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Abstract: Using renewable energy sources instead of fossil fuels is one of the best solutions to over-
come greenhouse gas (GHG) emissions. However, in designing clean power generation microgrids,
the economic aspects of using renewable energy technologies should be considered. Furthermore,
due to the unpredictable nature of renewable energy sources, the reliability of renewable energy
microgrids should also be evaluated. Optimized hybrid microgrids based on wind and solar energy
can provide cost-effective power generation systems with high reliability. These microgrids can meet
the power demands of the consuming units, especially in remote areas. Various techniques have
been used to optimize the size of power generation systems based on renewable energy to improve
efficiency, maintain reliability, improve the power grid’s resilience, and reduce system costs. Each
of these techniques has shown its advantages and disadvantages in optimizing the size of hybrid
renewable energy systems. To increase the share of renewable energies in electricity supply in the
future and develop these new technologies further, this paper reviews the latest and most efficient
techniques used to optimize green microgrids from an economical and reliable perspective to achieve
a clean, economical, and highly reliable microgrid.

Keywords: wind energy; solar energy; reliability; optimization; artificial intelligence; cost analysis;
hybrid microgrid

1. Introduction

Today, the need to generate electricity from clean and green resources has become a
necessity. In fact, classic thermal power plants, due to the use of fossil fuels, have polluted
the environment and destroyed many natural resources [1]. These serious concerns have
led researchers, policymakers, and investors in energy to research and develop power
generation microgrids that reduce dependence on fossil fuels and reduce the environmental
impacts [2]. It is important to replace resources to minimize the unfavorable environmental
impacts while meeting the growing electricity demand with a cost of power that is compet-
itive. In line with this, focusing on renewable energy resources has been more prominent.
Although these resources have many benefits and are sustainable, clean, and inexhaustible,
they have low efficiency because they have significant limitations, such as variable solar
irradiance and fluctuating wind speed [3]. A combination of more than one resource for
power generation systems from renewable energy resources or hybrid renewable energy
systems (HRES) is used to overcome this problem. Furthermore, in order to address this
problem, it is necessary to develop appropriate energy storage systems for the HRES [4,5].

According to the location of an area, wind, solar and other renewable energy can be
proper supplements to supply electricity to power consumption units in HRESs. Energy
storage or support system units such as battery bank storage (BBS) are used in stand-alone
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HRE microgrids to increase system reliability [5]. A wind power generation microgrid
can be integrated with a solar or other renewable energy power generation system. Some
studies have shown that wind and solar systems are complementary [5,6]. Thus, in the
hours of the year when the potential for exploitation of wind resources is weak, the source
of solar or other renewable energies power supply can compensate for this shortage and
vice versa. As mentioned, an HRES consists of several renewable energy sources such as
wind, solar, and tidal. The use of different renewable energy sources in supplying power to
HRESs increases the reliability of the power generation system and, consequently, requires
fewer support units; in other words, the ability to supply power to the consuming power
system increases during the year. Nevertheless, due to the nature of these resources, most
HRESs are equipped with support and energy storage units. The use of storage units such
as batteries and fuel cells provide a clean power generation unit with higher reliability.

Although an HRES that uses various renewable energy resources for power generation
is more economical and reliable in comparing a single hybrid renewable power generation
system, the wrong size of system components can challenge system costs and system relia-
bility [6]. Therefore, the system size needs to be optimized based on various perspectives
before running the system. Different criteria can be considered to determine the size of
each component of HRESs with different configurations, such as reliability, economic, en-
vironmental impacts, optimization approaches, life cycle assessment, and so on [7,8]. In
recent years, valuable research and efforts have been made regarding the sizing methods
for HRES microgrids. The research has focused on improving the economic and reliability
performance of the HRESs and predicting the annual power generating capacity of these
units with fewer negative environmental consequences. For example, Borowy et al. [8] used
the concept of loss of load probability (LLP) to determine the optimal size of the wind turbine
(WT)/photovoltaic (PV) panel microgrid for power generation and cost of energy (COE).
Shrestha et al. [9] developed a new technique for simulating power generation from wind and
solar energy sources and then optimized the HRE microgrid size. Kellogg et al. [10] analyzed
the sizing of a hybrid renewable energy microgrid. Their research is based on the loss of
power supply possibility (LPSP) and the levelized cost of energy (LCOE). Maleki [11] used
mathematical modeling and optimization algorithms to optimize the size of various hybrid
microgrid configurations. They also compared the performance of different optimization
algorithms. In general, the review of studies shows that each of the methods used in optimiza-
tion has different advantages and disadvantages, which can significantly help researchers
improve existing methods and introduce new techniques. Accordingly, the current study
discusses and reviews studies that have optimized the size of HRESs linked to photovoltaic
panel/wind turbine hybrid microgrids (Figure 1) using different methods.

Figure 1. General schematic of the photovoltaic panel/wind turbine hybrid microgrid with direct
current (DC) bus and alternating current (AC) bus.
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After the Introduction section, the current study is structured as follows: a description
of wind solar-based microgrid configuration; key points for designing and optimizing
this hybrid microgrid; and applications of this power generation system are given in
Section 2. The PV/WT hybrid microgrid components’ mathematical modeling is presented
in Section 3. The most important factors that should be considered to optimize the size of
the power generation system are mentioned in Section 4. In Section 5, different methods to
estimate the reliability of a microgrid hybrid system are studied. According to economic
criteria, common and widely used methods to determine the optimal size of a hybrid
system are studied in Section 6. Popular techniques and tools used to optimize a wind
and solar-based hybrid system are reviewed in Section 7. In Section 8, various artificial
intelligence (AI) techniques for sizing problems are studied. Finally, the conclusion and
future works are mentioned in Section 9.

2. Solar PV/Wind Turbine Hybrid Microgrid

Due to the variable nature of the availability of renewable energy resources in hours
of a year, many studies are focused on this issue. The following are the most important and
major problems facing the development of renewable hybrid microgrid technology [12]:

(1) The potential of renewable energy sources depends on the conditions and environ-
mental location.

(2) The capital, installation, and maintenance costs of these microgrids are high.
(3) These clean power generation systems are less reliable than traditional power genera-

tion systems.

The irregular or sometimes indeterminate pattern of these renewable resources makes
it difficult to predict the amount of annual power generation by these sources. Researchers
have suggested that several renewable resources be used to supply power to the consump-
tion units to solve this problem. The design and implementation of a renewable hybrid
system depend on various factors such as the potential of exploiting the natural resources
of the considered place, access to the electricity network, and technical constraints (system
efficiency, capacity factor, and power quality). Optimizing the size of these clean power
generation units can optimize the cost of implementing these microgrids and increase
system reliability [13]. A hybrid microgrid usually consists of parts such as a control and
management unit, power generation units from renewable resources, energy storage units,
support system units, and electric current converters.

As mentioned, wind and solar power generation systems need energy storage units
such as batteries and fuel cells. In addition, these systems require a support unit such as
diesel generators. Additionally, HRESs are categorized into stand-alone or grid-connected
systems. Due to the high cost of developing transmission lines for remote areas, stand-
alone or off-grid microgrids may be used to generate electricity [14]. Economic efficiency
is very important for the development of power plants. Traditional power generation
systems for remote areas often operate by fossil fuel. The research results show that
using hybrid microgrids based on solar-wind energy for remote areas that have a good
potential for exploiting renewable energy resources can meet the power requirements of
the power-consuming units [14,15]. These renewable microgrids have shown their ability
and competence in the field of power supply. The purpose of evaluating power generation
systems from hybrid renewable energy sources is to achieve an HRE microgrid with optimal
size and cost-effectiveness. To achieve this objective, first, the potential of renewable energy
resources of the study area, such as wind speed, the intensity of irradiation sunlight,
and ambient temperature, are estimated. Subsequently, each component of the hybrid
microgrid, such as solar modules, wind turbine, converter, battery, and diesel generators, is
modeled. The required load is also simulated; eventually, the objective function, variables
decision, and objective function constraints are defined. Subsequently, each component size
of the HRES is optimized by an optimization method [15]. The objective function, variables
decision, and constraints should be defined so that the objectives such as reliability and
economic aspects are completely met. To evaluate and optimize the performance of the
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wind-solar hybrid microgrid, each component is modeled, and then the entire configuration
is evaluated and estimated to satisfy the requirements. Moreover, for better performance of
the wind-solar microgrids, it is necessary to determine an accurate and efficient system for
power control and management (Figure 2). Solar and wind energy are both inexhaustible
and permanent renewable natural resources. These two sources can be excellent sources
for power generation in hybrid microgrids. Additionally, they can complement each other;
for example, there is a lot of sunlight on a sunny summer day, which can compensate for
the lack of wind energy.

Figure 2. Schematic of a hybrid renewable energy microgrid’s power control and management system
from Kiehbadroudinezhad et al. [6]. With permission from John Wiley & Sons Ltd. Copyright © 2020;
License Number: 5237281090835.

Simultaneously using these two inexhaustible and permanent sources is a good guar-
antee of achieving a stable HRE microgrid. The most common limitations considered for
evaluating renewable energy microgrids are the technical–economic characteristics of mi-
crogrid components, such as wind turbines, solar panels, battery banks, electric converters,
and diesel generators.
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Ribeiro et al. [16] introduced an analytical method called multi-criteria decision anal-
ysis (MCDA). This tool focuses on economic and environmental issues. Some data have
a very significant effect on estimating and optimizing the size of the HRE microgrid con-
figuration. These data include meteorological data, the technical–economic data of each
component, and power consumption. Meteorological data refers to hourly data on solar
irradiation, wind speed, and ambient temperature throughout the year. Sometimes the av-
erage monthly data is also used. Additionally, the economic data of each component refers
to the initial capital costs, operation, maintenance, and replacement of each component.
Furthermore, technical data refer to the specifications and technical data of each component.
It should be noted that since some hourly data, such as climate data, is hard to get in remote
areas, for this purpose, usually monthly average data is used instead of hourly data in a
year. Climate data can be obtained from reputable sites such as the National Aeronautics
and Space Administration (NASA) or collected from local weather organizations [5]. If this
data is collected in smaller intervals, such as hours, optimizing the size of the HRE micro-
grid configuration will be more accurate. Furthermore, a more appropriate estimate of the
performance of this power generation unit can be made. Blanching et al. [17] designed and
optimized a renewable hybrid microgrid using a horizontal axis wind turbine, solar panels,
a diesel generator as the support unit, and batteries as the support and energy storage unit.
In their study, they used a diesel generator to support the power generation system during
peak load, and the results of their research showed that they could control and manage
the peak load well. Load demand plays a vital role in designing and constructing solar
and wind power generation systems, especially if this microgrid system is stand-alone.
Meeting the power demand, especially at peak times, is also critical to the sustainability of
stand-alone renewable-energy-based microgrids. Therefore, a support unit is often used to
compensate for this lack of power generation from renewable sources.

3. Modeling of Solar–Wind Energy Microgrid

The availability of solar and wind energy for the site where the hybrid microgrid
project is to be built depends on the location of the project’s site. Environmental circum-
stances such as ambient temperature, wind speed, and solar irradiation are also different
depending on each place. Hence, the renewable energy potential measurement of the
project location plays a significant role in the design and size of green microgrids [18].
Bagul et al. [19] also presented an interesting and particular strategy for optimal photo-
voltaic cells and wind turbines. These researchers used battery bank storage as a support
and storage unit. Kaabeche et al. [20], using a special algorithm, could determine the
optimal number of wind generators and solar panels for a small-scale HRE microgrid.
The researchers also used a battery bank as an energy storage unit. Cano et al. [21] devel-
oped a method for determining the appropriate number of wind turbines, photovoltaic
modules, and battery banks. They used climate data such as solar radiation and average
wind speed to quantify each component of the hybrid renewable energy microgrid; these
researchers also obtained solar data from the PVGIS and wind data from the Wind finder.
Zhang et al. [22] considered a hybrid microgrid consisting of a wind generator, a photo-
voltaic panel, a battery, and a diesel generator. They estimated the occupied area and size
of the photovoltaic panels, the battery banks’ storage, the height of the wind generators,
and the hours that the diesel generator should be running. In the first step to achieving
an optimized wind-solar-based microgrid, all components of it must be mathematically
modeled (Table 1). Then, the optimal size of each component can be obtained using differ-
ent types of optimization methods. The objectives and constraints intended to optimize
these hybrid green power generation units can be economical and reliable. In general, after
modeling and optimization of the HRES, a cost-effective and reliable hybrid system should
be provided. This power generation system can fully and continuously meet the needs of
power consumption units throughout the year [23].
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Table 1. A summary of the PV/WT hybrid microgrid components’ mathematical modeling.

HRES Components Remarks Mathematical Equations Ref.

Wind Turbine

Power-law exponent V
V0

=
[

h
h0

]α

[6,7]Power generated PWT =


0, V(t) ≤ Vci or V(t) ≥ Vco
a×V3 − b× Pr, Vci ≤ V(t) ≤ Vr

Pr, Vr ≤ V(t) ≤ Vco

Total power generated PT = NWT × PWT

Rated power Pr = 1/2× AWT ×Cp × ρa × ηr × ηWT ×V3
r

Photovoltaic Panel
Power generated PPV(t) = Rt × ηPV × APV

[5]
Panel efficiency ηPV = ηr× ηPC

[
1− β ×

((
Tair +

[
NOCT−20

800

]
× Rt

)
− Tre f

)]

Battery Storage

Charging mode SOC(t) = SOC(t − 1) × (1 − σ) + [PG(t)−
PL(t)
ηInv

] × ηBC

[11]
Discharge mode SOC(t) = SOC(t − 1) × (1 − σ) −

[
PL(t)
ηInv
− PG(t)

]
/ηBF

Loss of power supply LPS(t) = PL(t)
ηInv
− PG(t)− [SOC(t − 1) × (1 − σ)− SOCmin(t) ]× ηBF

Minimum of charge SOCmin = (1 − DOD) × SBBS

3.1. Solar Energy Modeling

As indicated in Table 1, the output power per PV panel depends on solar insolation,
the area occupied by PV panels, and the efficiency of PV panels. Maghraby et al. [24]
suggested that to optimize the size of the clean power generation units, the area occupied
by the solar panels and the number of battery banks should be estimated by the probable
load. Terra et al. [25] could extract the maximum possible power from a hybrid renewable
energy system based on photovoltaic panels and wind generators using fuzzy optimization
techniques. In this study, the decision variables were the total cost of photovoltaic panels,
the angle of the surface of these panels, and the continuous and stable power generated
by this HRE microgrid. Habib et al. [26] also designed and simulated a renewable energy-
based microgrid. These researchers optimized factors such as the angle of inclination and
latitude of the solar panel’s surface, the maximum power point of the solar panels, and the
lifespan and efficiency of the battery bank and inverters. Koutroulis et al. [27] provided an
optimal renewable power generation system in which the size of the photovoltaic panel
and its inclination surface angle were optimized. They considered the energy storage
source’s battery charge level and capacity as decision variables and optimized it using
hourly climate data for one year. Using ambient temperature and solar radiation data,
Borowy et al. [8] introduced an efficient model that can model and estimate the maximum
output power of the photovoltaic module. Zhou et al. [28] presented a model that can pre-
dict the performance of a photovoltaic module concerning ambient temperature and solar
irradiation. Yang et al. [29] developed an efficient model for achieving maximum output
power from photovoltaic panels. Their proposed model also considered the maximum
power point tracking (MPPT) controller. The amount of snow shade or cover and the loss
of wiring in this study were other considered factors.

3.2. Wind Energy Modeling

Some data are essential to model the power generation unit from wind energy. These
data include meteorology data such as solar irradiation, technical data such as wind turbine
height from the ground and its nominal power, the amount of load required by consuming
electricity units, and economic data such as capital and maintenance cost of wind generators.
As shown in Table 1, the WT’s power output is also affected by two factors: the height of the
WT hub and the speed of the wind. The higher accuracy of the relevant data leads to a more
accurate model for the power generation unit. The use of hourly weather data increases
the accuracy of the modeling results [6]. However, this hourly data is not available for
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every location. Hence, sometimes predictive algorithms or simulation programs are used.
Carpentiero et al. [30] developed an efficient model using weather data, load consumption,
and the techno-economic data of diesel generators, wind turbines, and energy storage
units. Then, they used different wind speed data to evaluate the output of wind and diesel
generators (the amount of power generated). Elbaset [31] also suggested a probabilistic
model that is a simple model for predicting the output power of a large-scale microgrid.
In the proposed microgrid, lead-acid batteries were used to store extra energy, and these
batteries provide the required power for times when the wind energy was insufficient to
meet the load. Proper and accurate modeling is an important factor in getting the maximum
power from the wind power generation system. This modeling usually considers turbine
hub height, wind speed, and nominal wind turbine power. The variable nature of wind
energy causes the variable power generation from this renewable energy source throughout
the year. This problem has caused researchers to present new and efficient models, such as
Weibull, to determine power from a wind source. Some researchers have also developed a
model based on the wind’s cut-in, cut-out, and rated speed [6].

3.3. Battery Bank Storage Modeling

Since the output of renewable energy sources is variable and has a slow response,
energy and power storage units such as batteries and fuel cells are used to store excess
energy produced by these natural energy resources. An optimal energy storage system
should have a maximum capacity for storing electrical power, long life, high response
speed, and low cost. Due to recent advances in the energy storage industry, various models
have been produced to store electrical power with a high life cycle and efficiency. The super-
capacitor, superconducting magnetic storage, flywheel storage, sodium-sulfur (NaS), flow
batteries, and compressed air are examples of this advanced technology. As demonstrated
in Table 1, the energy demand, the amount of power generated by wind and solar energy,
and the initial state of charge (SOC) are three critical factors that play prominent roles in
the battery state of charge as energy storage [5,32].

In an interesting study, Yang et al. [32] showed that the ampere-hour counting method
for lead batteries is the best approach to modeling batteries, with two factors of voltage
floating charge and state of charge. In another research, Zhou et al. [28], to evaluate the
relationship between temperature and efficiency and performance of battery bank storage
in the HRE microgrid, replaced the concept of the state of charge with the concept of voltage
state. The size of the batteries as the power storage unit of a hybrid renewable power
generation system depends on the depth of discharge (DOD) of the batteries, the cost of
the battery bank and the potential of renewable energy to generate power and supply the
needed power. To optimize the size of the battery bank storage, factors such as the depth
of discharge of the batteries, changes in the temperature of the battery bank, the cost of
the batteries, and their lifespan are the most important factors that must be considered.
Bayram et al. [33] also optimized an on-grid microgrid storage unit in terms of size. These
researchers used a battery bank for the power storage unit. Their method was based on a
stochastic sizing approach. The task of this storage and support system was to meet part of
the required microgrid power.

In another study, Ghiassi et al. [34] optimized a solar microgrid’s battery bank storage
size. They presented the method of stochastic calculus. In their research, these researchers
also considered the concept of loss of power supply probability (power system reliability
assessment). Yuan et al. [35] also proposed an optimization method that reduces fuel
consumption and increases the use of renewable energy resources. They used Homer
software to validate the optimization results of their research. Nagara et al. [36] studied
the optimization method, namely, convex-optimization. This method was focused on the
charge and discharge rate of lithium-ion batteries. The purpose of these researchers was to
investigate the impact of this factor on the life cycle cost (LCC). Since the output of HRE
microgrids is usually not uniform, Lee et al. [37] introduced a power management and
control system for the power generation unit from wind and solar sources. Their research
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used two techniques, namely, real-time power distribution and state of charge (SOC)
feedback control, to regulate and control the battery bank power distribution. Li et al. [38]
developed a scheduling strategy to overcome the problem of battery power distribution
as a unit of energy storage at peak times. This strategy made the output of the solar
microgrid uniform.

4. Sizing of the Solar–Wind Energy Microgrid

In order to determine the optimal size of a hybrid green microgrid, it is necessary
to consider several important factors, including the cost of capital, maintenance, opera-
tion, and replacement. The purpose of optimizing the size of a hybrid renewable energy
microgrid is to estimate the size of each component of this system so that in addition to
providing the load required of the unit consuming electricity, the HRES also has the lowest
cost. Various methods are used to optimize the size of the power generation system, such
as artificial intelligence (AI), the analytical method, the probabilistic approach, and the
software-based approach. The classical method generally uses analytical, graphical, and
probabilistic techniques for optimization; it also uses mathematical methods and differential
calculus to obtain the optimal results of an objective function. The modern method, which
is also widely used today, uses artificial intelligence techniques. The reason for the high
usage of this method is the high accuracy and speed of the results obtained by this method.
Additionally, the last method is software-based, used to optimize hybrid renewable energy
systems such as wind-solar microgrids, including the hybrid optimization model for electric
renewable (HOMER) and the transient systems simulation program (TRNSYS).

Shrestha et al. [9] suggested a hybrid renewable power generation system to optimize
the size of photovoltaic panels. The researchers also estimated the number of battery
banks in the power generation system. To reduce the annual cost of the microgrid hy-
brid system, Kellogg et al. [10] set restrictions on configuring the power generation unit
from the renewable energy source and the storage and support unit of this microgrid.
Kiehbadroudinezhad et al. [5], in their research, concluded that the reliability, total annual
cost, and gas emissions’ volume of the HRES are the most important factors that should be
considered for the modeling, optimization, and evaluation of wind and solar-based power
generation microgrids. Habib et al. [26] also found that the cost of the total power genera-
tion system increases in a renewable energy system if the size of the renewable resources is
considered too large; if it is too small, then the system’s reliability decreases. Gupta [39]
introduced an optimization algorithm to optimize the size of an HRE microgrid based on
wind and solar and used the requested load hourly data to model and optimize the HRE
microgrid. This study also used hourly climate data for one year. Yang et al. [32] operated
the variables of reliability, total cost, and greenhouse gas emissions to obtain the optimal
results of the HRE power generation system from wind and solar energies. Zhang et al. [22]
also utilized an improved genetic algorithm to optimize the power generation system from
renewable resources. These researchers showed that the introduced optimization algorithm
was not only faster than the standard genetic algorithm in terms of obtaining optimization
results but the results obtained by this algorithm were also more accurate. Elbaset [31]
optimized the cost of the total life cycle of an HRE microgrid unit. The optimal power
generation system was able to meet all the required load needs per year without a shortage
of power generation. The researchers [7,40] optimized a desalination plant driven by wind
and solar energy. They used an annealing-chaotic search algorithm for the optimization of
this system.

5. Estimating HRE Microgrid Reliability

Generally, there are many different methods to estimate the reliability of a micro-
grid hybrid system (Table 2). The methods like loss of power supply probability (LPSP),
loss of energy expected (LOEE), loss of energy probability (LOEP), deficiency of power
supply probability (DPSP), loss of load expected (LOLE), loss of load risk (LOLR), and
loss of load probability (LOLP) are the most widely used methods that can be mentioned.
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Yang et al. [40] also used the levelized cost of energy (LCOE) method to optimize the cost
of a renewable hybrid system. This researcher also used the DPSP method to determine the
reliability of the HRES. Belmilia et al. [41] used the LPSP method to determine the reliability
of their hybrid system.

Table 2. The most important reliability indicators used for HRESs.

Line Indices Remarks Mathematical Equations

1 LPSP Loss of power supply probability LPSP(t) = ∑T
t = 1 LPS(t)

∑T
t = 1 PL(t)

2 LOEP Loss of energy probability LOEP = ∑
j

Pj×Ej
E0

3 DPSP Deficiency of power supply probability DPSP(t) = ∑t
0 Pd f (t)

∑t
0 PL(t)

4 LOEE Loss of energy expected LOEE =
H
∑

h = 1
∑

i∈S
Pi × LOEi

5 LOLP Loss of load probability LOLP = ∑
j

Pj×tj
100

6 LOLE Loss of load expected LOLE =
H
∑

h = 1
∑

i∈S
Pi × Ti

7 LOCE Levelized cost of energy LOCE(t) =
∑n

t = 1
It+Mt+Ft
(1 + r)t

∑n
t = 1

Et
(1 + r)t

Bajpai et al. [42] determined the number of photovoltaic panels and the battery bank
storage (energy storage) using the LPSP method. Al-ashwal et al. [43] optimized an HRE
microgrid and operated the loss of load hours method to determine the reliability of their
optimized system. Nelson et al. [44] used the LPSP method to determine the reliability
of their renewable energy power generation system, which hoped to meet the power
requirements of energy-consuming units. They also defined the optimal size of the electrical
power storage (battery bank). Gupta et al. [39] conducted a study to determine the amount
of power generation from a renewable wind source for a year. They used the LPSP method
in their study to specify the reliability capacity of an HRE microgrid. Kaabeche et al. [20]
proposed an innovative model for the hybrid microgrid based on the DPSP. Diaf et al. [45]
utilized the LPSP method to characterize the reliability of a hybrid solar and wind-based
power generation system. Al-Ashwal et al. [43] used the LOLR method to determine the
reliability of a renewable power generation system. Negi et al. [46] examined different
reliability methods and declared that the LPSP method is the best way to determine the
reliability of a hybrid renewable energy renewable system.

6. Cost Investigation

Researchers have proposed various methods to determine the optimal size of a hybrid
system according to economic criteria [47]. Often the cost function of an HRES consists
of a combination of factors such as capital, installation, maintenance, and replacement
costs (Table 3). The cost function modeled in the research of Kellogg et al. [10] included
annual production cost and system maintenance cost. Koutroulis et al. [18] also specified
the size of an HRE unit based on the amount of load demand and the system’s total cost.
The lifespan considered in this study was twenty years. Zhang et al. [22] optimized the
costs of installing and maintaining a hybrid renewable energy system. Nowdeh et al. [48]
also optimized the cost of an off-grid renewable hybrid system. The system consisted of a
wind generator, solar module, and fuel cell as the energy storage unit and support system.
The total cost function considered in this study consisted of factors such as capital and
maintenance–operation costs.

In another study, Perera [49] operated the system LCC method to determine the optimal
cost of an HRE microgrid. The cost function of this researcher included the costs of each
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component of this power generation system. In this total cost function, the lifespan of each
component of this system was considered. In another study, Hakimi et al. [50] also proposed
a new way to improve the performance of standard cost functions. These researchers
proposed constraints for the three known cost functions of net present cost (NPC), LCC,
and LCOE so that the final cost of a hybrid renewable energy system could be estimated
more accurately. Belmilia et al. [41] estimated an HRE microgrid’s total LCC for one year to
optimize their study’s renewable generation power system. They named this innovative
method the annual LCC (ALCC). The cost function used in the research of Gupta et al. [39]
also included the cost of LCC and the initial and maintenance–operation costs.

Table 3. A summary of some key HRES indicators based on mathematical modeling.

Indices Remarks Mathematical Equations Ref.

CRF Capital recovery factor CRF(i, n) = i(1 + i)n

(1 + i)n−1 [6]

PW Factor of payment present worth PW = C ×
n
∑

k = 0

1
(1 + i)k [51]

TLCC Total life cycle cost TLCC( AWT , APV , NBBS) = ∑
m = PV,WT,BBS

LCCm [52]

LCC Life cycle cost LCC = CC + MC

[11]
LCCPV Life cycle cost of photovoltaic

LCCPV = CCPV + MCPV
CCPV = APV × CPV × CRF
MCPV = CMnt−PV × APV

LCCWT Life cycle cost of wind turbine

LCCWT = CCWT + MCWT
CCWT = AWT × CWT × CRF

MCWT = CMnt−WT × AWT ×
19
∑

k = 0

1
(1 + i)k × CRF

[5]

LCCBAT Life cycle cost of battery
LCCBAT = CCBAT + MCBAT
CCBAT = NBAT × PWBAT × CRF
MCBAT = NBAT × CMnt−BAT

[53]

LCCINV Life cycle cost of inverter
LCCINV = CCINV + MCINV
CCConv/inv = NInv × PWInv × CRF
MCConv/Inv = NInv × CInv

[54]

The initial cost consists of capital cost and installation cost. Lagorsea et al. [55]
introduced two new concepts of system initial equipment cost (SIEC) and system total
investment cost (STIC) to estimate the cost of a hybrid green power generation microgrid. In
an interesting study, Belmili et al. [41] also explored an HRES from an economic perspective.
He considered essential factors such as capital, replacement, and maintenance–operation
costs in his research. Yazdanpanah [56] considered the system’s annual cost (ACOS)
method, including the capital, replacement, maintenance, and operation costs.

7. Optimization Methods of HRE Microgrid

There are a variety of techniques and tools used to optimize a wind and solar-based
hybrid system for power generation (Table 4). Sometimes, these techniques are justified by
conflicting objectives, such as simultaneously increasing the reliability of an HRE microgrid
and reducing the total cost of this system. Koutroulis et al. [18] concluded that the genetic al-
gorithm (GA) obtains optimization results faster than other optimization algorithms. Their
study was focused on a microgrid based on wind and solar energy. These researchers also
utilized hourly weather data such as wind speed, average ambient temperature, and solar
irradiation to optimize the hybrid power generation system. Habib et al. [57] optimized
the size of a wind–solar microgrid. They used an optimization method based on numerical
techniques. Palabazer [58] established a fuzzy quadratic model to express the relationship
between the power curve of the wind turbines and wind speed, which is the basis for opti-
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mizing the power and size of wind turbines in many research papers. Yazdanpanah [56]
introduced a multi-objective function to optimize a microgrid based on wind and solar
energy. This researcher optimized the size of this hybrid microgrid using the particle swarm
optimization (PSO) algorithm, i.e., the number of photovoltaic panels and wind generators.
This clean power generation system could meet all load demands without shortage. Today,
software such as HOMER, TRNSYS, and HOGA allow users to simulate and find their
ideal and optimal configuration. These software are widely used today among energy
analysts and other researchers. Using optimization algorithms such as genetic algorithms
and PSO, important parameters such as the reliability of the power generation system and
the total cost of the power generation system can be optimized. Nasiraghdam et al. [59] also
designed a green power generation system that consisted of wind generators, photovoltaic
panels, and fuel cells as energy storage and support units. The researchers optimized the
size of this hybrid microgrid using the PSO optimization algorithm. Hakimi et al. [50]
obtained the optimal size of each component of the wind generator and fuel cell configura-
tion using the PSO algorithm. Maleki et al. [53] developed and introduced a new hybrid
optimization method. They used genetic algorithms and fuzzy logic in combination to
optimize the renewable power generation system. Carpentiero et al. [30] also concluded
that the two most widely used optimization algorithms, i.e., GA and PSO, are the most
appropriate algorithms for optimizing a hybrid power generation unit.

Table 4. A recent literature review on optimization techniques for hybrid renewable energy microgrids.

Authors

Renewable
Components Support Units Operating Methods

Objectives Optimization
Methods Year Ref.

PV WT DG Battery Off-Grid Grid-
Connected

Suman et al. 3 * 3 3 3 3 - COE PSO, GWO 2021 [60]
Mokhtara et al. 3 3 3 3 3 - COE PSO 2021 [61]
Hassan et al. 3 - - 3 3 3 COE GA 2021 [62]
Das et al. 3 3 3 3 3 3 TNPC HOMER 2021 [63]
Hong et al. - 3 - - 3 - Production efficiency ABC 2021 [64]
Kumar et al. 3 - - - 3 - Power stability PSO, BFOA 2021 [65]
Naderipour et al. 3 3 - 3 3 - TNPC, COE GOA 2021 [66]
Kiehbadroudinezhad et al. 3 3 3 3 3 - Sizing, TLCC DA 2021 [5]
Emad et al. 3 3 - 3 3 - Sizing, COE GWO 2021 [67]
Çetinbaş et al. 3 3 3 3 3 - Sizing, TNPC HHO 2021 [68]
Fares et al. 3 3 - 3 3 - Sizing, TNPC FPA 2022 [69]
Emrani et al. 3 3 - - - 3 GES GA 2022 [70]
Makhloufi et al. 3 3 - - 3 - LCOE Cuckoo 2022 [71]
Maheri et al. 3 3 3 3 3 - Sizing GA, NSGA 2022 [72]
Nuvvula et al. 3 3 - 3 3 - Sizing PSO 2022 [73]
Hemeida et al. 3 3 3 3 3 - COE MOMVO 2022 [74]

* It means selecting or using renewable components, support units, and operating methods.

8. Artificial Intelligence (AI) Technique for HRE Microgrid Sizing

As mentioned in the previous sections of this study, there are a variety of optimiza-
tion algorithms for optimizing the size of hybrid renewable systems, such as the genetic
algorithm (GA), the artificial bee colony algorithm (ABC), particle swarm optimization
(PSO), the ant colony algorithm (ACA), the grey wolf optimizer (GWO), Harris hawks
optimization (HHO), the flower pollination algorithm (FPA), the grasshopper optimization
algorithm (GOA), multi-objective multi-verse optimization (MOMVO), spotted hyena opti-
mization (SHO), or a combination of these algorithms. Some researchers combine several
intelligent optimization algorithms to create a new algorithm that has the advantages of
both algorithms and overcomes the disadvantages of each of the combined optimization
algorithms [75]. In general, combined intelligent optimization algorithms have a higher
computational speed than traditional optimization methods. In other words, the conver-
gence speed of these algorithms is faster than previous and traditional methods. The
researchers also showed that the optimal results obtained by these types of optimization
algorithms are more accurate. Many of these optimization algorithms are used for the
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size of the hybrid power generation system, consisting of wind turbines and photovoltaic
panels [76]. In the continuation of this study, some widely used and efficient optimization
algorithms will be introduced.

8.1. Genetic Algorithm (GA)

The genetic optimization algorithm was developed in 1960 by John Holland. This
optimization algorithm solves optimization problems with techniques inspired by the
phenomenon of evolution and nature (Figure 3). Like the phenomenon of evolution, this
optimization method consists of four parts (a) inheritance, (b) mutation, (c) selection, and
(d) crossover. This algorithm is well known and has many advantages, such as (a) solving
multiple problems, (b) being easy to understand, (c) high accuracy, and (d) convenient
flexibility with other software such as MATLAB. Genetic algorithms, despite their many
advantages, also have limitations. These disadvantages are (a) stuck in local optimum
points and (b) slow response time. In recent years, many kinds of research have been done
by researchers using genetic algorithms to optimize the size of an off-grid HRE microgrid
based on wind and solar energy. For example, the size of a solar wind stand-alone power
generation system was estimated by Koutroulis et al. [18] using the genetic algorithm.
Achieving a low-cost hybrid renewable energy system was one of the main goals of this
power generation system. Additionally, this optimized clean power generation system
could fully meet the required load needs. In an interesting study, researchers used a
solar wind microgrid to meet the power demand of a desalination unit. The researchers
optimized the size of all components of this microgrid, including wind generators and
photovoltaic panels [32].

Figure 3. The implementation process of the genetic algorithm.

Some researchers designed a power generation system consisting of wind turbines,
photovoltaic panels, and batteries [29,40]. Using genetic optimization algorithm, the re-
searchers determined the number of photovoltaic panels, wind generators, and battery
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banks. Operating this algorithm, they also optimized and determined two other deci-
sion variables, namely, the slope angle of the panels and the height of the wind turbine
hub. This system was responsible for supplying electricity to a telecommunication unit.
Bilal et al. [77] used a genetic optimization algorithm to optimize the green power genera-
tion system from wind and solar energy sources. They set two constants for their objective
function: LPSP and the minimum annual cost. The researchers used a battery bank to store
the excess energy produced. In another study using a genetic algorithm, Nafeh [78] opti-
mized the power output of wind turbines and photovoltaic panels units. This system was
cost-effective and highly reliable. Merei et al. [79] designed and simulated a stand-alone
hybrid renewable system that included a wind turbine–photovoltaic panel, a battery, and a
diesel generator. This power generation system was optimized using a genetic algorithm.
Researchers have also optimized the LCC of wind and solar power generation systems
using GA. Another goal of this research was to increase the reliability of the system. The
researchers also considered the system embodied energy (EE) constraint [48].

8.2. Particle Swarm Optimization (PSO)

The particle swarm optimization (PSO) algorithm is another widely used optimization
algorithm. This algorithm is also inspired by nature. PSO is a meta-heuristic algorithm
developed using the cumulative motion of animals (Figure 4). This algorithm was invented
and introduced by a researcher named Kennedy [80]. He succeeded in finding the idea of
developing this optimization algorithm by studying and assessing the group movement
of animals. PSO has a high search speed among a collection of the possible answers to an
objective function. The simple calculation method is another advantage of this algorithm.
However, this algorithm has a limitation; it does not work properly in non-coordinated
systems. Today, this method is widely used by researchers.

Figure 4. The implementation process of the particle swarm optimization algorithm.
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Lee et al. [81] used this optimization algorithm to optimize the capacity of wind and
solar energy resources in a hybrid renewable power generation system. The objective
function of these researchers was to achieve a cost-effective power generation system. In
an interesting study, researchers simulated and optimized a power generation system
consisting of a wind generator and a photovoltaic panel with a lifespan of 20 years [82].
This study used a fuel cell as the energy storage unit and system support. The purpose of
this study was to reduce the annual cost of this HRE microgrid by considering the system’s
reliability so that this green power generation system could meet all the demand power.
Bansal et al. [83] utilized the Meta PSO algorithm. This new technique is named MPSO.
They optimized the power generation system based on wind and solar energy with the
MPSO algorithm. It should be noted that in this study, batteries served as an energy storage
unit and system support.

In another study, the PSO optimization algorithm was used to solve the optimization
problem [84]. The hybrid renewable energy microgrid of this study consisted of a wind
generator and a photovoltaic panel as power generation units. Batteries and fuel cells were
also used as energy storage and system support. The diesel generator was also considered
another system support unit in this research. Borhanazad et al. [85] also operated the PSO
multi-objective algorithm to optimize the size of a microgrid based on wind and solar
energy. Batteries and diesel generators were also utilized in this power generation unit.

8.3. Artificial Bee Colony Algorithm (ABC)

The artificial bee colony algorithm (ABC) is an optimization algorithm based on a
metaheuristic optimization algorithm. Karaboga and Basturk [86] suggested this method.
In this algorithm, a food source’s location relates to a feasible optimization problem solution,
and the quality of the related solution relates to the quantity of a nectar food source. Some
researchers proposed a novel multi-objective ABC method for sizing a hybrid microgrid
that included PV, wind turbines, and fuel cells [87]. In addition, the total loss of power,
the total cost of the power, the total gas emissions produced by this hybrid microgrid,
and the index of voltage stability system were also discovered in this paper. Maleki and
Askarzadeh [53] have suggested an artificial bee swarm optimization (ABSO) method for
sizing a hybrid renewable energy microgrid based on the photovoltaic panel, wind turbine,
fuel cell, and hydrogen tank for the eastern area of Iran, intending to achieve the best
possible energy efficiency.

8.4. Division Algorithm (DA)

In recent years, a new optimization algorithm was developed to overcome the weak-
nesses of the widely used GA [51]. This improved optimization algorithm is called the
division algorithm (DA). DA keeps the advantages of GA, such as finding the optimal
solutions to an optimization problem simultaneously. Additionally, DA does not have
the disadvantages of GA, such as the slow process of finding the optimal solutions to
the objective function and complexity. The DA can find the optimal solution without the
operators available in the genetic algorithm, such as crossover and mutation, making it
faster, more straightforward, and more accurate than GA [52].

8.5. Ant Colony Algorithms (ACA)

Ant colony algorithms were first presented in the research published by Dorigo [89,90].
The algorithm’s goal is to find the most efficient path across a graph. Some researchers have
developed an ant system based on graphs to reduce the total cost of off-grid hybrid wind-
PV microgrids while still adhering to the LPSP’s limitation on system size [91]. Figure 5
shows the general implementation process of this algorithm.
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Figure 5. The division algorithm’s implementation procedure, from Kiehbadroudinezhad et al. [6]
(cited in Kiehbadroudinezhad et al. [88]). With permission from John Wiley & Sons Ltd. Copyright ©
2020; License Number: 5237280843956.

9. Conclusions and Future Works

This review article has shown that renewable hybrid microgrids are the best and
most important alternative to fossil fuel sources. However, due to the unpredictable
nature of these clean sources, the use of renewable energy sources has low reliability.
Additionally, this clean technology is not economically viable compared to traditional
technology. However, recent advances in science and clean energy technologies have
made the cost of construction and implementing power generation systems from clean
sources lower and more economical than in previous years. Studies have also shown
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that using more than one renewable energy source to generate power also increases the
reliability of the power generation system. Wind and solar are two suitable renewable
resources in terms of availability; if the size of wind turbines and photovoltaic panels used
in the hybrid microgrid is optimized, it will be an economical hybrid power generation
system. Today, many methods that calculate and determine the size of a system based
on cost criteria while considering the system’s reliability are used to optimize hybrid
renewable systems. Nature-inspired algorithms or hybrid optimization algorithms are the
best-advanced tools for optimizing hybrid renewable microgrids. Recent studies have also
shown that energy storage units such as batteries and fuel cells can be an efficient source of
power and a suitable support unit for the power generation system when the renewable
power generation system is short of power.

In addition, for future work, Environmental analyzes such as life cycle assessment
(LCA) should be more attention [92]. Also, meta-heuristic optimization algorithms should
be developed with greater speed and accuracy. As recent studies have shown, hybrid meta-
heuristic algorithms should be more widely used because these algorithms perform better
and more efficiently than individual optimization algorithms. Additionally, more precise
mathematical models must be provided to describe the performance and efficiency of each
component of the hybrid renewable energy microgrid. Nowadays, most of the objective
functions studied focus on the economic aspects of hybrid renewable energy microgrids,
which should also pay attention to other aspects such as reliability and the life cycle
assessment of this system. Other renewable resources should also be investigated, especially
geothermal energy, hydro energy, nuclear energy, and tidal energy. Comprehensive studies
should also be performed on new energy storage devices such as fuel cells and clean fuels
such as low carbon fuels (biodiesel, biogas, syngas) and zero-carbon fuels (green hydrogen
H2 and ammonia NH3) [93,94].
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Nomenclature

APV Total area occupied by the PV panels (m2)
AWT Total area swept by the WT generator blades (m2)
CBAT Battery bank cost (CAD)
CC Capital cost (CAD)
CInv Converter/inverter price (CAD)
CMnt-BAT Annual maintenance cost of battery (CAD/year)
CMnt-Inv Annual maintenance cost of converter/inverter (CAD/year)
CMnt-PV Annual maintenance cost of PV system (CAD/m2/year)
CMnt-WT Annual maintenance costs of wind turbine (CAD/year)
CP Wind power coefficient
CPV Unit cost of PV panel system (CAD/m2)
CRF Capital recovery factor
CWT Wind turbine price (CAD)
DOD Depth of discharge (%)
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Et Electrical energy generated in the year t
Ej The energy not supplied
GA Genetic algorithm
Ft fuel expenditures in the year t
GHG Greenhouse gases
HRES Hybrid renewable energy systems
i Interest rate (%)
It Investment expenditures in the year t
MC Maintenance cost (CAD)
Mt Maintenance and operations expenditures in the year t
n Project lifetime (year)
ηbc Charge efficiency of battery bank (%)
ηbf Discharging efficiency of battery bank (%)
ηInv Converter/inverter efficiency (%)
ηPV PV panel efficiency (%)
NWT Number of wind turbine
NOCT Normal operating cell temperature
ηWT Wind turbine reference efficiency (%)
PBAT Output power of battery bank storage (kW)
Pdef Power shortage of the system at time t (kW)
pj Probability of capacity outage
Pinv Nominal inverter power (kw)
PL Annual load demand (kW)
PPV Output power of PV panels (kW)
Pr Rated power of the wind turbine (kW)
PT Overall generated power by wind turbine (kW)
PW Factor of payment present worth
PWT Output power of wind turbine (kW)
r Discount rate
Rt Solar irradiance (kW/m2)
SBAT Nominal capacity of battery bank (kWh)
SOC(t) State of the battery charge at the time t (%)
SOC(t − 1) State of the battery charge at the time t − 1 (%)
SOCmax Maximum charge of the battery bank (%)
SOCmin Minimum charge of the battery bank (%)
Tair Ambient temperature (◦C)
tj Percentage of time when the load exceeds
TLCC Total life cycle cost (CAD)
Tref Cell temperature at reference conditions (◦C)
Vci Cut-in wind speed (m/s)
Vco Cut-out wind speed (m/s)
Vr Nominal wind speed (m/s)
β Temperature coefficient of PV panel (◦C−1)
ηPC Power conditioning efficiency (%)
ηr Reducer efficiency (%)
ρa Air density (kg/m3)
σ Hourly self-discharge rate (%)
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