatment of oils, as the reaction
attacks the free fatty acids and the obtained glycerol is of high purity. The transesterification
reaction can be carried out by acid, basic or enzymatic catalysis [14]. There are very few
studies on acid catalysis due to high reaction times, the corrosion phenomenon, and the
difficulty of separating catalyst from the main product. However, this method is preferred
when the used oil has a low purity grade, which could be advantageous when using waste
oils, as demonstrated by Zhang et al. [14,15]. Regarding the catalysis in an alkaline medium,
reaction times can be thousands of times faster than acid catalysis and the reactions can
be carried out under mild conditions and lower energy consumption. On the other hand,
alkaline catalysts lead to excessive soap formation, which reduces the biodiesel yield. This
type of reaction is currently the most widely used at the industrial level [16]. Finally, the
use of enzymatic catalysis has increased for several years [17]. Indeed, like acid catalysis, it
is very suitable for oils with low purity, especially oils with a high level of free fatty acids,
since they can be directly converted into esters. Moreover, the reactions take place at mild
temperature and under atmospheric pressure. Another interesting point is that enzymatic
catalysis does not lead to the formation of many impurities, such as the formation of soaps.
Thus, the by-product, glycerol, is obtained with high purity. Disadvantages of enzymatic
catalysis include slow reaction times and sensitive enzymes for alcohols such as methanol,
which leads to enzyme deactivation and high cost. The reaction times, the corrosion phe-
nomenon using acids and the high cost of the enzyme make the alkaline reaction the most
suitable method for industrial processes.
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1.2. Current Market for Biodiesel from Waste Oils

Over the last decade, biodiesel production has increased significantly from 20 billion
liters in 2010 to 50 billion liters in 2020 (Figure 3) [18]. This represents an increase in
demand, because of which the price per hectoliter falls from more than USD 120 to USD 80.
On the other hand, this leads to a much higher consumption of vegetable oils, and more
broadly, raw materials competing with food. Thus, waste oils and fats appear to be an
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alternative to biodiesel produced by a source that is uncompetitive with food [19]. This
also helps to reduce costs of biodiesel production when enzymatic catalysts are used [20].
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Currently, the European Union and the United States represent, together, the largest
influencers of biodiesel demand [21]. In 2016, they produced nearly 44% of biodiesel. Some
countries, such as Indonesia, Brazil, and Argentina, expanded their use of biodiesel; on the
other side, biodiesel demand remained low in Central Asia and Eastern Europe as these
regions are either oil and gas producers or lack biofuel incentive policies for producers or
blending mandates for consumers. Policies such as tax exemptions, subsidies, fuel quality
standards, import tariffs and investment backing are driven by a combination of factors,
such as desires for increased energy security, environmental concerns and climate-related
targets, lobby groups, feedstock availability and so on. Thus, the biodiesel development
depends on each country policies, and different countries, such as India, China, Philippines,
Malaysia, Thailand, and other countries mentioned above, have been encouraging biodiesel
in their policies [22].

1.3. Current Glycerol Market and Applications

Glycerol, or propan-1,2,3-triol, also known as glycerin [23], is a colorless, viscous
and odorless soluble liquid [24]. The number of industrial applications of glycerol would
be more than 1500 [25], especially in cosmetics, pharmaceuticals and the food industry
(Figure 4). These properties mean that glycerol is used as a softener in resins and plastics,
but also as a lubricant, especially for the pharmaceutical industry. On the other hand,
glycerol is non-toxic, and its sweet taste makes it suitable for use in the food industry. As
glycerol is obtained from biodiesel, it contains various impurities which make it unusable in
the above-mentioned fields of application. As a result, two solutions are possible: purifica-
tion of glycerol to a high degree of purity to use in these application areas, or transformation
of glycerol into other high value-added products, with or without pretreatment.

Currently, the percentages of used raw materials have remained stable in recent years,
with waste oils accounting for around 10% of the basic resources for biodiesel production
(Figure 5) [26]. These data, dating from 2017, have changed over the last three years, as the
price for each compound varies over the years. The price of rapeseed oil has risen sharply,
while palm and soybean oil are cheaper. The production of biodiesel from palm oil and



Energies 2022, 15, 3381 6 of 30

soybean oil is expected to increase. However, for the current environmental situation, the
use of waste oils and fats is increasing. Moreover, the production of biodiesel from waste
oils is environmentally friendly, as it allows the recycling of waste oils and distributes
renewable energy by reducing pollution. It also configures a substitute for a quantity of
imported petrochemical compounds and lowers the cost of waste management [27].
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The massive and increasing production of biodiesel has resulted in significant increases
in glycerol levels. This dominance of glycerol production by the biodiesel industry, more
than three-quarters of production, has had a significant impact on the glycerol surplus [28].
Since 2005, the biodiesel market has taken over the production of glycerol: the production
of crude glycerol was more than 750 thousand tons, whereas in 2010, the production of
crude glycerol increased to more than 1.2 million tons [29]. This year, crude glycerol was
predicted to exceed 5 million tons [30,31]. This surplus production of glycerol led to a
decrease in crude glycerol prices. In fact, between 2005 and 2010, the price fell from nearly
USD 200 per ton to less than USD 70 per ton. Today, the price seems to vary around USD
100 per ton. At these low prices, the demand for glycerol is increasing considerably, so
the glycerol market is expected to recover and grow in the coming years. Moreover, with
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high-purity crude glycerol and the use of this many new fields, the future of glycerol is
very promising [32].

1.4. Advantages and Disadvantages

The benefits of biodiesel production from waste oils are numerous [33]. From an
environmental point of view, it is derived from renewable resources, especially waste
oils. The use of biodiesel instead of diesel produces 78% less greenhouse gases and less
particulate matter in the ambient air, thereby reducing the toxicity of air, which has a
positive effect on health. These properties make it non-toxic, biodegradable and free of
sulfur and aromatic content. Further, it is very safe for transport and does not require
engine modifications to be used. Biodiesel is more advantageous compared to diesel since
it does not involve drilling, transporting or refining steps, meaning that biodiesel can be
locally produced. However, some of the drawbacks of biodiesel are significant enough to
be exposed. It is less stable than diesel and may be more susceptible to oxidation, causing
corrosion of the fuel tank and other vehicle components. Biodiesel has a high degree of
oxygen, producing a higher amount of NOx, and is not resistant to low temperatures. In
addition, the use of biodiesel results in lower engine power, while its cost is higher.

2. Enzymatic Production of Biodiesel from Waste Oils
2.1. Enzymatic Transformation

In this section, the work performed on the biocatalytic transformation of waste oils will
be highlighted (Table 3). Only some of the most recent works will briefly be described to
compare results, but all works will be resumed in Table 3. Two categories will be exhibited:
biocatalysts used in the free state and biocatalysts immobilized on a support. Among
enzyme biocatalysts, lipases are known to be very effective to catalyze reactions such as es-
terification, hydrolysis, transesterification and aminolysis [34]. They have excellent catalytic
activity and stability in non-aqueous media and their regioselectivity and enantioselectivity
can be used for many applications in organic synthesis. The catalytic site of lipases is
composed of three amino acid residues, Serine (Ser), Histidine (His) and Aspartate (Asp),
which adopt a very precise spatial geometry to form the catalytic triad. Although lipases
have very different specificities, they all act through a mechanism involving the catalytic
triad. In recent years, there has been great interest in the use of lipases to produce biodiesel.
During the transesterification reaction, the lipase mechanism can be described according
to Figure 6 [35]. The first step of the reaction is to stabilize the serine alcohol through the
formation of an oxyanion, which then attacks the carbonyl group of the substrate, creating
intermediate 1. Then, the electrons making up the oxyanion are directed to the carbon
of the carbonyl group and the proton of the histidine is transferred to the diglyceride,
which is then released. The formed serine ester is reacted with alcohol to complete the
transesterification. Histidine nitrogen removes hydrogen from the alcohol forming the
alkyl oxide anion. The hydroxide group attacks the carbon of the carbonyl group, the
intermediate oxyanion is stabilized by hydrogen bonds (intermediate 2), the electrons
are repelled towards the carbon of the carbonyl group and the free fatty acid is formed.
The oxygen atom of serine then takes over the hydrogen atom located on the histidine to
re-establish the network of hydrogen bonds. Aspartic acid is used to draw a positive charge
from histidine until it is fully positive.

A major advantage of using enzymes as catalyst is that other compounds in waste oils,
such as water, free fatty acids or other solid impurities, do not influence the catalytic process
compared to alkaline or acid catalysts [36]. Enzymes allow the conversion of free fatty acids
into biodiesel, water in small amounts does not have an inhibition effect on the enzyme
and other solid impurities can be easily removed, e.g., by filtration or centrifugation.

Among recent works on free enzyme, Chang et al. [37] reached an 97% yield in esters
using Eversa Transform 2.0 lipase from a low-quality feedstock with high free fatty acids
content. The reaction took place at 40 ◦C for 24 h with a methanol to oil ratio of 4:1,
2 wt% of water and 0.2 wt% of enzyme. Using the same lipase, Eversa Transform 2.0,
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Wancura et al. [38] obtained 96.2% of esters yield in almost identical conditions: reaction
temperature of 40 ◦C, 0.7 wt% of lipase, 4.0 wt% of water, molar ratio methanol to oil of
6.3:1 for 8 h of reaction time. Despite the increase in the lipase concentration, water and
methanol, the difference in the reaction time could be explained by the quality of waste oil,
which is better here. Najjar et al. [39] used lipases from Kocuria flava to obtain an ester yield
of 83.08% under the following reaction conditions: 60 ◦C, 5 h, 1 mL of enzyme and molar
ratio methanol to oil of 2:1. More work is presented in Table 3 [40–51].
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These few recent publications show the efficiency of biodiesel production from waste
oils using free enzymes as a catalyst. The second part summarizes the works performed
with immobilized enzymes. These have advantages over free enzymes, including repetitive
reuse, simpler recycling and better stabilization of enzyme. However, immobilization
may affect enzyme properties such as pH dependance and thermostability; all properties
depend on the immobilization type and the carrier [52]. In addition, the use of carrier
brings disadvantages such as a higher price compared to free enzymes, damage during
stirring and inhibition caused by glycerol adsorption. These different parameters make the
choice between free and immobilized enzymes complex. Enzymes can be immobilized in
three different ways: binding to a support via covalent bonds, electrostatic interactions or
physisorption; encapsulation; or cross-linking [53]. In terms of carriers, the most common
examples are synthetic resins, biopolymers such as polysaccharides and inorganic solids
such as mesoporous silicas and zeolites [54]. López-Fernández et al. [55] immobilized the
lipase from Rhizopus oryzae on Purolite and obtained an ester yield of 100% within 16 h
of reaction. The point, as in most of the work on immobilized enzymes, was to study the
reuse of the biocatalyst. Here, there were up to five cycles. The reaction was performed at
30 ◦C with 0.2 wt% of catalyst and methanol to oil ratio of 2:1. Abdul Manab et al. [56] used
commercial immobilized Thermomyces lanuginose lipase to reach an ester yield of 69.3%
under the following conditions: 35 ◦C, 3:1 methanol:oil ratio, 0.5 wt% of enzyme and 3 h of
reaction time. Guimarães et al. [57] immobilized Eversa Transform 2.0 lipase via the CLEAs
method (cross-linked enzyme aggregates). A 90% ester yield was obtained over 72 h of
reaction time at 40 ◦C, with a molar alcohol to oil ratio of 6:1 and 2.13 U/g of oil content.
More work is presented in Table 3 [58–81].

These many different studies show that it is very important to consider each parameter
of the reaction, because each one may influence the lipase activity. Indeed, water, glycerol
or other impurities may have a positive or negative effect depending on the lipase used, but
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methanol always has an inhibitory effect on the enzyme. Most of the works involve the use
of a carrier, although the use of free enzymes has many advantages, such as low cost, non-
damage of carrier during stirring and non-inhibition by the adsorption of glycerol on the
carrier. Improved stability and repetitive reuse brought by the carrier mean that research is
focused on supported biocatalysts. In addition, the diversity of organic, inorganic or hybrid
materials and the possibility of developing innovative carriers gives researchers a wide
range of possibilities in terms of the design of supported biocatalysts. To conclude, free and
immobilized lipases both have advantages and disadvantages. It is therefore necessary to
determine the most important reaction parameters indicating the form of the used lipase.

Table 3. Work on the production of biodiesel from waste oils by enzymatic transesterification.

Pretreatment Lipase Acyl Acceptor Support Time
(h)

Temp.
(◦C)

Enzyme
Content

Water
Content

Yield
(%) Ref.

Free enzymes

None Eversa Transform
2.0

MeOH (4:1
MeOH:oil) - 24 40 0.2 wt% 2 wt% 97 [37]

Filtration Eversa Transform
2.0

MeOH (6.3:1
MeOH:oil) - 8 40 0.7 wt% 4 wt% 96.2 [38]

None Kocuria flava MeOH (2:1
MeOH:oil) - 5 60 1 mL None 83.08 [39]

None Thermomyces
lanuginosus MeOH (2eq.; 6 shots) - 12 37 0.2 wt% 3 wt% 96 [40]

None Thermomyces
lanuginosus

MeOH (3:1
MeOH:oil) - 24 30 0.3 wt% 2.5:1

H2O:oil 89.04 [41]

None Rhizopus stolonifer
Aspergillus tamarii

MeOH (3:1
MeOH:oil) - 48 30 10 wt% 10 wt% 92.3 [42]

None Eversa Transform MeOH (1.5 eq.) - 24 45 0.3 wt% 1.5 wt% 94 [43]
None Candida antarctica

Rhizomucor miehi EtOH (5:1 EtOH:oil) - 3 30 15 wt% None 89.95 [44]
Degumming Callera Trans L MeOH (1.5 eq.) - 24 35 1 wt% 3.5 wt% >95 [45]

None NS81006 MeOH (4.4:1
MeOH:oil) - 8 55 1.5 mL 10 wt% ≈80 [46]

None Eversa MeOH (1.5 eq.) - 16 35 1 wt% 2.5 wt% 94.89 [47]

None
Thermomyces
lanuginosus
Pseudozyma

antarctica
EtOH (2 eq.) - 48 30 20 g 1.5 wt% 97.6 [48]

Heating Pseudomonas
fluorescens

MeOH (3:1
MeOH:oil) - 24 45 5 wt% None 55.6 [49]

None Streptomyces sp. MeOH (1:1
MeOH:oil) - 48 40 0.2 mL None >80 [50]

None Oreochromis
niloticus

MeOH (4:1
MeOH:oil) - 28 45 3 kU 3 wt% 96.5 [51]

Immobilized enzymes

None Rhizopus oryzae MeOH (2:1
MeOH:oil)

Purolite
D6308 16 30 0.2 wt% None 100 [55]

None Thermomyces
lanuginose

MeOH (3:1
MeOH:oil) N.I. 3 35 0.5 wt% None 69.3 [56]

None Eversa Transform
2.0

Isoamyl alcohol
(6:1 Alcohol:oil) CLEA 72 40 2.13

U/g oil None 90 [57]

None Thermomyces
lanuginosus

MeOH (4:1
MeOH:oil) Hydrotalcite 105 45 4 wt% None 92.8 [58]

None Candida antarctica MeOH (3:1
MeOH:oil) Resin 12 40 4 wt% None 88 [59]

None Candida antarctica MeOH (25:1
MeOH:oil) Resin 4 50 10 wt% None 89.1 [60]

None Thermomyces
lanuginosus

MeOH (6:1
MeOH:oil) MPPM 24 65 1 g 15 wt% 90.2 [61]

Discoloration Penicillium
expansum MeOH (1 eq.) Resin 7 35 168 U None 92.8 [62]

Filtration Aspergillus niger MeOH (1 eq.) Whole-cell 72 30 40 pcs 10 wt% 91.8 [63]
Filtration/

Acidification
Activated
charcoal

Rhizopus oryzae MeOH (3:1
MeOH:oil) Whole-cell 24 30 10 wt% None 94 [64]
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Table 3. Cont.

Pretreatment Lipase Acyl Acceptor Support Time
(h)

Temp.
(◦C)

Enzyme
Content

Water
Content

Yield
(%) Ref.

None
Escherichia coli

(Candida antarc-
tica/Thermomyces

lanuginosus)

MeOH (1:1
MeOH:oil) Whole-cell 48 30 4 wt% None 95 [65]

None
Pichia pastoris
(Thermomyces
lanuginosus)

MeOH (4:1
MeOH:oil) Whole-cell 84 40 12 wt% None 82 [66]

None Candida antarctica MeOH (0.5 eq.) Resin 10 30 N.I. None 93.4 [67]
None Talaromyces

thermophilus
MeOH (6:1
MeOH:oil) Chitosan 5 50 25 wt% None 98 [68]

Heating Candida antarctica Dimethyl carbonate
(6:1 DMC:oil) Resin 4 60 10 wt% None 86.61 [69]

None Candida antarctica MeOH (6.2:1
MeOH:oil) Resin 8 50 1 wt% None 90 [70]

Extraction Rhizomucor miehei MeOH (6:1
MeOH:oil) Resin N.I. 40 16 wt% None 96.7 [71]

None Burkholderia
cepacia

MeOH (6:1
MeOH:oil)

SPION-
silica 35 35 25 wt% 10 wt% 91 [72]

None Rhizomucor miehei MeOH (4:1
MeOH:oil)

m-
MWCNTs-
PAMAM

30 50 6 wt% 8 wt% 94 [73]

None Candida antarctica MeOH (14%) Lewatit
resin 6 40 N.I. None 78 [74]

None Thermomyces
lanuginosus

MeOH (3:1
MeOH:oil)

styrene/
methacry-

late
6 30 10 wt% 1 wt% 79 [75]

None Candida antarctica MeOH (3:1
MeOH:oil) Fe3O4@SiO2 96 50 4.5 wt% None ≈100 [76]

None Bacillus
licheniformis

MeOH (3:1
MeOH:oil)

mCLEAs-
lip 36 35 0.3 wt% None 71 [77]

None Candida antarctica EtOH (36:1 EtOH:oil) Resin 8 35 50 wt% None 82.91 [78]
Filtration Aspergillus terreus MeOH (6:1

MeOH:oil) Fe3O4_PDA 30 37 10 wt% 0.6 wt% 92 [79]

Filtration Pseudomonas
fluorescens EtOH (4:1 MeOH:oil) Na-SBA-15 48 37 N.I. None 91.4 [80]

Extraction/
Filtration/

Drying
Thermomyces
lanuginosus

MeOH (3:1
MeOH:oil)

octadecyl/
methacry-

late
24 35 10 wt% 1 wt% 75.3 [81]

None Pseudomonas
fluorescens

EtOH (1.5:1
EtOH:oil)

styrene-
divinylbenzene 1.3 40 15 wt% None 94.1 [13]

N.I.: Not Indicated.

2.2. Nature of Biodiesel by-Products

The nature and quantity of impurities are related to the catalysis used and the oils used.
Typically, the impurities of biodiesel are free fatty acids, water, alcohol, very often methanol,
glycerides, catalyst, soap in the case of basic catalyst, and the by-product, glycerol [82],
which accounts for about 10% of production [83]. In the case of basic catalysis, the intensive
production of soaps from the free fatty acids present in the oil (Figure 7) will lead to decrease
the biodiesel yield and affect the quality of the end product [84]. This phenomenon is
more noticeable as the waste oil will contain a higher amount of free fatty acids. Moreover,
the recovery of biodiesel is more complicated. It has been concluded by several studies
that the level of free fatty acids should be less than 1%; see 2%. Ma et al. [85] indicated
that the content of free fatty acids should be below 0.5% to obtain the best conversion.
Ramadhas et al. [86] indicated that the yield of esterification process decreases if the value
of free fatty acids is greater than 2%. The importance of the free fatty acids level is due to
generation of more water in the esterification reaction; then, water will hydrolyze the esters
produced from transesterification [87].
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2.3. Characterization of Biodiesel

A biodiesel must be characterized with certain physicochemical properties [88]. Biodiesel
from waste oils is compared to diesel in Table 4. For viscosity measurements, the ASTM
D445-19a [89] method is applied; the kinematic viscosity of biodiesel is around 4.06 mm2/s
while diesel is about 2.42 mm2/s. The cloud and pour points are measured using ASTM
D2500-17a [90] and ASTM D97-17b [91], respectively. The cloud point for biodiesel is 6 ◦C
while the temperature for diesel is −5 ◦C, while the pour point is 5 ◦C for biodiesel and
−6 ◦C for diesel. Higher temperatures of biodiesel for the cloud and pour point may
be an issue, while diesel can lose its flow or crystal with low weather temperatures. To
prevent those issues, the addition of additives or other fuels may be solutions [92]. The
density of diesel is 0.857 g/cm3, while the density of biodiesel will 0.889 g/cm3 and the
applied measurement method is ASTM D4052-18a [93]. The flash point is measured using
the ASTM D7215-16 [94], 78 ◦C for diesel and it can rise to 153 ◦C for biodiesel. Finally,
a very important characteristic is the cetane number, measured by the method ASTM
D6890-18 [95]. Its value is around 53 for diesel and 59 for biodiesel. These values depend
on the composition of the initial oil [96].

Biodiesel properties, like those of diesel, are important for engines. Indeed, in addition
of the renewable energy of biodiesel, the behavior of biodiesel on engine and produced gas
emissions must be improved. As mentioned in the introduction, biodiesel produces less
greenhouse gas. For engines, different parameters must be studied—such as the tribological
parameters, meaning the friction and wear characteristics. Jason et al. [97] made research
to improve those properties and showed that the addition of additives such as graphene
forms a protective film that prevents the interacting surfaces from rubbing, resulting in
friction and wear reduction.

Table 4. Physical properties of biodiesel compared to diesel.

Physical Properties Biodiesel Diesel

Kinematic viscosity (40 ◦C, mm2/s) 4.06 2.42
Cloud point (◦C) 6 −5
Pour point (◦C) 5 −6

Density (g/cm−3) 0.889 0.857
Flash point (◦C) 153 78
Cetane number 59 53

The European standards (Table 5) have defined properties that give biodiesel a guar-
antee of quality. One of these standardized qualities specifies the amount of esters to be
achieved, the level of mono-, di- and triglycerides not to be exceeded and the total amount
of glycerol [98].

Table 5. Properties of biodiesel according to the European standards.

Properties Standard Limits

Ester content EN 14105 96.5% (min)
Monoglyceride levels EN 14105 0.80% (max)

Diglyceride levels EN 14105 0.20% (max)
Triglyceride levels EN 14105 0.20% (max)

Total glycerol content EN 14105 0.25% (max)

2.4. Separation and Purification of Biodiesel from Its By-Products

As indicated in Section 2.2, the composition of biodiesel will depend on the source
used as well as the type of catalysis, so the separation and purification of biodiesel will
also depend on the same. First of all, the by-product glycerol could be separated sim-
ply by decanting or centrifuging due to the difference in density between the biodiesel
(≈0.850 g/cm3) and the obtained glycerol (>1.0 g/cm3). The ability of biodiesel to be more
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easily separated or not will depend on the type of catalysis used. The use of heterogeneous
catalysts (chemicals and immobilized enzymes) eliminates the neutralization and washing
steps applied during the separation of biodiesel synthesized by homogeneous catalysis.
The alcohol:oil ratio is an important parameter which should not exceed 6:1, as shown by
Sharma et al. [99]. Increasing the ratio above 6:1 will not increase the ester yield. A high
water presence will lead to the hydrolysis of triglycerides and produce free fatty acids.
Finally, as previously mentioned, excessive soap production in the presence of alkaline
catalysis complicates the separation of biodiesel.

The purification of biodiesel takes place after the glycerol separation. It can consist of
four steps depending on the purity degree and the alcohol recycling [100]. In the first step,
the alcohol excess can be recovered using simple distillation. The second stage involves
washing the biodiesel with water either by depositing it on the biodiesel, or by bubbling
or stirring to improve the biodiesel quality. Subsequently, the biodiesel is dried either
by heating to 110 ◦C or by chemical compounds such as anhydrous sodium sulfate to
remove all traces of water. The heating method also helps to remove the remaining alcohol
residues. Finally, for a biodiesel of a quality respecting the previously mentioned European
standards, distillation is applied.

3. Purification of Biodiesel Glycerol from Waste Oils

This part only considers the glycerol produced during the biodiesel synthesis and
how it can be used as such or transformed in high value-added products. To facilitate the
glycerol purification, it is important to know the composition of glycerol from the biodiesel
obtained from waste oils and how these oils and the type of biodiesel synthesis influence
the glycerol composition. First, different glycerol impurities were studied based on the
oil origin and the used catalysts. Thus, the glycerol impurities are detailed to show their
influence on the glycerol or on its transformation in other products. Different glycerol
characterization techniques were used to determine the purity level and properties of
glycerol. The main interest of this part is to describe different methods to purify glycerol
and to understand its composition and its utilization.

3.1. Purity of Glycerol and Influence of Its Impurities

The composition of crude glycerol will depend on the feedstock used for biodiesel
production, as well as the type of catalysis applied in the conversion reaction. Four different
compositions will be compared (Figure 8), according to the glycerol obtained from the
enzymatic or basic transformation of virgin oil or waste oil. The values of the graphs are
indicative; the glycerol composition may vary according to the oil composition and the
applied reaction conditions. Acid catalysis is not presented here because it is very rarely
used; moreover, the glycerol composition is close to enzymatic catalysis. By comparing
enzymatic catalysis to basic catalysis [101], a higher degree of glycerol purity will be
obtained using enzymes, because the free fatty acids will be transformed into biodiesel,
whereas in the case of basic catalysis, they will be transformed into soap, which is found
with the glycerol.

In addition, the recovery of enzyme catalyst is much easier in comparison with basic
catalyst because a certain amount of basic catalyst could be found with glycerol. For the
oil type, the waste oil will generate a higher number of impurities compared to edible
vegetable oil. In fact, among the impurities, ashes from food cooking are included in the
glycerol composition; these can be up to 2%. The amount of water also increases in the
waste oil because of cooking. Finally, the number of free fatty acids may be increased in the
waste oil due to the presence of water and high-temperature cooking. This increase leads
to an increase in the soaps found with the glycerol in the presence of basic catalyst. On
balance, enzymatic catalysis is more advantageous due to higher degree of glycerol purity,
which makes its use, or even its purification, simpler and cheaper.

Some impurities present with glycerol may be problematic during glycerol conversion,
while others may be beneficial. Focusing on the glycerol bioconversion, many research
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papers reported that the presence of methanol with glycerol has an inhibitory effect on some
of the microorganisms used [102]. Depending on the aim of glycerol use, Sarma et al. [103]
showed that methanol had a negative effect on hydrogen production or with the production
of lipids, as exposed by Yang et al. [104]. Uprety et al. [105] observed that soap and fatty
acid methyl esters had a positive effect by demonstrating the role of carbon source on the
production of lipids from glycerol.
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3.2. Glycerol Characterization Techniques
3.2.1. Properties of Glycerol

Most methods for characterizing glycerol are standardized [106], the physical proper-
ties of glycerol involve density measurement by ASTM D50002 [107] and viscosity measure-
ment by ASTM D445-19a [89] (Figure 9). Crude glycerol derived from waste oil will have a
density of about 1.0–1.1 g/cm3 [108] compared to 1.26 g/cm3 for commercial glycerol. The
viscosity is about 270 cP for pure glycerol compared to about 50 cP for the glycerol obtained
by Hunsom and Autthanit [109]. In fact, impurities such as fatty acids, solvent and water de-
crease density as well as viscosity. To measure the acidity, the ASTM D1093-98 [110] method
is used, while the calorific value is measured by the ASTM D0240-19 [111]. The pH and
color measurements are simply made using pH-metry and a UV/Vis spectrophotometer.
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3.2.2. Purity of Glycerol

The measurement of glycerol purity is carried out by the Pharmacopeia standard
method (USP 26), which also serves as a reference when glycerol is used in fields such
as pharmacology or food. The glycerol purity must be greater than 99.7%. For technical
grade, the glycerol purity must be higher than 98%. This is the most used glycerol for
all applications except in pharmacology, personal care and food (Figure 10). Glycerol
purity can also be measured using simple analytical techniques such as liquid or gas
chromatography or NMR spectroscopy.
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3.2.3. Impurities Measurement

Among the various impurities, characterization techniques are also standardized.
Firstly, for the measurement of residual ashes that may be present during the cooking of
the oil, the ASTM D0482-03 [112] method is used, mold is also part of the residue from
waste oil, therefore the ASTM D4377-00e01 [113] method is used. The amount of solvent
can be measured by chromatographic methods, while the amount of water is measured
by Karl Fischer titration according to the ASTM D4017-02 [114] method. The amount of
MONG (Non-Glycerol Organic Matter), which soaps often include, is measured by a simple
Equation (1) [115].

MONG = 100 − (% Glycerol content + % ash content + % water content) (1)

3.3. Glycerol Purification Methods

This section will present the glycerol purification techniques currently used. Figure 11
brings together these techniques and shows how these purification methods can be applied,
and which paths are conductive. This diagram shows that these purification pathways
usually involve a beginning, i.e., acidification, and an end, adsorption on activated char-
coal. Although each of these techniques can be used independently, it can be seen that
it is almost essential to begin and end with acidification and adsorption on activated
carbon, respectively. The purification methods may also be applied or not and alone or
in combination.

3.3.1. Acidification/Neutralization

This purification method is the most used for crude glycerol. It is applied mainly
for the pretreatment of glycerol and is often followed by a second purification method.
The process involves catalyst removal (basic catalyst) and soap [116]. It is important to
differentiate between acidification and neutralization, although both processes involve the
use of a strong acid and lead to a very similar result. During acidification, the medium
is brought to a pH of 1–2, separating the crude glycerol into three phases: the fatty acids
at the top, the glycerol-rich phase at the middle and the organic salts at the bottom [117].
Neutralization, as its name suggests, is used to remove the basic catalyst involved in the
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transesterification of oils, bringing the pH close to neutrality, and obtaining two phases,
the organic salts from the catalyst and the phase rich in glycerol and some free fatty acids
when soaps are present, sometimes leading to the formation of three phases. Whatever the
process, acidification or neutralization, the use of a strong acid is required. In a study by
Hájek et al. [118], glycerol was derived from the biodiesel produced from virgin vegetable
oil. This study aimed to compare three different acids: sulfuric acid, hydrochloric acid and
phosphoric acid. The results showed that phosphoric acid had the better efficiency, leading
to about 86% purity of glycerol, with an initial amount of glycerol between 50 and 60%.
Thus, most studies have used phosphoric acid for this purification process. The low pH
obtained after acidification requires neutralization with KOH or NaOH. This purification
method is very effective but is still insufficient, so the further treatment of crude glycerol is
necessary. It is possible to use this process alone; for this, the crude glycerol must have a
high initial purity, as is the case in the research of Gil et al. [119]. In this study, the glycerol
obtained via transesterification of rapeseed oil resulted in a high purity of 95.5% glycerol.
For purification, after evaporation of methanol and water, leading to a purity of 96.4%, the
neutralization step was performed by adding hydrochloric acid to remove the catalyst and
the formed soap. Purification resulted in a final purity of 97.1%. The same process was
applied in the study reported by Velázquez-Hernández et al. [120]; the virgin vegetable
oils used for the synthesis of glycerol allowed high purity. Thus, the glycerol composition
reached 95% after sulfuric acid treatment (pH = 2) followed by KOH neutralization of the
glycerol-rich phase.
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3.3.2. Vacuum Distillation

Distillation is the most explored method. For many years, it was used alone to remove
methanol, leaving glycerol with other impurities such as ashes, non-glycerol organic matter
(MONG), water and soap; hence, there is a need for pretreatment [106]. The distillation
efficiency depends on the temperature between 120 and 126 ◦C and the pressure between
4.0.10-1 and 4.0.10-2 mbar. This technique has largely proven itself but is still sensitive to
unwanted reactions such as polymerization, dehydration, or oxidation. Posada et al. [121]
pretreated crude glycerol by neutralization step with hydrochloric acid, hence the initial
composition of glycerol was 60.05%. The combination with distillation resulted in a purity
of 98%. Evaporation steps for methanol and water were applied during the purification
process. The work of Skrzyńska et al. [122] is based on four-step purification process:
catalyst neutralization, methanol distillation, water evaporation and glycerol distillation,
allowing a purity of 98.2% compared to an initial purity of 40.3%. Each step attests to
its effectiveness in terms of the quantities obtained for each step (neutralization: 47.4%,
methanol distillation: 58.2%, evaporation: 92.8%, distillation: 98.2%). The obtained purity
depends on the initial composition of crude glycerol. Remón et al. [123] have chosen
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to neutralize glycerol with a purity of 63.17% with acetic acid for an optimum pH of
6. Once the second distillation stage was completed, a maximum purity of 85.25% was
obtained. This study showed the influence of pH during the neutralization step for optimal
purification, with pH values of 5, 6 and 7 being tested. Another work [124] reported glycerol
synthesized through biodiesel production from waste frying oils. This study involved
pretreatment during the purification process of glycerol, which has an initial purity of
15.4%. Thus, the crude glycerol was acidified by means of phosphoric acid to reach a
pH of 2. In this case, two phases were obtained: the phase rich in free fatty acids above,
and the glycerol-rich phase. The glycerol-rich phase with a pH of 2 was then neutralized
with KOH. The second stage, distillation, resulted in a purity of 75.1%. Concretely, for
glycerol with initial purity less than 50%, it becomes necessary to accumulate several
purification processes.

3.3.3. Ion-Exchange Resins

More recently, the use of ion-exchange resins has shown great interest because, com-
pared to the conventional distillation process, a better quality of purified glycerol up to a
level of 99% is obtained thanks to this technique [125]. This process involves passing the
crude glycerol through one or two chromatographic columns in which are placed either a
cationic resin and anionic resin or a mixed resin (cationic and anionic). This process can
be performed with or without pretreatment, as compared by Nasir et al. [126]. Firstly, a
single column was loaded with a cationic resin, Amberlite IRN-78, with an anionic resin,
Amberlite 200 C, silica beads were added to remove any mold that might be present. The
pretreatment process includes the neutralization of glycerol by phosphoric acid followed
by filtration. Subsequently, glycerol is placed in the chromatographic column, followed
by methanol evaporation without pretreatment. The results showed a direct influence
of glycerol composition depending on the type of reaction for biodiesel and the used
source. Thus, both methods yielded a purity of up to 99.58%. Following a similar protocol,
Isahak et al. [127] pretreated crude glycerol, with a purity of 77.4%, through a neutraliza-
tion step involving phosphoric acid, followed by filtration, then the pretreated glycerol was
purified by two resins, Amberlite IRN-78 and Amberlite 200C. A high purity of glycerol
was obtained, reaching 99.4%. A disadvantage of using resins is that they need to be
regenerated after use. In this study, Amberlite IRN-78 was regenerated by washing under
a stream of dilute sodium hydroxide, while Amberlite 200C was regenerated from dilute
sodium chloride. The work of Abdul Raman et al. [128] is based on the use of a highly
cationic resin only, Amberlite 15, to purify glycerol preceded by phosphoric acidification
pretreatment. The pretreatment purified glycerol from 35.60 to 77.42%, while the resin
purified glycerol up to 98.20%. At present, the application of resins for glycerol purification
is the most effective method, resulting in very high purity. Recently, Lopes et al. [129]
developed a new glycerol pretreatment method based on the use of a cationic tannin
with flocculation/coagulation capacity to reduce the amount of chloride and metals. This
method therefore replaces the conventional pretreatment, acidification/neutralization. The
authors used a glycerol synthesized from waste oils, the purity of which was determined
to be 59.3%. This new pretreatment or pre-purification process significantly increased the
purity to 77.3%. Subsequently, the application of cationic resin, Amberlite IRA120 Na,
followed by anionic resin, Amberlite IRA410 Cl, increased the purity to 94.5%.

3.3.4. Adsorption on Activated Charcoal

Adsorption on activated charcoal is a simple method of purification. This process
is mainly aimed at attenuating color and adsorbing small molecules such as lauric and
myristic acids [130]. However, the use of activated charcoal alone remains insufficient to
achieve high glycerol purity. Hunsom and Autthanit worked on the glycerol obtained
from waste oils [109], initially pretreated with phosphoric acid to recover the glycerol-
rich phase later neutralized by NaOH. This study was to purify glycerol with a sludge-
derived activated charcoal prepared by activating different chemical agents such as H3PO4,
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K2CO3 and KOH. KOH-impregnated activated charcoal carbonized at 800 ◦C (KOH-800AC)
resulted in a glycerol purity of 93.0%.

3.3.5. Extraction

Extraction is a physical process combined with a chemical process, acidification. As
has been shown previously, acidification will provide two or three phases. The phase of
free fatty acids can thus be eliminated by decantation or extraction [131]. The work of
Kongjao et al. [132] is based on the combination of chemical and physical treatment of glyc-
erol of waste oils (27–30% (w/w)), whereas in this case the extraction step was performed
using a solvent on the glycerol-rich phase. Firstly, acidification by sulfuric acid resulted in
three phases: the upper phase rich in free fatty acids, which was decanted, and the middle
phase rich in glycerol in the medium. The lower phase was rich in organic salts. After
neutralization with NaOH, the glycerol-rich phase was extracted with ethanol to encourage
salt precipitation, followed by further filtration leading to an acceptable purity of 93.34%.
Demaman Oro et al. [133] reported a study on the extraction of glycerol using different sol-
vents (methanol, ethanol, chloroform and dichloromethane). This study showed that methanol
was the most effective solvent for the extraction of organic phase with excellent quality and
yield of salts. Xiao et al. [134] used two solvents in series for glycerol extraction. Initially, the
saponification phenomenon was amplified by adding NaOH to reach a pH of 11, which was
then acidified with hydrochloric acid to bring the pH down to 1, followed by extraction with
petroleum ether and then extraction with anhydrous ethanol. These different purification
stages are separated by stages of filtration and evaporation of impurities. The purity of
obtained glycerol increased from 74.5% to 95.6%.

3.3.6. Membrane Separation

Membranes are used for processes such as reverse osmosis, ultrafiltration, micro-
filtration, gas separation, dialysis, pervaporation, electrolysis and electrodialysis [135].
Currently, they are widely used for water purification or gas or protein separation [136].
This separation process is already used for biodiesel purification. The use of membranes
generates lower costs and lower energy consumption [137]. Nevertheless, the use of mem-
branes has a big issue: their stability. This is mainly due to the addition of aggressive
organic solvents. Thus, this is an interesting research topic to work on to improve the
stability of membranes in particular on the chemical structure of membranes [138]. The
general strategy to improve the structural stability of traditional polymer membranes is
crosslinking. In the case of glycerol purification, membranes remove salts, fatty acids
and triglycerides. A patent filed by EET Corporation [139] exposes glycerol purification
technology combining electrodialysis and nanofiltration. The HEEPMTM (High Electro-
Pressure Membrane) system can operate in batch, semi-batch or continuous flow. This
technology designed for industry allows 99.9% salt removal. The obtained glycerol ap-
proaches USP-grade purity. Indok Nurul Hasyimah et al. [140] looked at the retention
efficiency of polymeric membranes on a glycerol rich in triglycerides. The membranes used,
polyether sulfone (PES) and polyvinylidene fluoride (PVDF), have a molecular weight
cut-off (MWCO) of 25,000 and 30,000 Da, respectively. The effects of membrane surface
chemistry, the solution-pH on the permeation flux and the ability to retain triglycerides
were investigated. PVDF membranes were shown to provide higher permeation fluxes
and lower triglyceride release rates (81%) than PES membranes (91%). In the same context,
Mah et al. [141] studied the ability of ultrafiltration to remove palm oil and oleic acid
present in glycerol solutions. A GE PVDF (GE Osmonics) membrane with a molecular-
weight cut-off value of 30 kDa was used, and the effects of different concentrations of
palm oil, oleic acid and blends of palm oil and oleic acid were investigated, as well as
the effects of pH on membrane flow and discharge capacity. This work demonstrated
that ultrafiltration was able to remove palm oil, oleic acid and blends of palm oil and
oleic acid from glycerol solutions at 87.00, 98.59 and 95.60%, respectively. Another patent
filed by Jeromin et al. [142] also offers membrane ultrafiltration to remove unreacted oils
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or fats from the hydrolysis reaction. The purification process takes place continuously
during the hydrolysis reaction. Fats with a larger diameter of 100 µm are separated from
the aqueous phase by a plate allowing phase separation and redirected to the hydrolysis
process. Thus, the pre-purified aqueous phase passes through an ultrafiltration membrane
and the concentrate returns to the inlet of the phase separation plate. Vadthya et al. [143]
found a method for the glycerol purification by electrodialysis to separate the salts from the
crude glycerol. Two ion exchange membranes, cationic (CMI-7000) and anionic (AMI-7001),
were used in batch and this process revealed that electrodialysis could remove salts to a
percentage greater than 95%. This study also showed that this process is economical, with
an estimated membrane and energy cost of USD 0.09/m3. Kalafatakis et al. [144] used the
direct osmosis process to recover glycerol water from the Aquaporin InsideTM direct os-
mosis system to achieve water flows of 10.5 L/m2/h. This approach allows the recovery of
water without further purification and an increase in the glycerol concentration in solution.
A second strategy is the use of hybrid membranes, which have shown an improvement
in membrane performance. Combining the properties of organic and inorganic materials
increased mechanical and thermal properties [145]. Hybrid materials could be mixtures of
polymethyl methacrylate (PMMA)/SiO2 or cellulose/SiO2) [146]. For example, Shaari and
Rahman [147] used a composite thin-film membrane combined with a hybrid membrane.
The membranes consisted of polyvinyl alcohol, sulfone resin pellet, polyethylene glycol and
tetraorthosilicate. They showed that the addition of glycerol as a membrane preparation
additive improved the purification of crude glycerol, resulting in a NaCl rejection rate
of 48.02%. Finally, another emerging technology in terms of membrane separation is the
use of membrane distillation. Membrane distillation is a combination of fluid stream and
thermally conductive membrane, which allows the vapors to pass through a hydrophobic
membrane [148]. Shirazi et al. [149] studied the effectiveness of membrane distillation
in removing water from different glycerol solutions with different concentrations. They
used hydrophobic microporous membrane based on polytetrafluoroethylene (PTFE). For
each test carried out, a rejection rate higher than 99% was obtained. Pal et al. [150] used a
hydrophobic polyvinylidene fluoride (PVDF) membrane and achieved a glycerol rejection
rate of 99.9%. One of the major problems with membranes is membrane fouling [151],
which can be defined as “a process resulting in loss of membrane performance due to
the deposition of suspended or dissolved substances on its external surfaces, at the pore
opening, or within the pores”. To solve this problem, membrane cleaning using chemicals
such as nitric acid, hydrochloric acid or hydrogen peroxide can be applied; however, this
comes at additional cost and with accelerated deterioration of the membranes. This creates
complications for industrial application.

3.3.7. Multi-Step Methods

The use of several successive processes may be applied where a very high purity
of glycerol is sought, or where the initial purity of glycerol is low and requires more
extensive processing, in particular for glycerol obtained from the transesterification of
waste oils. A list of different studies using multi-step purification is presented in Table 6.
As shown in Figure 11, most methods apply acidification and adsorption on activated
charcoal to begin and finish the purification of glycerol. Manosak et al. [152] purified the
glycerol with an initial purity of 36.7%, obtained by the biodiesel production from waste
oils. Initially, the acidification step was performed using different acids at different pHs,
as reported by Hájek et al. [118]. They found that phosphoric acid was the most effective
at pH 2.5. In the second step, solvent extraction, three types of polar solvents were tested:
methanol, ethanol and propanol. They concluded that propanol was the most suitable for
extraction. The extraction efficiency depends on the polarity and solubility of the solvent.
Hunsom et al. [153] showed that n-butanol was a better solvent than hexane because it
is a polar solvent, and it has better solubility in water. These first two steps allowed us
to achieve a purity of 95.74%. Finally, to reduce the glycerol color, it was adsorbed on
activated charcoal, which also showed that some fatty acids were removed during this
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step, resulting in a final purity of 96.2%. The process added between acidification and
adsorption on activated charcoal evolves with time. Distillation used to be one of the most
applied methods, but the use of this process decreases over time because it is expensive
and energy-consuming. Recently, extraction and membrane filtration were revealed to be
better methods. It is also important to consider multi-step methods for industrial scale,
such as the study by Pitt et al. [154] which compared the conventional process on waste
oil at laboratory and industrial scales. The purification process includes acidification with
phosphoric acid, followed by distillation and adsorption on activated charcoal. At the
laboratory level, the obtained glycerol had a purity of 51.88% to 78.72% after purification,
while at the industrial level, the purity obtained was 29.99% to 60.6%. Glycerol obtained
from the industrial process was found to be denser, and therefore had more impurities;
mass losses were also higher, resulting in lower purity. The conclusion is that it is essential
to think about a purification process suitable for the industrial scale.

Table 6. Purification of glycerol by multi-step methods according to different authors.

Type of Oil Purification Techniques Glycerol
(%)

Purified
Glycerol (%) Ref.

Waste oil

• Acidification
• Extraction
• Adsorption on activated
charcoal

36.7 96.2 [152]

Waste oil

• Acidification
• Extraction
• Adsorption on activated
charcoal

29.8 99.0 [153]

Waste oil (lab. scale)

• Acidification
• Distillation
• Adsorption on activated
charcoal

51.88 78.72 [154]

Waste oil (ind. scale)

• Acidification
• Distillation
• Adsorption on activated
charcoal

29.99 60.6 [154]

Waste oil

• Saponification
• Acidification
• Adsorption on activated
charcoal

40.6 96.08 [155]

N.I.

• Acidification
• Extraction
• Adsorption on activated
charcoal

12.0 96 [156]

Waste oil

• Sequential extraction
• Adsorption on activated
charcoal 74.0 99.2 [157]

Waste oil

• Neutralization
• Distillation
• Extraction
• Adsorption on activated
charcoal
• Distillation

35.66 97.37 [158]

N.I.

• Saponification
• Acidification
• Extraction
• Membrane filtration
• Adsorption on activated
charcoal

40.0 97.5 [159]
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Table 6. Cont.

Type of Oil Purification Techniques Glycerol
(%)

Purified
Glycerol (%) Ref.

Virgin (hemp) oil

• Acidification
• Extraction
• Adsorption on activated
charcoal

51.38 93.89 [160]

N.I.

• Saponification
• Acidification
• Extraction
• Membrane filtration
• Adsorption on activated
charcoal

40.00 93.70 [161]

Virgin (canola) oil

• Acidification
• Distillation
• Adsorption on activated
charcoal

N.I. 98.1 [162]

N.I.

• Acidification
• Distillation
• Biosorption on nanofibers N.I. N.I. [163]

N.I.—not indicated.

3.4. Possible Applications of Glycerol Purification Methods from Biodiesel Produced by Enzymatic
Processes on Waste Oils

At present, there are no reports of a protocol for glycerol purification from waste
oil or virgin oil using enzymatic catalysts. There are two possible explanations for this.
The first possibility is that, as shown in Section 3.1, glycerol obtained from enzymatic
transesterification has a high degree of purity after separation from biodiesel. So, crude
glycerol can be used in the state where the low impurity content does not influence the
conversion of biodiesel. The second possibility is that the industries of biodiesel production
apply basic catalysis, as reaction times are short, and the cost of biodiesel production is
lower compared to enzyme catalysis. As a result, it is not common to obtain glycerol
on an industrial scale from biodiesel produced by enzyme catalysis, and the purification
protocols developed are based solely on glycerol from biodiesel produced by enzyme
catalysis. However, it is acceptable to consider purification protocols and to understand the
advantages of enzyme transesterification compared to basic catalysis. Firstly, as has been
shown, the acidification—which is the purification method most used for the pretreatment
of glycerol—involves the removal of the basic catalyst and the soaps present. However, in
enzymatic way, the reaction does not result in the formation of soaps, and it is not necessary
to remove the enzymatic catalyst. So, acidification is not an essential step to purify glycerol
in the presence of enzyme catalysis. It is therefore highly possible to establish a single-step
protocol with lower purification process cost, as outlined by R. Hobden [164]. In this case,
glycerol purity can reach 80% by removing water and methanol using simple evaporation.

3.5. Bioconversion of Glycerol from Waste Oils to High Value-Added Products

Glycerol can be converted into high value-added products either chemically or bio-
logically. Some products resulting from chemical reactions are shown in Figure 12 [165].
Other products such as succinic acid, citric acid, propionic acid, lactic acid or lipids can be
produced from glycerol by biological tools as described by Vivek et al. [166]. In this case,
the bioconversion of glycerol does not necessarily involve a purification step. However,
the source used to produce biodiesel may influence the glycerol composition and how the
conversion reaction will occur. For example, this section will focus on the bioconversion
of glycerol from waste oils and the importance of impurities requiring purification and
non-purification (Table 7).
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A study by Nuchdang et Phalakornkule [167] used glycerol to produce methane
through anerobic co-digestion with pig manure. Since glycerol was highly contaminated
with oils and fats and the acidification with sulfuric acid was necessary. This pretreatment
resulted in a higher production of hydrogen sulfide produced during glucose digestion,
so it is recommended that alternative techniques can be used to treat glycerol. Following
the same principle, Siles López et al. [168] treated glycerol to neutralize the catalyst (KOH)
with phosphoric acid followed by distillation to remove water and methanol from biodiesel
production. The anerobic reclamation of glycerol with granular sludge successfully demon-
strated 100% biodegradability. For Liu et al. [169], treatment of glycerol was not necessary
due to its initial high purity of 83.41%, despite the use of waste cooking oil for biodiesel
production. They therefore produced glycolipids from Ustilago maydis and showed an
adverse effect of methanol above a level of 2%. Suzuki et al. [170] showed the effect of
crude glycerol impurities on ethanol production by the bacterium Klebsiella variicola. They
showed that the use of glycerol from biodiesel produced from waste cooking oil with a
higher level of impurities improved the production of ethanol. They also showed that
the optimum pH was 8–9, which is the pH of glycerol after transesterification of oil in
alkaline medium. Thus, no purification process was necessary. Maru et al. [171] used
microorganisms to produce hydrogen from glycerol that is unaffected by the impurities
present in glycerol and thus avoids glycerol treatment. They then showed that the mixed
culture of Escherichia coli and Enterobacter spH1 increased the fermentation effect on crude
hydrogen glycerol. If a different microorganism, here from granular sludge, is used for
hydrogen production, Rodrigues et al. [172,173] showed that the impurities in glycerol have
an inhibitory effect on the biological process of hydrogen production. For example, the
pretreatment with hydrochloric acid was performed to purify glycerol to be bio-converted
to hydrogen. Yuwa-amornpitak et Chookietwatana [174] also concluded that the impurities
present in glycerol, such as free fatty acids, had a positive effect on lactic-acid production,
since free fatty acids play the role of nutrient in microbial growth. However, since glycerol
is derived from waste cooking oils, a treatment to neutralize and remove some of the
impurities was carried out. Since pH played an important role in the reaction, it was neces-
sary to raise the pH of glycerol to seven by neutralizing it with hydrochloric acid. Thus,
better production of lactic acid by fermentation via Rhizopus microsporus was achieved with
crude glycerol compared to pure glycerol. Like Maru et al. [171], Wang et al. [175] applied
Escherichia coli and Enterobacter spH1 mixed culture, which was not affected by glycerol
impurities, to produce 1,3-propanediol and lactate. The fermentations were performed
in batch system at 37 ◦C with continuous stirring at 200 rpm for 72h. Ma et al. [176] also
produced 1,3-propanediol from glycerol with a purity of 69%, again from waste cooking
oils. The microorganism used to produce 1,3-propanediol is Klebsiella pneumoniae. A very
interesting point of this work is that the main impurities present in crude glycerol were
studied to determine the impact on the production of 1,3-propanediol. In general, the
impurities had no influence except for one fatty acid, linoleic acid, with a tendency to
reduce cell growth. Chen et al. [177] found a method to maximize the productivity of
glycerol obtained from biodiesel production. In addition, the simple purification of glycerol
played a considerable role due to the large number of soaps contained in the glycerol from
alkaline transesterification. Indeed, the acidification of glycerol, here by phosphoric acid,
leads to the transformation of the soap into free fatty acids, which are then converted into
biodiesel via the esterification process. The purified glycerol is bio-converted into lipids
by the Trichosporon oleaginosus bacterium, which can then be converted into biodiesel by a
conventional transesterification process. With an initial glycerol purity of 31.8% and soap
concentration of 21.1%, 99.2% of these soaps were converted into free fatty acids and the
glycerol purity after treatment was 54.96%. For other impurities in glycerol, such as esters,
organic salts or methanol, the study by Xu et al. [178] showed that methanol could have
an inhibitory effect, while other impurities showed a positive effect in lipid production.
Additionally, for biodiesel production, Guerfali et al. [179] searched for a microorganism
capable of converting glycerol without inhibition effect by impurities. For example, the
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yeast Candida viwanathii Y-E4 showed its potential for bioconversion of the glycerol into
lipids and then into biodiesel. Contrary to Chen et al. [177], who treated crude glycerol
with phosphoric acid, no treatment of glycerol has been carried out to transform soaps
into free fatty acids. This depends on the glycerol composition. Here the percentage of
soaps is 4.1%, so it is not profitable to add a step by acidifying the glycerol. More recently,
Brage et al. [180] used crude glycerol as a carbon source to transform L-phenylamine to
2-phenylethanol using the strain Yarrowia lipolytica CH1/5. Crude glycerol had an initial
purity of 82%, so no treatment was needed, and the remained impurities had no effect
on this reaction because glycerol is not the substrate. Ripoll et al. [181] converted crude
glycerol into serinol by immobilized Gluconobacter oxydans and a transaminase coupling
together. The impurities in crude glycerol were not considered; the work was only based
on the biocatalyst and how the immobilization allows reuse.
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Table 7. Summary of studies on the conversion of glycerol according to its purity level.

Glycerol
(%) Glycerol Treatment Final Product Process or

Microorganism
Temperature

(◦C) Time (h) Yield Ref.

N.I. • Acidification Methane Anerobic
digestion 25 2 54% [167]

N.I.
• Neutralization
• Distillation Methane Anerobic

digestion 2 0.8 0.306 m3 CH4/kg [168]

83.41 • None Glycolipids Ustilago maydis 30 196.8 32.1 g/L [169]
N.I. • None Ethanol Klebsiella variicola 25 24 9.8 g/L [170]

47.5 • None Hydrogen E. coli/Enterobacter
spH1 37 120 69.1 mM [171]

10.41 • Acidification Hydrogen Anerobic
digestion 37 19.1 2.2 mol H2 L−1 [172,173]

N.I. • Neutralization Lactic acid Rhizopus
microsporus 37 1.3 1.33 g/L [174]

49.30 • None 1,3-propanediol
/ lactate

E. coli/Enterobacter
spH1 37 1.3

27.77 g/L
1,3-PDO

14.68 g/L LA
[175]

69 • None 1,3-propanediol Klebsiella
pneumoniae 37 12

0.64 mol1,3-
PDO/mol
glycerol

[176]

31.8 • Acidification Biodiesel Trichosporon
oleaginosus 28 72 5.24 g/L [177]

32.97 • None Triacylglycerols Rhodosporidium
toruloides 30 160 13.4 g/L [178]

64.5 • None Biodiesel Candida viwanathii
Y-E4 30 166 13.6 g/L [179]

82 • None 2-phenylethanol Yarrowia lipolytica
CH1/5 27 200 2.2 g/L [180]

N.I. • None Serinol
Gluconobacter

oxydans
transaminase

30 44 36 mM [181]

N.I.—ot indicated.
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In recent years, the discovery that bioconversion allows crude glycerol to be used as a
feedstock without any pretreatment has been a breakthrough for the biodiesel industry [182].
However, the use of low-purity crude glycerol, often due to the use of waste oils for
biodiesel production, means that it may still be necessary to pretreat the glycerol. In some
cases, pretreatment can even be used to make good use of impurities in the production
of lipids.

4. Conclusions

The content of this review followed the life cycle of oils, or the “Carbon Neutral Cycle”,
and how it can be improved by working on the best approaches to produce biodiesel and
valorize its by-product through a greener path. To initiate this system, the use of waste oils
is the best alternative to produce biodiesel, since the third-generation fuels use inexpensive
feedstocks. It is derived from recycling, and it does not compete with the food market.
Subsequently, to catalyze the reaction of biodiesel, enzymes have become the best option.
Even though alkali catalysis is currently the most suitable method due to its shorter reaction
times and low costs, studies on biocatalysts increased through the years to improve the
stability and recyclability of enzymes to lower their cost, while allowing better reaction
specificity than chemical catalysis. Additionally, using biocatalysts permits high yields of
biodiesel, above 90%, and produces very few impurities, which reduces the treatment of
biodiesel, and thus the cost. Once biodiesel is produced, about 10% of glycerol is generated.
The life cycle of cooked oils for biodiesel production does not include the treatment of crude
glycerol, yet it can be transformed into high value-added products. Therefore, glycerol must
be purified, and a large part of this review presented the techniques to purify crude glycerol
and the potential products obtained after biotransformation, using only bioprocesses. As
mentioned above, thanks to the biocatalysts applied in the production of biodiesel, very few
impurities are produced, which is another advantage, reducing the steps of treatment for
the glycerol and making the cost lower. To end the life cycle of cooked oils, biodiesel allows
reductions on gases emissions of about 85%. CO2 and NOx increase, but CO2 released from
combustion will be used again by nature for feedstock preparation. However, there is still
work to do to improve the system, in particular the use of better robust enzymes, better
treatment of products and their properties for use in engines.
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122. Skrzyńska, E.; Wondolowska-Grabowska, A.; Capron, M.; Dumeignil, F. Crude glycerol as a raw material for the liquid phase
oxidation reaction. Appl. Catal. A Gen. 2014, 482, 245–257. [CrossRef]

123. Remón, J.; Jarauta-Córdoba, C.; García, L.; Arauzo, J. Analysis and optimization of H2 production from crude glycerol by steam
reforming using a novel two step process. Fuel Process. Technol. 2016, 145, 130–147. [CrossRef]

124. Valerio, O.; Horvath, T.; Pond, C.; Misra, M.; Mohanty, A. Improved utilization of crude glycerol from biodiesel industries:
Synthesis and characterization of sustainable biobased polyesters. Ind. Crops Prod. 2015, 78, 141–147. [CrossRef]

125. Luo, X.; Ge, X.; Cui, S.; Li, Y. Value-added processing of crude glycerol into chemicals and polymers. Bioresour. Technol. 2016,
215, 144–154. [CrossRef]

126. Nasir, N.F.; Mirus, M.F.; Ismail, M. Purification of crude glycerol from transesterification reaction of palm oil using direct method
and multistep method. IOP Conf. Ser. Mater. Sci. Eng. 2017, 243, 012015. [CrossRef]

127. Isahak, W.N.R.W.; Jahim, J.M.; Ismail, M.; Nasir, N.F.; Ba-Abbad, M.M.; Yarmo, M.A. Purification of crude glycerol from industrial
waste: Experimental and simulation studies. J. Eng. Sci. Technol. 2016, 11, 1056–1072.

128. Abdul Raman, A.A.; Tan, H.W.; Buthiyappan, A. Two-step purification of glycerol as a value added by product from the biodiesel
production process. Front. Chem. 2019, 7, 774–782. [CrossRef]

129. Lopes, A.P.; Souza, P.R.; Bonafé, E.G.; Visentainer, J.V.; Martins, A.F.; Canesin, E.A. Purified glycerol is produced from the frying
oil transesterification by combining a pre-purification strategy performed with condensed tannin polymer derivative followed by
ionic exchange. Fuel Process. Technol. 2019, 187, 73–83. [CrossRef]

130. Rodrigues, A.; Bordado, J.C.; dos Santos, R.G. Upgrading the glycerol from biodiesel production as source of energy carriers and
chemicals-A technological review for three chemical pathways. Energies 2017, 10, 1817. [CrossRef]

131. Tan, H.W.; Abdul Aziz, A.R.; Aroua, M.K. Glycerol production and its application as a raw material: A review. Renew. Sustain.
Energy Rev. 2013, 27, 118–127. [CrossRef]

132. Kongjao, S.; Damronglerd, S.; Hunsom, M. Purification of crude glycerol derived from waste used-oil methyl ester plant. Korean J.
Chem. Eng. 2010, 27, 944–949. [CrossRef]

133. Demaman Oro, C.E.; Bonato, M.; Oliveira, J.V.; Tres, M.V.; Mignoni, M.L.; Dallago, R.M. A new approach for salts removal from
crude glycerin coming from industrial biodiesel production unit. J. Environ. Chem. Eng. 2019, 7, 102883. [CrossRef]

134. Xiao, Y.; Xiao, G.; Varma, A. A universal procedure for crude glycerol purification from different feedstocks in biodiesel production:
Experimental and simulation study. Ind. Eng. Res. 2013, 52, 14291–14296. [CrossRef]

135. Strathmann, H. Membrane separation processes: Current relevance and future opportunities. AIChE J. 2001, 47, 1077–1087.
[CrossRef]

136. Gomes, M.C.S.; Pereirra, N.C.; de Barros, S.T.D. Separation of biodiesel and glycerol using ceramic membranes. J. Membr. Sci.
2010, 352, 271–276. [CrossRef]

137. Sdrula, N. A study using classical or membrane separation in the biodiesel process. Desalination 2010, 250, 1070–1072. [CrossRef]
138. Liang, B.; He, X.; Hou, J.; Li, L.; Tang, Z. Membrane separation in organic liquid: Technologies, achievements, and opportunities.

Adv. Mater. 2018, 1806090. [CrossRef] [PubMed]
139. 2007 EET Corp., Web Information; HEEPMTM Technology: Harriman, TN, USA, 2007.
140. Indok Nurul Hasyimah, M.A.; Mohammad, A.W.; Markom, M. Influence of triglycerides on fouling of glycerol-Water with

ultrafiltration membranes. Ind. Eng. Chem. Res. 2011, 50, 7520–7526. [CrossRef]
141. Mah, S.K.; Leo, C.P.; Wu, T.Y.; Chai, S.P. A feasibility investigation on ultrafiltration of palm oil and oleic acid removal from

glycerin solutions: Flux decline, fouling pattern, rejection and membrane characterizations. J. Membr. Sci. 2012, 389, 245–256.
[CrossRef]

142. Jeromin, L.; Johannisbauer, W.; Blum, S.; Sedelies, R.; Moormann, H.; Holforth, B.; Plachenka, J. Process for the Purification of
Crude Glycerol Water. U.S. Patent 5,527,974 A, 18 June 1996.

143. Vadthya, P.; Kumari, A.; Sumana, C.; Sridhar, S. Electrodialysis aided desalination of crude glycerol in the production of biodiesel
from oil feed stock. Desalination 2015, 362, 133–140. [CrossRef]

http://doi.org/10.1039/an9709500278
http://doi.org/10.1016/j.rser.2014.10.091
http://doi.org/10.1016/j.biortech.2019.122155
http://doi.org/10.1016/j.biortech.2009.12.094
http://doi.org/10.1016/j.apcata.2012.10.024
http://doi.org/10.1016/j.fuel.2019.116556
http://doi.org/10.1016/j.procbio.2010.09.003
http://doi.org/10.1016/j.apcata.2014.06.005
http://doi.org/10.1016/j.fuproc.2016.01.035
http://doi.org/10.1016/j.indcrop.2015.10.019
http://doi.org/10.1016/j.biortech.2016.03.042
http://doi.org/10.1088/1757-899X/243/1/012015
http://doi.org/10.3389/fchem.2019.00774
http://doi.org/10.1016/j.fuproc.2019.01.014
http://doi.org/10.3390/en10111817
http://doi.org/10.1016/j.rser.2013.06.035
http://doi.org/10.1007/s11814-010-0148-0
http://doi.org/10.1016/j.jece.2019.102883
http://doi.org/10.1021/ie402003u
http://doi.org/10.1002/aic.690470514
http://doi.org/10.1016/j.memsci.2010.02.030
http://doi.org/10.1016/j.desal.2009.09.110
http://doi.org/10.1002/adma.201806090
http://www.ncbi.nlm.nih.gov/pubmed/30570172
http://doi.org/10.1021/ie2000727
http://doi.org/10.1016/j.memsci.2011.10.037
http://doi.org/10.1016/j.desal.2015.02.001


Energies 2022, 15, 3381 29 of 30

144. Kalafatakis, S.; Braekevelt, S.; Carlsen, V.; Lange, L.; Skiadas, I.V.; Gavala, H.N. On a novel strategy for water recovery and
recirculation in biorefineries through application of forward osmosis membranes. Chem. Eng. J. 2017, 311, 209–216. [CrossRef]

145. Zulfikar, M.A.; Mohammad, A.W.; Hilal, N. Preparation and characterization of novel porous PMMA-SiO2 hybrid membranes.
Desalination 2006, 192, 262–270. [CrossRef]

146. Xie, K.; Yu, Y.; Shi, Y. Synthesis and characterization of cellulose/silica hybrid materials with chemical crosslinking. Carbohydr.
Polym. 2009, 78, 799–805. [CrossRef]

147. Shaari, N.Z.K.; Rahman, N.A. Performance of Thin Film Composite in the Purification of Crude Glycerol; IEEE Business Engineering
and Industrial Applications Colloquium (BEIAC): Langkawi, Malaysia, 2013.

148. Siyal, M.I.; Lee, C.K.; Park, C.; Khan, A.A.; Kim, J.O. A review of membrane development in membrane distillation for emulsified
industrial or shale gas wastewater treatments with feed containing hybrid impurities. J. Environ. Manag. 2019, 243, 45–66.
[CrossRef]

149. Shirazi, M.M.A.; Kargari, A.; Tabatabaei, M.; Ismail, A.F.; Matsuura, T. Concentration of glycerol wastewater using sweeping gas
membrane distillation. Chem. Eng. Process. Process Intensif. 2014, 78, 58–66. [CrossRef]

150. Pal, P.; Chaurasia, S.P.; Upadhyaya, S.; Agarwal, M.; Sridhar, S. Glycerol purification using membrane technology. In Membrane
Processes; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 431–463.

151. Yalcinkaya, F.; Boyraz, E.; Maryska, J.; Kucerova, K. A review on membrane technology and chemical surface modification for the
oily wastewater treatment. Materials 2020, 13, 493. [CrossRef]

152. Manosak, R.; Limpattayanate, S.; Hunsom, M. Sequential-refining of crude glycerol derived from waste used-oil methyl ester
plant via a combined process of chemical and adsorption. Fuel Process. Technol. 2011, 92, 92–99. [CrossRef]

153. Hunsom, M.; Saila, P.; Chaiyakam, P.; Kositnan, W. Comparison and combination of solvent extraction and adsorption for crude
glycerol enrichment. Int. J. Renew. Energy Res. 2013, 3, 364–371.

154. Pitt, F.D.; Domingos, A.M.; Chivanga Barros, A.A. Purification of residual glycerol recovered from biodiesel production. S. Afr. J.
Chem. Eng. 2019, 29, 42–51. [CrossRef]

155. Javani, A.; Hasheminejad, M.; Tahvildari, K.; Tabatabaei, M. High quality potassium phosphate production through step-by-step
glycerol purification: A strategy to economize biodiesel production. Bioresour. Technol. 2012, 104, 788–790. [CrossRef] [PubMed]

156. Nanda, M.R.; Yuan, Z.; Qin, W.; Poirier, M.A.; Chunbao, X. Purification of crude glycerol using acidification: Effects of acid types
and product characterization. Austin J. Chem. Eng. 2014, 1, 7–13.

157. Contreras-Andrade, I.; Avella-Moreno, E.; Sierra-Cantor, J.F.; Guerrero-Fajardo, C.A.; Sodré, J.R. Purification of glycerol from
biodiesel production by sequential extraction monitored by 1H NMR. Fuel Process. Technol. 2015, 132, 99–104. [CrossRef]

158. Muniru, O.S.; Ezeanyanaso, C.S.; Fagbemigun, T.K.; Akubueze, E.U.; Oyewole, A.O.; Okunola, O.J.; Asieba, G.; Shifatu, A.O.;
Igwe, C.C.; Elemo, G.N. Valorization of biodiesel production: Focus on crude glycerine refining/purification. J. Sci. Res. Rep.
2016, 11, 1–8. [CrossRef]

159. Dhabhai, R.; Ahmadifeijani, E.; Dalai, A.K.; Reaney, M. Purification of crude glycerol using a sequential physico-chemical
treatment, membrane filtration, and activated charcoal adsorption. Sep. Purif. Technol. 2016, 168, 101–106. [CrossRef]

160. Sadhukhan, S.; Sarkar, U. Production of purified glycerol using sequential desalination and extraction of crude glycerol obtained
during trans-esterification of Crotalaria juncea oil. Energy Convers. Manag. 2016, 118, 450–458. [CrossRef]

161. Chol, C.G.; Dhabhai, R.; Dalai, A.K.; Reaney, M. Purification of crude glycerol derived from biodiesel production process:
Experimental studies and techno-economic analyses. Fuel Process. Technol. 2018, 178, 78–87. [CrossRef]

162. Sidhu, M.S.; Roy, M.M.; Wang, W. Glycerine emulsions of diesel-biodiesel blends and their performance and emissions in a diesel
engine. Appl. Energy 2018, 230, 148–159. [CrossRef]

163. de Farias, B.S.; Vidal, É.M.; Ribeiro, N.T.; da Silveiro, N., Jr.; da Silva Vaz, B.; Kuntzler, S.G.; de Morais, M.G.; Cadaval, T.R.S., Jr.;
de Almeida Pinto, L.A. Electrospun chitosan/poly(ethylene oxide) nanofibers applied for the removal of impurities from biodiesel
production by biosorption. J. Mol. Liq. 2018, 268, 365–370. [CrossRef]

164. Hobden, R. Commercializing enzymatic biodiesel production. Biodiesel Mag. 2014, 11, 34–37.
165. Monteiro, M.R.; Kugelmeier, C.L.; Pinheiro, R.S.; Batalha, M.O.; da Silva César, A. Glycerol from biodiesel production: Technolog-

ical paths for sustainability. Renew. Sustain. Energy Rev. 2018, 88, 109–122. [CrossRef]
166. Vivek, N.; Sindhu, R.; Madhavan, A.; Anju, A.J.; Castro, E.; Faraco, V.; Pandey, A.; Binod, P. Recent advances in the production

of value added chemicals and lipids utilizing biodiesel industry generated crude glycerol as a substrate–Metabolic aspects,
challenges and possibilities: A overview. Bioresour. Technol. 2017, 239, 507–517. [CrossRef] [PubMed]

167. Nuchdang, S.; Phalakornkule, C. Anaerobic digestion of glycerol and co-digestion of glycerol and pig manure. J. Environ. Manag.
2012, 101, 164–172. [CrossRef] [PubMed]

168. Siles López, J.Á.; de los Ángeles Martín Santos, M.; Chica Pérez, A.F.; Martín, A.M. Anaerobic digestion of glycerol derived from
biodiesel manufacturing. Bioresour. Technol. 2009, 100, 5609–5615. [CrossRef]

169. Liu, Y.; Koh, C.M.J.; Ji, L. Bioconversion of crude glycerol to glycolipids in Ustilago maydis. Bioresour. Technol. 2011, 102, 3927–3933.
[CrossRef]

170. Suzuki, T.; Nishikawa, C.; Seta, K.; Shigeno, T.; Nakajima-Kambe, T. Ethanol production from glycerol-containing biodiesel waste
by Klebsiella variicola shows maximum productivity under alkaline conditions. New Biotechnol. 2014, 31, 246–253. [CrossRef]

171. Maru, B.T.; López, F.; Kengen, S.W.M.; Constantí, M.; Medina, F. Dark fermentative hydrogen and ethanol production from
biodiesel waste glycerol using a co-culture of Escherichia coli and Enterobacter sp. Fuel 2016, 186, 375–384. [CrossRef]

http://doi.org/10.1016/j.cej.2016.11.092
http://doi.org/10.1016/j.desal.2005.09.022
http://doi.org/10.1016/j.carbpol.2009.06.019
http://doi.org/10.1016/j.jenvman.2019.04.105
http://doi.org/10.1016/j.cep.2014.02.002
http://doi.org/10.3390/ma13020493
http://doi.org/10.1016/j.fuproc.2010.09.002
http://doi.org/10.1016/j.sajce.2019.06.001
http://doi.org/10.1016/j.biortech.2011.09.134
http://www.ncbi.nlm.nih.gov/pubmed/22029954
http://doi.org/10.1016/j.fuproc.2014.12.016
http://doi.org/10.9734/JSRR/2016/27982
http://doi.org/10.1016/j.seppur.2016.05.030
http://doi.org/10.1016/j.enconman.2016.03.088
http://doi.org/10.1016/j.fuproc.2018.05.023
http://doi.org/10.1016/j.apenergy.2018.08.103
http://doi.org/10.1016/j.molliq.2018.07.081
http://doi.org/10.1016/j.rser.2018.02.019
http://doi.org/10.1016/j.biortech.2017.05.056
http://www.ncbi.nlm.nih.gov/pubmed/28550990
http://doi.org/10.1016/j.jenvman.2012.01.031
http://www.ncbi.nlm.nih.gov/pubmed/22417895
http://doi.org/10.1016/j.biortech.2009.06.017
http://doi.org/10.1016/j.biortech.2010.11.115
http://doi.org/10.1016/j.nbt.2014.03.005
http://doi.org/10.1016/j.fuel.2016.08.043


Energies 2022, 15, 3381 30 of 30

172. Rodrigues, C.V.; Santana, K.O.; Nespeca, M.G.; de Oliveira, J.E.; Maintinguer, S.I. Crude glycerol by transesterification process from
used cooking oils: Characterization and potentialities on hydrogen bioproduction. Int. J. Hydrogen Energy 2016, 41, 14641–14651.
[CrossRef]

173. Rodrigues, C.V.; Nespeca, M.G.; Sakamoto, I.K.; de Oliveira, J.E.; Amâncio Varesche, M.B.; Maintinguer, S.I. Bioconversion of
crude glycerol from waste cooking oils into hydrogen by sub-tropical mixed and pure cultures. Int. J. Hydrogen Energy 2019,
44, 144–154. [CrossRef]

174. Yuwa-amornpitak, T.; Chookietwatana, K. Bioconversion of waste cooking oil glycerol from cabbage extract to lactic acid by
Rhizopus microsporus. Braz. J. Microbiol. 2018, 49, 178–184. [CrossRef] [PubMed]

175. Wang, X.L.; Zhou, J.J.; Sun, Y.Q.; Xiu, Z.L. Bioconversion of raw glycerol from waste cooking-oil-based biodiesel production to
1,3-propanediol and lactate by a microbial consortium. Front. Bioeng. Biotechnol. 2019, 7, 14. [CrossRef] [PubMed]

176. Ma, J.; Jiang, H.; Hector, S.B.; Xiao, Z.; Li, J.; Liu, R.; Li, C.; Zeng, B.; Liu, G.-Q.; Zhu, Y. Adaptability of Klebsiella pneumoniae 2e, a
newly isolated 1,3-propanediol-producing strain, to crude glycerol as revealed by genomic profiling. Appl. Environ. Microbiol.
2019, 85, e00254-19. [CrossRef] [PubMed]

177. Chen, J.; Yan, S.; Zhang, X.; Tyagi, R.D.; Surampalli, R.Y.; Valéro, J.R. Chemical and biological conversion of crude glycerol derived
from waste cooking oil to biodiesel. Waste Manag. 2018, 71, 164–175. [CrossRef] [PubMed]

178. Xu, J.; Zhao, X.; Wang, W.; Du, W.; Liu, D. Microbial conversion of biodiesel byproduct glycerol to triacylglycerols by oleaginous
yeast Rhodosporidium toruloides and the individual effect of some impurities on lipid production. Biochem. Eng. J. 2012, 65, 30–36.
[CrossRef]

179. Guerfali, M.; Ayadi, I.; Sassi, H.E.; Belhassen, A.; Gargouri, A.; Belghith, H. Biodiesel-derived crude glycerol as alternative
feedstock for single cell oil production by the oleaginous yeast Candida viwanathii Y-E4. Ind. Crops Prod. 2020, 145, 112103.
[CrossRef]

180. Braga, A.; Freitas, B.; Cordeiro, A.; Belo, I. Valorization of crude glycerol as carbon source for the bioconversion of L-phenylamine
to 2-penylethanol by Yarrowia species. J. Chem. Technol. Biotechnol. 2021, 96, 2940–2949. [CrossRef]

181. Ripoll, M.; Velasco-Lozano, S.; Jackson, E.; Diamanti, E.; Betancor, L.; López-Gallego, F. One-pot biotransformation of glycerol
into serinol catalyzed by biocatalytic composites made of whole cells and immobilised enzymes. Green Chem. 2021, 23, 1140–1146.
[CrossRef]

182. Dobson, R.; Gray, V.; Rumbold, K. Microbial utilization of crude glycerol for the production of value-added products. J. Ind.
Microbiol. Biotechnol. 2012, 39, 217–226. [CrossRef]

http://doi.org/10.1016/j.ijhydene.2016.06.209
http://doi.org/10.1016/j.ijhydene.2018.02.174
http://doi.org/10.1016/j.bjm.2018.06.007
http://www.ncbi.nlm.nih.gov/pubmed/30166270
http://doi.org/10.3389/fbioe.2019.00014
http://www.ncbi.nlm.nih.gov/pubmed/30834245
http://doi.org/10.1128/AEM.00254-19
http://www.ncbi.nlm.nih.gov/pubmed/30902851
http://doi.org/10.1016/j.wasman.2017.10.044
http://www.ncbi.nlm.nih.gov/pubmed/29097125
http://doi.org/10.1016/j.bej.2012.04.003
http://doi.org/10.1016/j.indcrop.2020.112103
http://doi.org/10.1002/jctb.6849
http://doi.org/10.1039/D0GC03918G
http://doi.org/10.1007/s10295-011-1038-0

	Introduction 
	Biodiesel Production Routes 
	Current Market for Biodiesel from Waste Oils 
	Current Glycerol Market and Applications 
	Advantages and Disadvantages 

	Enzymatic Production of Biodiesel from Waste Oils 
	Enzymatic Transformation 
	Nature of Biodiesel by-Products 
	Characterization of Biodiesel 
	Separation and Purification of Biodiesel from Its By-Products 

	Purification of Biodiesel Glycerol from Waste Oils 
	Purity of Glycerol and Influence of Its Impurities 
	Glycerol Characterization Techniques 
	Properties of Glycerol 
	Purity of Glycerol 
	Impurities Measurement 

	Glycerol Purification Methods 
	Acidification/Neutralization 
	Vacuum Distillation 
	Ion-Exchange Resins 
	Adsorption on Activated Charcoal 
	Extraction 
	Membrane Separation 
	Multi-Step Methods 

	Possible Applications of Glycerol Purification Methods from Biodiesel Produced by Enzymatic Processes on Waste Oils 
	Bioconversion of Glycerol from Waste Oils to High Value-Added Products 

	Conclusions 
	References

