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Abstract: The publication presents the results of research on soil temperature distribution at a depth
of 0.25–3 m in three measurement locations. Two boreholes were located in Białystok in the temperate
climatic zone and one measuring well was installed in Belmez in the subtropical climatic zone.
Measurements were made in homogeneous soil layers in sand (Białystok) and in clay (Białystok and
Belmez). Based on the results of the measurements, a simplified model of temperature distributions
as a function of depth and the number of days in a year was developed. The presented model can
be used as a boundary condition to determine heat losses of district heating pipes located in the
ground and to estimate the thermal efficiency of horizontal heat exchangers in very low-temperature
geothermal energy applications.

Keywords: ground temperature distribution; horizontal heat exchangers; pre-insulated heating pipes;
very low temperature geothermal energy; temperate climate; subtropical climate

1. Introduction

Research on temperature distributions in the ground is most often carried out in
terms of vertical or horizontal heat exchangers associated with heat pumps. Sliwa et al. [1]
developed a methodology for determining the energy efficiency of borehole heat exchang-
ers based on temperature profiling. In the case of vertical heat exchangers, the ground
temperature distributions concern considerable depths as a function of the length of the
boreholes [2–7]. Horizontal ground heat exchangers usually require knowledge of tempera-
ture distributions in the ground up to several meters [8–12]. The knowledge of temperature
distributions in the ground is the basic boundary condition for designing underground
heating pipes. In designing district heating networks, the most common methods are calcu-
lation methods, in which a constant average annual ground temperature is assumed [13–17].
In the case of recreating the actual operating conditions of the pre-insulated networks,
the actual ground temperatures should be set. An example of the location of pipes in
district heating in Poland is shown in Figure 1. In the case of two- and three-dimensional
calculations, the soil temperature at the assumed depth is determined for the boundary
temperature condition at the depth of 8 m, equal to 8 ◦C [18–20].

Temperature distributions in the ground can also be useful for determining heat losses
in fermentation chambers of biogas plants, if the fermentation chambers are immersed in
the ground [21–23].
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Figure 1. Example of pre-insulated heating pipes located in the ground layer at a depth of up to 1 m.

There are many models of temperature distribution in the ground in the literature.
Models of temperature distribution in the ground are very often described with the depen-
dence of air temperature or parameters of solar radiation [24–27]. In [24], the Carslaw and
Jaeger equation [28] was used for the modeling of soil temperature and demonstrated a
significant influence of solar radiation on the soil temperature. The Carslaw and Jaeger
equation [28] can also be used in mathematical modeling of a horizontal ground heat
exchanger [25]. In [26], the McAdams [29] and Kusuma [30] correlations describing the
convective heat exchange between the flowing wind and the ground surface were used in
the model of heat exchange in the ground. The publication [27] presents the methods of
calculating the undisturbed ground temperature on the basis of the heat flux balance and
meteorological data averaged over the yearly cycle. In some regions with rainy weather, it
is crucial to take into account relative humidity and rain duration and their impact on the
sub-soil temperature profiles, as shown by Molina-Rodea and Wong-Loya [31].

Most of the known models of temperature distribution in the ground down to a depth
of several meters depend on meteorological data and require access to these data. In the
case of designing horizontal ground heat exchangers, pre-insulated heating networks, or
thermal insulation of walls of recessed digesters, simplified algorithms of temperature
distributions in the ground as a function of days a year, which could be included in
industry standards or design guidelines, are sufficient. The simplest solution is to develop
a model of temperature distribution in the ground based on the measured temperatures
in the ground over a two-year period for a given type of soil and selected location. The
aim of the work is to investigate the temperature distribution in the ground layer at a
depth of 0.05–3.00 m and to develop a simplified model of temperature distribution in the
ground layer where heating pipes and horizontal heat exchangers can be located. Ground
temperature measurements were made for two points in a temperate climate and one point
in a subtropical climate. No simplified models of temperature distribution in the ground
for the assumed locations have been found in the literature.

2. Materials and Methods

The study of temperature distribution in the ground was carried out in selected
locations in a temperate and subtropical climate. In a temperate climate, measurements
were made in north-eastern Poland in the suburbs of the city of Bialystok, while in a
subtropical climate, measurements were made in the city of Belmez in southern Spain. In a
temperate climate, the tests were carried out for two test stands: test stand No. 1, which is
characterized by the presence of clay in the tested soil layer, and test stand No. 2, which
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consists of a sand layer. The test site No. 3, which is located in Belmez, is characterized
by the presence of clay. In the case of test stands No. 1 and 2, there is a humus layer
to a depth of about 5 cm, while in the case of test stand No. 3, there is clay throughout
the entire thickness of the layer. The geographical coordinates, climate, and groundwater
level are presented in Table 1. All three measurement points were characterized by a low
groundwater level.

Table 1. Description of the location of measurement points.

Measurement Point ID Location Climate Type Geographic Coordinates Type of Soil Groundwater Level

1 Bialystok (Poland) Temperate 53◦05′19.8′′ N 23◦13′49.1′′ E Clay 20 m
2 Bialystok (Poland) Temperate 53◦05′21.4′′ N 23◦13′50.3′′ E Sand 20 m
3 Belmez (Spain) Subtropical 38◦15′57.8′′ N 5◦12′32.4′′ W Clay 100 m

Figure 2 shows a general view of soil measurement samples from measurement
stations No. 1, 2, and 3. The selection of measurement points was dictated by the type of
soil that most often occurs in selected locations.
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Figure 2. View of soil samples: (a) No. 1, (b) No. 2, (c) No. 3.

The temperature distribution tests were carried out in wells with a depth of 0.05–3 m.
The location of the temperature sensors is shown in Figure 3. The first two temperature
sensors were installed at depths of 0.05 and 0.25 m, while the next sensors were placed
at intervals of 0.5 m. Allocation of sensors was completed densely, as recommended by
Li et al. [32] and Al-Hinti et al. [33], opposite to several other previous studies, where
the temperature was recorded every meter [34]. All sensors were installed in a layer of
homogeneous soil. The temperature measurements were performed with DS18B20 sensors
from Maxim Integrated Products, Inc., the characteristics and errors of which are in the
manufacturer’s specification [35]. The maximum error of the DS18B20 sensor in the full
measuring range is ±0.15 ◦C. Data recording took place at an interval of 1 h. The boreholes
were made with a drill with a diameter of 30 mm; then, the sensors were installed on a
thin polystyrene strip with a diameter of 4 mm, inserted into the hole and covered with
native soil. The installation of the measuring probes was carried out in 2019, while the soil
temperature measurements in the presented study were taken in the years 2020–2021.

Based on the PN-EN ISO 14688-1 standard [36], the soil in points 1 and 3 was classified
as clay with a predominant grain size from 0.063 to 0.002 mm and up to 0.002 mm, while
the soil in point 2 was classified as coarse sand with the predominant grain size from 0.63
to 2 mm.

The work also included the determination of the heat flux density according to the
classical formula [37]:

qnum = −λ
∂T
∂h

(1)

where h is the coordinate of the soil depth (Figure 3), T is the ground temperature, and λ is
the thermal conductivity coefficient of the soil.

The calculations were based on the thermal conductivity coefficients in accordance
with PN-EN ISO 6946: 1999 [38] for point 1 (clay, wet conditions) 0.85 W/m/K, for point 2
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(sand, wet conditions) 0.40 W/m/K, and for point 3 (clay, moderately humid conditions)
0.85 W/m/K.
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Figure 3. Diagram of the test stand for measuring the temperature distribution in the soil.

The samples were placed in an oven at 60 ◦C for 48 h. Subsequently, they were ground
and sieved through a 0.125 mm sieve. The resulting powder was analyzed by wavelength
dispersive X-ray fluorescence spectrometry using the equipment PRIMUS IV, Rigaku,
4 kW power, and X-ray diffraction (XRD) using a Bruker D8 Discover A25 equipment with
Cu-Kα radiation and goniometric scanning from 3 to 70 (2θ) at a speed of 0.01 ◦2θ s−1.

In order to carry out a proper identification of the mineralogy phases, the following
procedure was performed according to [39] consisting of: (i) Saturation of the samples with
K+ and (ii) and saturation with K+ and subsequent calcination at 550 ◦C. A sample from
measurement point 1 was taken and saturated with a 1 N solution of ClK. The sample was
allowed to stand for 2 h. After this time, the solution was centrifuged and the supernatant
was removed. A total of 3 saturation steps were performed. Finally, the sample was washed
with demineralized water, centrifuged, and placed in an oven at 60 ◦C for 48 h. Another
part of the sample saturated with K+ was calcined at 550 ◦C for 2 h. At the end of each
procedure, the dried samples were crushed with an agate stone and reanalyzed by XRD
with a goniometric scan from 3 to 40 (2θ).

3. Results and Discussion
3.1. Analysis of Soil Samples

Table 2 shows the chemical composition results of the samples from measurement
points 1, 2, and 3. SiO2 was the major oxide with percentages of 50.28%, 51.11%, and 48.36%,
respectively. The Al2O3 (12.57%, 4.84%, and 12.11%), K2O (3.30%, 2.03%, and 2.24%), CaO
(1.12%, 9.96%, and 2.65%), and Fe2O3 (4.69%, 1.16%, and 3.63%) contents also stood out.
CO2 balance is related to the mass amount corresponding to the elements below the oxygen
element in periodic table, and which was not included in the mentioned oxides.
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Table 2. Chemical composition of samples.

Compound Measurement Point 1 Measurement Point 2 Measurement Point 3

Na2O 0.61 0.85 0.68
MgO 1.87 0.81 0.85
Al2O3 12.57 4.84 12.11
SiO2 50.28 51.11 48.36
P2O5 0.19 0.21 0.23
SO3 0.05 - 0.19
Cl - 0.01 0.01

K2O 3.30 2.03 2.24
CaO 1.12 9.96 2.65
TiO2 0.51 0.11 0.71

Cr2O3 0.02 0.13 0.09
MnO 0.06 0.04 0.10
Fe2O3 4.69 1.16 3.63
NiO - 0.01 -

Rb2O 0.01 - -
SrO - 0.02 -

ZrO2 0.04 - 0.04
BaO 0.03 0.15 0.09

CO2 balance 24.65 28.57 28.01

Total mass 100.00 100.00 100.00

The XRD results of the samples from the different measurement points are shown
in Figure 4. The main mineral phase found in the three samples corresponds to quartz
(SiO2; 05-0490) (JCPD, 1995). The mineral phases microcline (KAlSi3O8; 19-0926) and albite
(NaAlSi3O8; 09-0456) (JCPD, 1995) were also common in all three samples. Traces of illite
(Al4KO12Si2; 02-0042) and kaolinite (Al2H4O9Si2; 14-0164) [40] were detected in samples
from measurement points 1 and 3, as well as muscovite (Al3H2KO12Si3; 06-0263) [40] in
samples from measurement points 2 and 3. The presence of calcite (CaCO3; 05-0586) [40]
was also observed in samples from measurement points 2 and 3, being more representative
in sample 2, according to Table 2. Finally, a trace of dolomite (CaMgO6; 11-0078) was
recorded in the samples from measurement point 2.
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In Figure 4a, a reflection at 6.1 ◦2θ (d = 14.4 Å) was observed that could correspond
to vermiculite (Si4O12Mg3H2; 16-0613) [40] or chlorite (Si2O9Mg3H4; 13-0003) [40]. In
Figure 5a, a magnification (4–12 ◦2θ) of this XRD pattern is shown, as well as the patterns
resulting from the treatment with a saturated solution in K+ (Figure 5b) and with a saturated
solution in K+ solution and subsequently calcined at 550 ◦C (Figure 5c). A shift in the
plane was shown that appears in Figure 5a towards 9 ◦2θ (d = 10 Å) (Figure 5b,c) that is in
accordance with the presence of vermiculite (Si4O12Mg3H2; 16-0613) [40].
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Figure 5. Mineralogical identification: (a) sample from measurement point 1; (b) sample saturated in
K+; (c) sample saturated in K+ and subsequently calcined at 550 ◦C.

These results show the similar composition of the samples measured in points No. 1
and 3 (clay soils), despite their different localization, and their differences with the sample
of the point No. 2 (sand soil).

3.2. Soil Temperature Measurements

The results of the tests of temperature distribution in the soil as a function of depth
for the range from 0.25 to 3 m and as a function of the number of days in a year for three
measurement points are presented in Figure 6a–c. The results of the measurements show a
significant influence of local increases and decreases in the outside temperature during the
day on the individual layers of the soil, which is manifested by fluctuations in temperature
values. Figure 7a shows an example of the impact of variable outside temperature, where
the difference between the maximum and minimum outside temperature during the day
is 20 ◦C, on the course of the ground temperature, while Figure 7b shows examples
of temperature changes in the ground when the difference between the maximum and
minimum outside temperature is equal to 8 ◦C. As the difference between the minimum
and maximum outside air temperature increases, the temperature fluctuations in the
ground increase. The effect of changes in external temperatures over one day on the
ground temperature decreases with increasing borehole depth. The greatest temperature
fluctuations occur at a depth of 0.25 cm.
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Figure 7. The daily evolution of the temperatures in the ground of point No. 2 for the diurnal
temperature ranges: (a) ∆Ta = 20 ◦C, (b) ∆Ta = 8 ◦C.

The average annual soil temperature for the h range from 0.25 to 3.00 m in the case of
the measurement point No. 3 is 19.03 ◦C, while in the case of the measurement points No. 1
and No. 2, these temperatures are, respectively, 10.3 and 10 ◦C. In the case of measurement
points No. 1 and No. 2, the values of annual average temperatures are similar despite
the presence of different soil. In the case of measurement point No. 3, the annual average
temperature values are about twice as high compared to points No. 1 and No. 2, which
is caused by the location of the third measurement point in the subtropics. The annual
average temperature values at the measurement point No. 3 are similar to the temperature
values in the city of Huelva [41], which has the same climatic zone.

Figure 8a–c shows the average monthly temperatures for three measurement points as
a function of depth. Comparing the monthly average temperature distributions for points
No. 1 and No. 2, it can be noticed that the clay has higher temperature values in winter com-
pared to sand, while in summer the opposite is true. In the case of measurement point No.
3 in Belmez, trends were similar to those obtained in the results of the research conducted
in the city of Huelva [41], which, however, are characterized by higher temperature values.
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Figure 8. Average monthly temperatures as a function of depth for three measurement points: (a) No.
1, (b) No. 2, (c) No. 3.

Figure 9 shows the heat flux densities in the layer from 0.25 to 3.00 m deep as a function
of the number of days for measurement locations.
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Figure 9. Heat flux density in the ground layer 0.25–3.00 m as a function of the day of the year.

The heat flux density was determined according to the classical Formula (1):

q = −λ
T3.00 − T0.25

∆h
(2)

where λ is the thermal conductivity coefficient of the soil, T0.25 is the temperature at a depth
of 0.25 m, T3.00 is the temperature at a depth of 3 m, and ∆h = 2.75 m is the soil layer for
which heat conduction calculations were made.

In summer, the ground is heated both in a temperate climate (points No. 1 and No. 2)
and in a subtropical climate (point No. 3), while in winter heat is transferred from the
ground to the outside air. The highest heat flux values occur in the subtropical climate
compared to the climate moderate, which is caused by greater direct solar radiation and
higher outside temperatures in a subtropical climate [42]. When comparing the type of soil,
it was noticed that the highest absolute values of heat flux density are conducted by clay
(points No. 1 and No. 3), while the smallest are in the case of sand (point No. 2), which is
due to the lower thermal conductivity coefficient for sand compared to clay.

In winter, it can be noticed that in January and February the heat flux density graph
in temperate climates is flattened, which is caused by the snow cover. Figure 10a,b shows
changes in external and ground temperatures as well as the thickness of the snow layer
in Bialystok (point No. 2) in January and February in 2021 and on several days in March
2021, respectively. In the period from 16 January 2021 to 13 February 2021 (Figure 10a,
point No. 2), the average air temperature was −5.35 ◦C, the minimum air temperature
was −25.38 ◦C, the average and minimum temperature at a depth of 0.05 m was 0.1 and
−0.19 ◦C, respectively, while the average thickness of the snow layer was 0.31 m. In
the snow-free period from 10 March 2021 to 12 March 2021(Figure 10a), the average air
temperature was −2.81 ◦C, the minimum air temperature was −10.0 ◦C, the average and
minimum temperature at a depth of 0.05 m was −0.68 and −1.44 ◦C, respectively. In the
first period (from 16 January 2021 to 13 February 2021, Figure 10a), despite significantly
lower air temperatures compared to the second period (from 10 March 2021 to 12 March
2021, Figure 10b), it can be noticed that the temperature in the 0.05 m layer is stabilized
around zero and was higher compared to the second period in which the temperature in the
0.05 m layer oscillated around −0.6 ◦C. The stabilization of the ground temperature in the
first period was influenced by the snow layer, which thermally insulated and protected the
ground against freezing. The snow conductivity coefficient depends on the snow density
and can range from 0.024 to 0.8 W/m/K [43,44].
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Figure 10. Temperature changes in the ground of point No. 2 in the snowy (a) and snowless
(b) winter period.

Heat conduction in the ground can be influenced by the composition of the soil. The
second component present in the amount of clay is aluminum (III) oxide Al2O3 (Table 2),
which is characterized by a significant value of the thermal conductivity coefficient from
12 to 38.5 W/m/K [45], which may significantly affect the heat flux. The percentage of
Al2O3 in the sand (point 2) is about 2.5 times lower than that of clay (measurement points 2
and 3). The influence of individual elements in the soil on the heat flux is planned in the
following tests.

3.3. A Simplified Model of the Temperature Distribution in the Ground

In order to develop a simplified model of soil temperature distribution as a function
of depth and the number of the day during the year, an equation similar to the universal
one of outside air temperature oscillation was considered [46]:

T(h, t) = A(h) cos
(

2π[t− B(h)]
365

)
+ C(h), (3)
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where A is the amplitude of temperature oscillation, B is the change of phase, and C is the
horizontal translation. A dependence of this coefficient with the depth is assumed.

Modeling of meteorological parameters of the outside air by means of trigonometric
functions is optionally performed in the commercial program WuFi [47,48]. The idea of
proposed models based on the cyclical nature of the occurrence of temperatures in the
ground results from the fact that the temperature in the ground changes daily at similar
intervals close to the meteorological time series [49]. Equation (2) is most often used
in many scientific papers and computational programs for simplified simulation of the
outside air temperature during the year. The use of the cosine function in the equation for
simulating temperatures is related to the occurrence of seasons that are a consequence of
the Earth’s orbital movement around the Sun and the inclination of the Earth’s axis to the
orbit plane of this movement, which translates into changes in the outside air temperature.
Due to the large temperature fluctuations in the soil layer of 0.05 m, resulting from the
significant influence of air temperature and solar radiation on this layer, a soil layer from
0.25 to 3.0 m was selected for the model development.

Based on the data obtained from the experiment for selected measurement points
in three locations, the coefficients A, B, and C were determined, which are presented in
Figure 11a-c for measurement points 1, 2, and 3, respectively. The B and C coefficients have
a linear dependence on the depth coordinate h, while a quadratic dependence is observed
for the A coefficient.
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Figure 11. Dependence of A, B, and C coefficients on the depth h for three measurement points:
(a) No. 1, (b) No. 2, (c) No. 3.

Then the experimental data can be fitted to following function:

A(h) = a2 × h2 + a1 × h + a0 (4)

B(h) = b1 × h + b0 (5)

C(h) = c1 × h + c0 (6)

The values of the obtained fitting coefficients are shown in Table 3.

Table 3. Fitting coefficients of Equations (4)-(6) and their physical meaning.

Point Number a2 a1 a0 b1 b0 c1 c0

1 0.672 −4.548 11.357 17.394 −151.28 −0.4156 10.418
2 0.190 −2.943 10.711 16.453 −157.12 −0.5324 10.093
3 1.023 −6.714 13.406 26.618 −162 −0.009 19.446

Physical meaning A0
2

π
365α −A0

√
π

365α
A0 h

2

√
365
πα

t0 - T,m

The values of these coefficients are related with the thermal properties of the soils. To
see this fact, we can compare the temperature distribution of Equation (3) with the solution
of the heat conduction equation:

ρC
δT
δt

= ∇·[k∇T], (7)

where ρ is the density, C is the heat capacity, and k the thermal conductivity of the soil,
considering the ground as a homogenous semi-infinite layer and the boundary condition
in z = 0 equal to the soil surface temperature. This solution is given by [41]:

T(h, t) = Tm − A0 exp
(
−h
√

π

365α

)
cos

[
2π

365

(
t− t0 −

h
2

√
365
πα

)]
, (8)

with Tm = the average temperature of the soil surface, A0 = the amplitude of the temperature
oscillation, t0 = the time shift, and α = the thermal diffusivity of the soil, that is equal to:

α =
k

ρC
(9)
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For shallow positions (h < 2.5 m), the exponential term can be approximated (Taylor
series) by:

exp
(
−h
√

π

365α

)
= 1− h

√
π

365α
+

h2

2
π

365α
(10)

and the temperature distribution of the Equation (7) by:

T(h, t) = Tm − A0

(
1− h

√
π

365α
+

h2

2
π

365α

)
cos

[
2π

365

(
t− t0 −

h
2

√
365
πα

)]
, (11)

Comparing the Equations (3) and (8) for the temperature distribution, the physical
meanings of the coefficients of Equations (4)–(6) can be obtained (see Table 3).

Using the relationships of Table 3, the values of thermal diffusivity and other parame-
ters of Equation (11) can be obtained from the experimental measures. The experimental
values of these parameters for the three measurement points are presented in Table 4. In
this table, the thermal diffusivity α(A) and α(B) are the diffusivity values obtained from the
amplitude and phase variations, respectively (from a and b coefficients, respectively).

Table 4. Values of the thermal diffusivities α(A) and α(B), and other parameters of Equation (10) for
measurement points No. 1, No. 2, and No. 3.

Point Number α(A) 10−6 m2/s α(B) 10−6 m2/s Tm
◦C A0

◦C t0 day

1 0.73 1.10 10.418 11.357 −151.28
2 1.27 1.24 10.093 10.711 −157.12
3 0.52 0.47 19.446 13.406 −162

The obtained values of the average temperature of the soil surface, Tm, agree with
the measured values 10.3, 10, and 19.03 ◦C, presented in Section 3.2. It must be noted that
the C coefficient of Equation (6) should have to be theoretically constant and equal to this
temperature in the homogenous semi-infinite approximation. However, Figure 11 shows
that it only happened for the point No. 3 in Belmez. In the case of points No. 1 and 2,
the C coefficients decrease with the depth h. It can be explained by the soil humidity in
these points, that causes the homogeneity condition to not be fully fitted. The different soil
humidity causes the heat capacity, the thermal conductivity, and the thermal diffusivity to
vary from a depth position to another one. This effect is not happening in the dry soil of
the point No. 3.

Regarding the amplitude of the temperature oscillation Ao, the maximum value corre-
sponds to Belmez localization, by the higher values of outdoor temperature in this point.

The differences between the thermal diffusivities calculated from amplitude and phase
variations could be due to different reasons. Kusuda and Achenbach [50] proposed errors
of the fitting by inconsistent temperature depth data or errors of the phase determination
by temporal fluctuation. In our case, highest differences correspond to the points No. 1 and
2. So, the differences could also result from the inhomogeneities of the wet soils. The results
presented in Table 4 show that the lowest value of the thermal diffusivity is for the Belmez
with 0.5 × 10−6 m2/s, which is typical of a dry clay (see Table 1 in [41]). The point No. 1,
with a similar type of soil, presents a higher thermal diffusivity about 0.73 × 10−6 m2/s
by the humidity of this localization. The highest value of this diffusivity is for point No. 2
with a value typical of wet sand.

Based on the experimental results [51,52], the relationship between thermal diffusivity
and the moisture content in the clay can be seen, that thermal diffusivity increases with
increasing soil moisture content. Estimated values of α (A) and α (B) indicate higher mois-
ture content in measurement point 1 compared to measurement point 3, which is caused
by higher outside temperatures and much greater direct solar radiation at measurement
point 3. It should be noted here that a thorough examination of the moisture content in the
soil requires thorough laboratory tests.
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The relative error of the model (3) was determined as the temperature difference of
the Texp experiment and the solution of the temperature of the simplified Tnum model (3)
related to the temperature from the experiment:

δT =

∣∣∣∣Texp − Tnum

Texp

∣∣∣∣100% (12)

The average relative error from individual measurement series, determined according
to formula (12) for all depths in accordance with Figure 2, did not exceed 7.7%, 5.76%, and
2.9%, respectively, for measurement locations 1, 2, and 3. The comparison of the model with
the experiment is shown in Figure 12a–c at a depth of 2 m, respectively, for measurement
points 1, 2, and 3. The presented model works well both in the temperate and subtropical
climate zones.
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Figure 12. Comparison of the temperature values from the experiments and the computational model
at h = 2 m for three measurement points: (a) No. 1, (b) No. 2, (c) No. 3.

After substituting the Formula (3) to (1), the following form of heat flux density in the
ground layer from 0.25 to 3.0 m was obtained:
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qnum = −λ

(
(2a2h + a1) cos

(
2π[t− B(h)]

365

)
+ A(h)

2πb1

365
sin
(

2π[t− B(h)]
365

)
+ c1

)
, (13)

where the coefficients are presented in Equations (4)–(6) and Table 3.
Figure 13a–c shows the results of the heat flux density calculations from formula (9)

for a depth of 0.25 m < h < 3.0 m for measurement locations 1, 2, and 3, respectively.
The greatest amplitudes of heat flux density changes as a function of days are found in
shallower soil layers, which is related to the greater influence of air temperature and solar
radiation on heat exchange in the ground. The significant influence of solar radiation on soil
temperature was presented in [24]. The values of the heat flux density amplitudes decrease
with the soil depth. In subtropics (measurement point number 3), the heat flux densities
are higher compared to measurement points located in temperate climates (measurement
point numbers 1 and 2). The work [42] indicates that the annual GHI (Global Horizontal
Irradiation) value in the city of Cordoba, which is located near measurement point 3
(Belmez), was 1972 kWh/m2/year, while in the case of Białystok (measurement point
numbers 1 and 2) the annual GHI value is 1086 kWh/m2/year. The lowest values of
heat flux density occur at measurement point No. 2, which is related to the low thermal
conductivity coefficient of sand (No. 1) compared to clay (No. 1 and 3). Based on the
analysis of the graphs, it can be noticed that at a depth of 3 m, the heat flux density trends
are similar for three points. With decreasing depth, the fluctuations in the heat flux density
are greater.
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Figure 13. Heat flux density in the ground layer 0.25–3.00 m determined from Equation (9) as a
function of the number of days for the three measurement points: (a) No. 1, (b) No. 2, (c) No. 3.

4. Conclusions

The paper presented the results of research on the temperature distribution in homo-
geneous soil at a depth of 0.25–3 m. The research was carried out for two wells in a selected
location in a temperate climate and one well located in a selected point in a subtropical
climate. The choice of the location of the measurement points was related to the type
that most often occurs in a given area. The tests were carried out for clay (temperate and
subtropical climate) and for sand (temperate climate).

Among the studied location points, the highest values of soil temperatures up to 3.0 m
deep are found in the subtropical climate (location No. 3 Belmez), which is related to the
highest GHI value in this region. The amplitudes of the heat flux density values transferred
in the layer at the depth from 0.25 to 3.00 m in clay are greater than in sand, which is related
to the higher thermal conductivity of clay compared to sand.

Based on the research, a model of temperature distribution as a function of depth
and the number of days in a year was developed. The developed model can be used
as a boundary condition in the design of heating networks and heat exchangers. The
presented simplified model can also be developed in other locations and soils, and it is
possible to create a database of temperature distributions in different regions of the world.
In subsequent studies, tests for other types of soil are planned.
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