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Abstract: The anticipated electrification of the transport sector may lead to significant increase in the
future peak electricity demand, resulting in potential violations of network constraints. As a result, a
considerable amount of network reinforcement may be required in order to ensure that the expected
additional demand from electric vehicles that are to be connected will be safely accommodated. In
this paper we present the Backwards Induction Framework (BIF), which we use for identifying the
optimal investment decisions, for calculating the option value of smart charging of EV and the cost of
stranded assets; these concepts are crystallized through illustrative case studies. Sensitivity analyses
depict how the option value of smart charging and the optimal solution are affected by key factors
such as the social cost associated with not accommodating the full EV capacity, the flexibility of
smart charging, and the scenario probabilities. Moreover, the BIF is compared with the Stochastic
Optimization Framework and key insights are drawn.

Keywords: backwards induction framework; electric vehicles; option value; smart charging of EV;
stochastic optimization

1. Introduction

The integration of electric vehicles (EV) into electricity distribution networks is set to
increase worldwide over the coming decades as part of the global decarbonization effort [1].
As a result, electricity distribution networks are expected to face considerable challenges as-
sociated with the resulting increased load peaks. Therefore, significant amount of network
reinforcement may become necessary in order to facilitate the realization of this ongoing
transition. Nonetheless, an important challenge associated with network reinforcement
constitutes the increased amount of uncertainty that characterizes future EV deployment
since it is not known a priori to the network planners how much EV capacity will eventually
be connected to the system, thereby preventing fully informed network reinforcement deci-
sions and creating the prospect of ending up with significantly underutilized, or stranded,
network assets in the future. Hence, the presence of this uncertainty inadvertently creates
the prospect of stranding risk, which necessitates departing away from the traditionally
used deterministic modeling frameworks because they are not incorporating uncertainty
into the decision-making process. On the other hand, it may be appropriate to develop
and adopt new planning frameworks, such as the proposed Backwards Induction Fra-
mework (BIF).

During this ongoing transition, smart grid technologies such as the Smart Charging
(SC) of EV may constitute viable alternatives to conventional network reinforcement, as
the former technologies may enable network planners to accommodate new demand in
a cost-effective way by taking advantage of the flexibility that these assets possess. The
flexibility of Smart Charging resembles that of Demand Side Response, according to which
the connected EV load can be optimally re-scheduled according to the most economic
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system operation [2], thereby leading to reduced peak demand. This flexibility can allow
for deferral and/or displacement of investments in network assets, thereby generating
cost-optimal investment strategies [3,4].

In this context, the economic value associated with this inherent flexibility that smart
technologies possess, which enables network planners to optimally hedge against the
risks associated with the underlying uncertainty, can be quantified through the concept
of the Option Value [5]; this value constitutes the expected net economic benefit accrued
by network planners from investing in a smart technology, under uncertainty. A positive
option value is premised upon three criteria that must be fulfilled [6]. First, there must be
temporal resolution of uncertainty as well as the possibility of learning [7] i.e., the state
of knowledge about the system under study should increase over time. Second, there
must be managerial flexibility i.e., the planner should be able to adopt different strategies
according to the way by which uncertainty resolves. Finally, there must be irreversibility
in the investment opportunities, i.e., inability to undo them, which is characteristic of
conventional network reinforcements, since they have high capital costs and long lifetimes
spanning several decades [8,9]. Therefore, investments in smart technologies, such as the
Smart Charging of EV, qualify as the type of investments that can possess significant Option
Value. This value can be captured through the Backwards Induction Framework (BIF)
and the Stochastic Optimization Framework (SOF) since they can capture the presence of
uncertainty in the system.

In this context, the structure of the paper is as follows. In Section 2 the broader
context of network planning under uncertainty is discussed with a reference to various
relevant methodologies. Section 3 presents the main operating principle of BIF. Section 4
demonstrates the application of BIF to an electricity distribution network and presents,
in detail, the calculation of the option value, the optimal decisions and the stranding risk.
Section 5 involves sensitivity analyses that provide insights into key factors that drive
the Option Value of Smart Charging, such as the flexibility of smart charging, scenario
probabilities, and social cost while Section 6 compares the BIF with the SOF framework
extensively. Finally, Section 7 presents the conclusions and an outline of possible future
research pathways.

2. Planning under Uncertainty

Electricity network investment planning has been an active research area with the
majority of publications focusing on investment decision-making under perfect information
(deterministic planning) such as in [10–12]. However, when there is significant amount
of uncertainty present in the system, the selection of a deterministic approach introduces
significant risk. For instance, there is the risk of proceeding to take investment decisions
premised upon the assumption of one specific scenario realizing in the future, only to
eventually realize that another scenario has occurred, thereby leading to invested network
assets ending up being heavily underutilized or stranded [13].

In addition, deterministic approaches assume an a-priori certain evolution of the system
parameters, thereby not enabling decision-makers to exert flexible decision-making [14,15].
The benefits arising from considering strategic flexibility through shifting from sequential
long-term deterministic plans to adaptable strategies have been well documented in detail
in [16].

There have been various modeling approaches toward obtaining a solution to the
dynamic investment problem under uncertainty. For example, the Real Options Frame-
work [17–20] allows employing the financial options theory for the evaluation of investment
problems involving real i.e., tangible non-financial assets. However, given the significant
differences between financial and real assets, this methodology includes significant amount
of subjectivity, which may render its application particularly challenging [21]. Another
approach to decision-making under uncertainty is the Minimax Regret Framework or Least-
Worst Regret (LWR) [22], which aims at detecting the investment decisions that minimize
the maximum economic cost, or regret, under the realization of the worst-case scenario.
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A key characteristic of this approach is that it is not dependent on scenario probabilities,
on the grounds that probabilities for future events are inherently subjective in nature.
However, even though not incorporating probabilities may increase the robustness of the
results, it may also result in an unrealistic treatment of events that are likely to possess low
or high probability of occurrence.

A further modeling approach that can consider uncertainty is the Stochastic Optimiza-
tion Framework (SOF), which examines all theoretically possible investment decisions,
obtains their corresponding expected system costs (i.e., including investment and opera-
tional costs), and eventually selects as optimal the investment that results in the minimum
expected (i.e., probability-weighted) system cost. This framework has been widely used
in power systems to account for various sources of uncertainty such as generation costs,
demand levels, or network outages [23–26].

An additional framework that can capture uncertainty is the Backwards Induction
Framework (BIF). Its main characteristic is that instead of conducting an exhaustive search
of all possible investment combinations in the grid, as SOF and LWR do, it is rather focused
on specific pre-determined investment strategies, and through the backwards induction
technique it leads to the quantification of the optimal solution.

In this context, uncertainty is defined as the lack of perfect information about the
future value of a parameter, resulting in multiple scenarios describing the possible values
of the uncertain parameter.

In view of this, the contributions of the present paper are as follows.

• Demonstration of the application of the BIF, for the first time in the context of power
system investment planning under uncertainty.

• Quantification of the Option Value of Smart Charging of EV, for the first time, through
the BIF.

• Quantification of the risk of stranded assets, for the first time through the BIF.
• Comparison of BIF and SOF, for the first time in the literature.
• Sensitivity analyses on key factors that are driving the Option Value of Smart Charging

of EV, for the first time in the literature via the BIF.

3. The Backwards Induction Framework

In the previous two sections it was mentioned that the BIF can be utilized for the
purpose of network planning under uncertainty. Although the BIF has not yet had an
application in the context of power systems, traditionally it has found application in other
scientific areas. Particularly, it has its roots in the scientific field of Game Theory, where it
has been applied to sequential games [27–31], where the optimal solution is obtained by
reasoning backwards in time, from the last stage of the problem to the initial stage. Below,
the underlying principles of the framework are presented in detail.

The BIF makes use of a scenario tree with a structure as depicted in Figure 1 below.
For simplicity, this tree is shown to consist of two stages (also known as epochs), but there
is no restriction in the number of stages present. Every pair of stages, starts with a decision
point, which is the time where the optimal investment decision is made by the network
planner, and the second stage is the time when the uncertainty resolves.

This scenario tree structure illustrates the full domain of possible system costs Cij
under all possible investment decisions and scenario realizations. Specifically, the network
planner’s objective is to choose the optimal investment decision, which involves selecting
one among a finite number N of candidate investment decisions (D1, D2, . . . , DN); a
number of M discrete scenarios, each with a corresponding probability of realization
pk ∀ k = 1, 2, . . . , M, are used to characterize this uncertainty, with each scenario k resulting
in a system cost Cki, given the selection of investment strategy Di. Notice that regardless of
which investment decision has been made, the uncertainty resolves in an identical way in
the second stage i.e., both the probabilities pk as well as the number of scenarios remain the
same across all uncertainty points.
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Figure 1. Scenario tree, describing the investment decision making process according to the BIF,
consisting of M scenarios (each with a probability pi) and N candidate investment decisions (D1, . . .
DN ), one of which will be selected as the optimal.

In this context, the backwards induction technique begins at the very last epoch with
the calculation of the system costs Cij. These costs are calculated based on the specific
investments that strategy Di involves, under scenario j, as well as the corresponding
operational costs. After obtaining the Cij costs, for each decision Di the corresponding
expected cost Ei is calculated according to the formula Ei = ∑M

k=1 pkCki ∀i. Ultimately, the
optimal investment decision Di∗ is that whose expected system cost Ei∗ is the smallest of
all i.e., Ei∗ = min

i
Ei.

Furthermore, it is important to mention the concept of delay (also known as build-time).
Specifically, an investment may or may not become operational at the same epoch at which
the decision to invest in it has been made. In the case of conventional reinforcements, this
delay is typically in the order of years (e.g., two years for distribution networks and five
years for transmission systems), which means that if the decision to invest in upgrading
a distribution line is made at year t, then the investment will become operational after
t + 2 years, primarily due to lengthy licensing procedures, necessary public works, and
other factors (e.g., possible public opposition) [13]. On the other hand, investments in smart
grid technologies are typically becoming operational in a shorter amount of time.
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4. Case Study

This section describes a case study on the application of the BIF to electricity distribution
network planning under uncertainty, as well as it presents the corresponding results.

4.1. Description

The present case study is about the investment decision-making problem of a network
planner whose objective is to accommodate the increased future power flows caused by the
integration of EV into the electricity distribution system. The key characteristic associated
with this problem is the presence of uncertainty that makes the decision-making process
non-straightforward and challenging; this uncertainty is captured through a two-stage
scenario tree.

Specifically, the schematic diagram of Figure 2, below, shows the high-voltage (HV)
electricity distribution network under study, which comprises three feeders consisting of
a total number of 11 lines, each being of 1 km length, and 12 buses with bus 1 being the
33/11 kV primary substation through which the necessary energy is imported, from the
higher voltage grid, to feed the loads. The peak demand is depicted in MW at each of
these buses, with the total peak load summing up to 16 MW. Notice that Figure 2 illustrates
the state of the system as it is in the first epoch (current time), where all power flows are
fully accommodated (i.e., all loads are satisfied) and there have been no investments in
the system and no smart technologies have been deployed. In addition, it is assumed that
there is no EV demand in the first stage (i.e., that all is baseload demand). The analysis is
conducted over two epochs (stages), and during the peak hourly period.
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Figure 2. Schematic diagram of the HV electricity distribution network under study. All values
shown correspond to the first stage of the problem; peak loads are shown under the black arrows, line
thermal limits are shown in black, and the power flows are shown in blue. This schematic diagram
applies to the first epoch, during the peak hourly period; it also applies to the second epoch only
under scenario 3 realization (i.e., no EV integration, and baseload remains the same).
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However, in the second stage, a number of EV may connect to the system, thereby
driving the demand upwards and creating the need for investments. This demand growth
can happen solely because of the electrification of the transport sector, which is expressed
in the increase in the number of EV charging points connected to the system. This demand
growth is uncertain, and this uncertainty is present across all buses in the network i.e.,
system wide. As such, the power flows across all distribution lines of the system, in the
second epoch, may increase substantially.

According to Table 1 below, the uncertainty around EV penetration is described
through three scenarios and a corresponding discrete probability distribution. In particular,
these three scenarios characterize the second-stage peak demand growth.

Table 1. Description of the source of uncertainty in the problem through three scenarios for EV penetration.

Source of
Uncertainty Scenarios Probabilities

Future EV
penetration growth

S1 High (i.e., 100% load growth per bus) 40%

S2 Medium (i.e., 50% load growth per bus) 35%

S3 No change 25%

The first scenario (i.e., scenario S1) describes a situation where the total demand at
each of the buses, in the second epoch, becomes twice as much as it is in the first epoch, due
to additional electricity demand from the connected EV capacity, and this scenario is 40%
likely to occur. The second scenario is related to a 50% growth in the total demand per bus,
at 35% probability of occurrence. Finally, the last scenario (i.e., scenario S3) corresponds to
the case where there is no change in demand at all (i.e., the EV penetration remains at zero
levels) with a probability of occurrence equal to 25%.

Notice that the increase in the second-stage demand is solely caused by EV penetration
that corresponds to a number of connected EV. This number can be found by dividing this
demand by the power of the EV charger, which we assume to be equal to 7 kW, and by
the coincidence factor, which we assume to be 0.5. As an example, bus 10 (see Figure 2)
accommodates 2 MW of baseload. If in the second stage a total of 2 MW of EV load gets
connected, then this corresponds to 2000 kW

(0.5·7 kW)
= 571 electric vehicles.

The illustration of this discrete probability distribution, which reflects the described
underlying uncertainty, can be made through the use of a scenario tree as displayed in
Figure 3 below. The scenario tree consists of two stages (also known as epochs), where
in the first stage the node is the decision point (i.e., where the network planner takes the
optimal investment decision) with the branches emanating from this node representing
the possible investment decisions D1 − D4, as described in the text below. In addition, the
resolution of uncertainty takes place in the second stage, with three scenarios.

Regarding the possible investment decisions, they are described in Table 2 below.
Particularly, in D1 the conventional reinforcement is the only available technology for
investment i.e., there is no availability of Smart Charging of EV. This decision involves con-
ventional reinforcement of all distribution lines in the system, as explained in Section 4.2.1,
with the required amount of MW so as to fully accommodate the increased load in the
second epoch.

Regarding D3, it involves Smart Charging as the sole investment technology i.e., there
is no availability of conventional reinforcement. In this case, the planner deploys Smart
Charging at all buses in the system as explained in Section 4.2.3.

Finally, decision D4 involves both EV Smart Charging and conventional reinforcement
technologies available to the planner for investment. This investment decision is explained
in Section 4.2.4.
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Table 2. Description of the availability of technologies for each of the candidate investment decisions.

D1
Conventional network reinforcement is the only technology available to

the planner.

D2 The planner does not make any investments at all (Do-nothing approach).

D3 Smart Charging of EV is the only technology available to the planner.

D4
Both conventional network reinforcement and Smart Charging of EV are available

to the planner.

Moreover, D2 constitutes the do-nothing approach i.e., neither conventional nor Smart
Charging technologies are available for investment and therefore the planner does not
invest in the system at all.

Note that, as explained earlier, the commissioning of conventional reinforcements has
a delay of one epoch. Therefore, any conventional reinforcement of lines must begin in the
first epoch, i.e., as soon as the decision is made in the decision point. Conversely, smart
investments carry zero construction delay, and as such, any decisions to invest in Smart
Chargers can be realized in the second epoch after uncertainty resolution.

In terms of the techno-economical characteristics of these technologies, the con-
ventional reinforcement of an existing distribution line includes a fixed cost equal to
£15,000/km and a variable cost equal to £50/MW/km. Moreover, the installation of Smart
Charging infrastructure across the system has an investment cost equal to £20/EV. In
addition, the peak demand increase, which is caused by the realized EV penetration in the
second stage, can be reduced by 40% through the implementation of the Smart Charging
technology i.e., the flexibility of Smart Charging of EV is equal to 40%.

Note that flexibility equal to 40% is reflected in the reduction of the peak electricity
demand, caused by EV, by 40% relative to its original value. For example, if the EV
peak demand is equal to 1 kW, then the implementation of smart charging reduces it to
1 kW × (100%− 40%) = 0.6 kW.
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Finally, the case study has been conducted assuming the possibility of a social cost,
incurred by not being able to accommodate EV capacity. That is, we acknowledge that
not being able to accommodate EV can have profound effects on the environment as well
as on the society as a whole since electricity consumers will not be able to charge their
vehicles [32]. The value of this cost has been selected to be equal to £50,000/MWh.

4.2. Results

The resulting costs Cij are shown in Figure 4 below for every combination of scenario i
and investment decision j. In total, there are three scenarios and four investment decisions
(D1, D2, D3, D4), resulting in 12 possible, discounted, system costs. In addition, the figure
shows the corresponding expected values Ej, for every investment decision Dj and for
every scenario realization i. The BIF has been modeled on Matlab R2021b.
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Figure 4. Two-stage scenario tree where stage1 includes the decision point (i.e., time when the invest-
ment decision is made) and stage 2 includes the uncertainty resolution, involving calculations on total
system costs Cij and the corresponding expected values Ej, where i ∈ {1, 2, 3} is the scenario index,
and j ∈ {1, 2, 3, 4} is the decision index, for each of the four investment decisions D1, D2, D3, D4.

It follows that the optimal investment decision is D4 and the optimal total expected
cost is £131,344. This is because this investment decision corresponds to the smallest
expected cost of all candidate investment decisions.

In addition, the Option Value of Smart Charging is equal to the difference E1 − E4 = £34, 880,
where E1 is the expected cost when decision D1 has been selected (i.e., only conventional
reinforcement is available and all lines have been reinforced) and E4 is the expected cost
for decision D4 (i.e., conventional reinforcement and smart charging are available to the
planner). The process for the derivation of the values shown in Figure 4 is explained in the
paragraphs below.

4.2.1. Decision D1

Regarding decision D1, it corresponds to costs C11, C21, C31, depending on which
scenario realizes and it involves conventional reinforcement being the only candidate
technology for investment in the system. This type of investment involves delay/build-
time of one epoch (also known as “stage”), i.e., it takes one epoch for these investments to
become operational from the time the corresponding investment decision is made. That
is, for the conventional reinforcements to become operational in the second stage the
corresponding investment decision needs to be made in the first stage. For this reason,
since the network planner aims to have all second-stage power flows fully accommodated,
it is the first scenario that is considered for deciding how much to invest. This is because
the first scenario (S1) involves the maximum load growth. Otherwise, if for example
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the planner takes an investment decision, in the first stage, according to the assumption
that there will be realization of S2 or S3 in the second stage, then if in fact S1 ends up
realizing in the second stage, then part of the second-stage EV load will not be met due
to insufficient network capacity, thereby resulting in high social costs. Hence, decision
D1 involves investing according to the assumption that S1 will realize in the second stage
guarantees that the entire EV capacity in the second stage will be accommodated, regardless
of which scenario ends up realizing. Therefore, D1 involves investing in upgrading all lines
in the first stage. By doing so, the second-stage costs, C11, C21, C31 involve zero social cost
component (since all EV load is fully accommodated in the second stage) and therefore
have investment component only. They are also equal to each other because the same
investment decision is taken in the first stage, regardless of which scenario will be realized
in the second stage; thus C11 = C21 = C31.

Regarding cost C11 , which is the total system cost given that the planner has taken the
decision D1 and that scenario S1 has been realized (see Figure 5), it is equal to £166, 225.
This is found by taking into account the fact that scenario S1 involves 100% load growth in
the second stage across all buses, which leads to increased power flows across all 11 lines,
thereby warrantying their reinforcement. Therefore, all 11 lines are upgraded, which
involves £15,000/km fixed cost for each line (assuming every line having 1 km length)
and a variable cost of £50/MW for each line. The total investment needed, summed
across all lines, is equal to 24.5 MW, as explained further below. Thus, the resulting total
fixed investment cost summed for all 11 lines is equal to 11·£15, 000 = £165, 000 and the
corresponding total variable investment cost is equal to 24.5 MW·£50/MW = £1225; hence,
C11 = £165, 000 + £1225 = £166, 225. Moreover, C11 = C21 = C31 = £166,225; hence, the
corresponding expected cost for this decision is E1 = p1C11 + p2C21 + p3C31 = £166,225.

As mentioned, the planner will select to invest a total of 24.5 MW in upgrading all
11 lines. The decision to make this investment is taken in the first epoch and once the
second stage arrives the uncertainty will resolve i.e., the planner will learn which of the
three scenarios realizes. If S1 happens then this investment will be fully utilized, and all
11 lines will be used to their full capacity. Thus, under S1 the stranded cost will be £0.

However, if scenario S2, or S3 eventually realizes, then not all of this 24.5 MW invested
capacity will be utilized, and the remaining unutilized capacity is known as a stranded
asset, involving stranded cost. If S3 realizes (i.e., zero second-stage EV penetration, see
Figure 2) then this will mean that no EV will connect to the system in the second stage and
the power flows in the second stage will be identical to those in the first stage. If the planner
knew this in the first stage, then a decision to make no investments at all would have been
made in the first stage. However, the planner does not know this, because of the presence of
uncertainty, and therefore all 24.5 MW capacity will turn out to be stranded/underutilized
and the corresponding costs of £166,225 will be stranded as well. Thus, under S3 the
stranded cost will be £166,225.

If S2 realizes (see Figure 6), which means that the demand will grow by 50% in
the second stage, a total of 7 MW of investment in line reinforcement will be needed
in the second stage; all lines will require reinforcement, thereby incurring fixed cost of
11·£15,000 = £165,000. Since the planner assumed that S1 would occur, this would mean
that a total of 24.5 MW will have been invested, only to see that 7 MW was actually
needed. This means that a total of 24.5 − 7 = 17.5 MW will be stranded/underutilized. The
investment of 17.5 MW is made across all 11 lines, thereby resulting in a fixed cost equal
to 11·£15,000 = £165,000, which is not stranded because under S2 all lines are upgraded as
well. Whereas the variable cost is equal to 17.5 MW × £50 MW = £875, which is stranded
since it corresponds to capacity (MW) not needed. Thus, under S2 the stranded cost will
be £875.
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Figure 5. Schematic diagram of the HV electricity grid showing the first-stage power flows (in blue), 
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assuming that in the second stage scenario 𝑆ଵ has occurred (i.e., 100% load growth at every bus). 
Moreover, the second stage power flows are shown (in yellow) ignoring thermal line limits and 
investments (so that we can see the magnitude of the 2nd stage flows). Summing all second stage 
peak load yields 32 MW, consisting of 16 MW peak baseload (equal to that in the first stage i.e., no 
change in baseload) plus 16 MW peak EV load (all connected in the second stage). E.g., the total 
peak load at bus 5 is equal to 2 MW, where 1 MW is the peak baseload (same as in Figure 2) and the 
remaining 1 MW is the peak EV load (connected in the 2nd stage). The amount of capacity needed 

Figure 5. Schematic diagram of the HV electricity grid showing the first-stage power flows (in blue),
the initial line thermal limits (in black), and the second-stage peak load (downward black arrows)
assuming that in the second stage scenario S1 has occurred (i.e., 100% load growth at every bus).
Moreover, the second stage power flows are shown (in yellow) ignoring thermal line limits and
investments (so that we can see the magnitude of the 2nd stage flows). Summing all second stage
peak load yields 32 MW, consisting of 16 MW peak baseload (equal to that in the first stage i.e., no
change in baseload) plus 16 MW peak EV load (all connected in the second stage). E.g., the total
peak load at bus 5 is equal to 2 MW, where 1 MW is the peak baseload (same as in Figure 2) and the
remaining 1 MW is the peak EV load (connected in the 2nd stage). The amount of capacity needed to
be invested per line so that the second-stage flows are fully accommodated is equal to the difference
between the values in yellow (power flows in the second stage) and those in black (first-stage
thermal limits).
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assuming that in the second stage scenario S2 has occurred (i.e., 50% load growth at every bus).
Moreover, the second stage power flows are shown (in yellow) ignoring thermal line limits and
investments (so that we can see the magnitude of the 2nd stage flows). Summing all second stage
peak load yields 24 MW, consisting of 16 MW peak baseload (equal to that in the first stage i.e., no
change in baseload) plus 8 MW peak EV load (all connected in the second stage).

Thus, the expected stranded cost assuming that the planner has selected decision D1
is equal to p1·£0 + p2·£875 + p3·£166, 225 = 0.4·£0 + 0.35·£875 + 0.25·£166,225 = £306.25 +
£41, 556.25 = £41, 862.5.

4.2.2. Decision D2

Regarding decision D2, since it involves no investments at all, the investment cost is
zero under all scenarios, but there is social cost due to the inability to accommodate EV
due to insufficient network capacity.

Specifically, under S3 (i.e., zero EV penetration) both the investment cost and the social
cost are zero (all second stage load is fully accommodated) and so C32 = 0.

Regarding C12, i.e., under the realization of S1, without investments in the system the
first-stage baseload of 16 MW in total, will all be met, and also some of the 16 MW EV load,
that connects in the second stage, will be met as well because the first-stage thermal limits
are higher than the first-stage peak baseload power flows, therefore some increase in the
power flows can still be accommodated without investment. In the second stage, the total
load that can be met is calculated by taking the sum of the first-stage thermal limits of the
lines 1–2, 1–6, and 1–9, which is 7.8 + 7.8 + 5.2 = 20.8 MW; this is the total power that can
flow to meet the system demand (see Figure 5) as losses are ignored. Out of this 20.8 MW
of load that is met in the second stage, 16 MW are the baseload, which remains the same as
in the first stage, and 4.8 MW are the EV peak load connecting in stage 2. Since the total
second-stage load is equal to 32 MW under S1, a total of 32–20.8 = 11.2 MW is not met, and
all this is EV peak load; therefore, the corresponding social cost is equal to 11.2 MW×1 h
multiplied with £50,000/MWh, or C12 = £560,000.

Under the realization of S2, the peak load that can be met in the second stage is equal
to 7.8 + 7.8 + 5.2 = 20.8 MW as explained in the previous paragraph. Whereas the total
load is equal to 24 MW (see Figure 6). Thus, the total load not met is 24 − 20.8 = 3.2 MW,
which is all EV peak load, thereby the corresponding social cost is C22 =3.2 MWh× £50,000
MWh = £160,000.

In this case, the corresponding expected cost for decision D2 is E2 = p1C12 + p2C22 +
p3C32 = £280,000. Moreover, since no investments take place, the expected cost of stranded
assets is zero.

4.2.3. Decision D3

Regarding decision D3, Smart Charging of EV, with flexibility equal to 40%, is the
only technology available to the planner. Given that smart charging investments involve a
zero-epoch build-time, the investment cost corresponding to D3 depends on the scenario
realization, because the decision to invest in Smart Charging is taken after the uncertainty
has been resolved i.e., in the second stage.

Specifically, if scenario S3 realizes, i.e., there is no EV penetration, then D3 involves no
investment in Smart Charging; therefore, it is C33 = 0.

Whereas, if S1 realizes (see Figure 7), decision D3 involves deploying Smart Charging
of EV across the entire system, at every bus. For instance, at each of the buses 6–10, the first
stage total peak load is 2 MW (see Figure 2), and under scenario S1 a total of 2 MW extra
load (due to EV penetration) connects; but since the presence of smart charging reduces
the peak by 40%, the total load at each of these buses becomes 2 + 2 × 0.6 = 3.2 MW (see
Figure 7). Similarly, the other buses’ total first-stage peak load is 1 MW (see Figure 2),
which in the second stage becomes equal to 1 + 1 × 0.6 = 1.6 MW. In this case, the total
peak load in the second stage is equal to 25.6 MW, while the second-stage power flows
(taking the line limits into consideration) are equal to the sum of the first-stage thermal
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limits of lines 1–2, 1–6, and 1–9 or 7.8 + 7.8 + 5.2 = 20.8 MW. Note that none of the
lines has been upgraded since this is not considered in decision D3. Hence, a total of
25.6 − 20.8 = 4.8 MW, of EV load, is not met, resulting in social cost equal to 4.8 MWh
× £50,000/MWh = £240,000. Regarding the calculation of the investment cost of smart
charging under S1, a total of 16 MW of EV load connects in the second epoch. This
is equivalent to 16,000/(7 kW)/0.5 electric vehicles, which corresponds to £20

EV×16,000/
(7 kW)/0.5 = £91,428. Hence, C13 = £240,000 + £91,428 = £331,428.

On the other hand, if the planner has selected D3, with smart charging of EV being
deployed across the entire system, and S2 realizes (i.e., 50% load growth, see Figure 8) then
all EV will be accommodated (i.e., social cost is zero). For instance, the first-stage total
peak load of each of the buses 6–10, which is 2 MW and it is entirely baseload, increases
due to EV penetration and becomes 2 MW + 2 × (1 − 0.4) × 50% = 2.6 MW due to the
flexibility of smart charging being 40%. Regarding the other buses that initially have
1 MW peak baseload, this becomes 1 + 1 × (1 − 0.4) × 50% =1.3 MW (see Figure 8).
Hence, all power flows are safely accommodated i.e., all EV are accommodated and there
is zero social cost. Regarding the calculation of the investment cost of smart charging
under S2, a total of 8 MW of EV load is connected to the system in the second epoch
corresponding to 8000/7/0.5 electric vehicles with the corresponding investment cost of
8000/7/0.5×20 = £45,714.

The expected cost for decision D3 is E3= p1C13 + p2C23 + p3C33 = 0.4× £331, 428 +
0.35× £45, 714 + 0.25× £0 = £148, 571. Regarding the cost of stranded assets, this is zero
since there are no stranded assets given the zero delay for smart charging.
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Figure 7. Schematic diagram of the HV electricity grid showing the initial line thermal limits (in
black), and the second-stage peak load (downward black arrows) assuming that in the second stage
scenario S1 has occurred (i.e., 100% load growth at every bus) and that EV smart charging, with
flexibility = 40%, has been deployed for all EVs in the system i.e., at every bus in the system. Moreover,
the second stage power flows are shown (in yellow) ignoring thermal line limits.
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Figure 8. Schematic diagram of the HV electricity grid showing the initial line thermal limits (in
black), and the second-stage peak load (downward black arrows) assuming that in the second
stage scenario S2 has occurred (i.e., 50% load growth at every bus) and that EV smart charging,
with flexibility = 40%, has been deployed for all EVs in the system i.e., at every bus in the system.
Moreover, the second stage power flows are shown (in yellow) ignoring thermal line limits.

4.2.4. Decision D4

Regarding decision D4, it involves a mix of conventional reinforcement and of Smart
Charging investments. In this case, what is considered for D4, is for the planner to con-
ventionally upgrade the lines that supply the high-load buses of 2 MW (see Figure 2), i.e.,
feeders 1–8 and 1–10, i.e., in total 5 lines, and depending on the scenario realization, to then
install Smart Charging infrastructure at the buses that are not supplied by these upgraded
lines (buses 2–5, and buses 11–12).

Under scenario S1, the conventional investment decision that has been made in the
first stage, incurs a fixed investment cost equal to 5× £15, 000 = £75, 000, and a variable
investment cost of 12.6 MW×£50/MW = £630, where 12.6 MW is the investment required
in the 5 lines in order to accommodate their second-stage power flows (see Figure 5 and
feeders 1–8 and 1–10). Thus, the resulting total investment cost is £75,000 + £630 = £75,630.
Moreover, under S1 the total load at the buses 2–5 and 11, 12 is 9.6 MW (see Figure 7) but
only 7.8 MW of this load can be met (see the thermal limit of line 1–2). Furthermore, the total
load at all other buses is 20 MW (see Figure 5) and all is met since the lines are upgraded.
Thus, the total load is 29.6 MW but 27.8 MW is met, leading to 1.8 MW not met, all of
which is EV load, and corresponding to social cost of 1.8 MWh × £50, 000/MWh = £90,000.
Moreover, a total of 6 MW of peak EV load gets connected in the second stage corresponding
to an investment cost of smart charging equal to 6000/7/0.5×20 = £34,285. Thus, the total
investment cost corresponding to D4 under S1 is £75,630 + £90,000 + £34,285 = £199,915 = C14.
Note that the stranded costs are zero since all investments are fully utilized, if this scen-
ario realizes.

If scenario S3 realizes (i.e., no load growth), then no investments in Smart Charging
are made and, therefore, the only investment that is made is the conventional network
reinforcement as described above; hence, it is C34 = £ 75,630 . In this case, all 12.6 MW of
investment is stranded and the cost of £75,630 is stranded as well.

Under S2, a total of 12.6 MW of investment is made in the aforementioned 5 lines as
in S1, resulting in total investment cost equal to £75,000 + £630 = £75,630. Moreover, there
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is zero social cost because all second stage load is accommodated. Finally, a total of 3 MW
of peak EV load is connected with an investment cost of smart charging equal to 3000/7/
0.5 × 20 = £17,142. Hence, C24 = £75,630 + £17,142 = £92,772. The stranded invest-
ment is 3.6 MW (see Figure 6, feeders 1–8, 1–10), which amounts to variable cost of
3.6 MW·£50/MW = £180.

In this case, the corresponding expected cost for decision D4 is E4 = p1C14 + p2C24 +
p3C34 = £131,344. The expected stranded cost, assuming that the planner has selected
decision D4 is equal to p1× £0+ p2× £180+ p3× £ 75,630= 0.4× £0+ 0.35× £180+ 0.25× £
75,630 = £18, 970.5.

5. Sensitivity Analysis

The aforementioned case study was conducted by assuming that the conventional
reinforcement of an existing distribution line involves a fixed cost equal to £15,000/km
and a variable cost equal to £50/MW/km. In addition, the probabilities of each scenario
occurring were selected to be p1 = 0.40, p2 = 0.35, p3 = 0.25. Furthermore, the installation
of Smart Charging infrastructure corresponded to an investment cost of £20/EV, assuming
Smart Charging flexibility of 40% (i.e., its potential to reduce the peak demand). Finally,
the social cost of consumers not being able to charge their EV due to insufficient network
infrastructure stood at £50,000/MWh.

This section demonstrates the results of sensitivity analysis, conducted through the
use of BIF, on smart charging flexibility (see Section 5.1), social cost (see Section 5.2), and
scenario probabilities (see Section 5.3).

5.1. Sensitivity Analysis on Flexibility of Smart Charging

In this section, the flexibility of the Smart Charging technology takes on a series of
values, between 10% until 100% as depicted in the first column of Table 3 below. For each
case, the optimal value of the objective function is found (second column), the optimal in-
vestment decision (column 3) and the option value of Smart Charging (column 4). Figures 9
and 10 are the equivalent illustrations for this table. Note that all other input parameters
remain at their initial values.

Table 3. Sensitivity analysis on the flexibility of Smart Charging of EV using BIF.

Flexibility of Smart
Charging

Optimal Value (£) of
Objective Function

(i.e., min Ej)
Optimal Decision Option Value of

Smart Charging (£)

10% 166,225 1 0
20% 165,844 4 381
40% 131,344 4 34,881
60% 84,571 3 81,654
80% 52,571 3 113,654

100% 52,571 3 113,654

We can observe that as the flexibility of Smart Charging increases, the optimal value for
the objective function (i.e., the corresponding optimal total expected system cost Ej) reduces.
This happens because higher flexibility translates to smaller peak load in the second stage,
resulting in smaller power flows and, as a result, in fewer conventional reinforcements,
which are expensive, and, therefore, a higher option value of smart charging. Notice also,
as shown in column 3, that for 10% flexibility, the optimal decision is D1 (only conventional
reinforcements, since they guarantee full accommodation of EV), and as the flexibility
grows the optimal decision becomes D4 (mix of conventional and smart investments),
and for values of flexibility greater than or equal to 60%, the optimal decision is D3 (only
smart charging), which indicates the potential of smart charging to completely displace
conventional investments for high values of flexibility.
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using BIF.
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Figure 10. Option Value of Smart Charging of EV as a function of the Smart Charging flexibility,
using BIF.

5.2. Sensitivity Analysis on Social Cost

In this section, the cost of not being able to accommodate the full capacity of connected
EV (i.e., social cost), takes on a series of values between 1000 £/MWh and 1 £m/MWh
as depicted in the first column of Table 4 below. For each case, the optimal value of the
objective function is found (second column), the optimal investment decision (column 3)
and the option value of Smart Charging (column 4). Figures 11 and 12 are the equivalent
illustrations for this table. Note that all other input parameters remain at their initial values.

Table 4. Sensitivity analysis on social cost, using BIF.

Social Cost (£/MWh)
Optimal Value (£) of
Objective Function

(i.e., min Ej)
Optimal Decision Option Value of

Smart Charging (£)

1000 5600 2 0
10,000 56,000 2 0
25,000 100,571 3 65,654
50,000 131,344 4 34,881

100,000 166,225 1 0
500,000 166,225 1 0

1,000,000 166,225 1 0
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5.3. Sensitivity Analysis on Scenario Probabilities

In this section, the scenario probabilities take on a series of values as depicted in the
first column of Table 5 below. For each case, the optimal value of the objective function is
found (4th column), the optimal investment decision (column 5) and the option value of
Smart Charging (column 6). Figures 13 and 14 are the equivalent illustrations for this table.
Note that all other input parameters remain at their initial values.

Table 5. Sensitivity analysis on the scenario probabilities, using BIF.

p1 p2 p3

Optimal Value of
Objective Function

i.e., Ej

Optimal Decision Option Value of
Smart Charging (£)

0.40 0.35 0.25 131,344 4 34,880
0.10 0.10 0.80 37,714 3 128,510
0.25 0.25 0.50 94,285 3 71,939
0.40 0.40 0.20 132,201 4 34,023
0.10 0.80 0.10 69,714 3 96,510
0.25 0.50 0.25 105,714 3 60,510
0.40 0.20 0.40 128,772 4 37,452
0.80 0.10 0.10 166,225 1 0
0.50 0.25 0.25 142,058 4 24,166
0.20 0.40 0.40 84,571 3 81,653
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Figure 13. Optimal Value of the Objective Function as a function of scenario probabilities, using BIF.
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Figure 14. Option Value of Smart Charging of EV as a function of scenario probabilities, using BIF.

We can observe that when the probability of scenario 1 occurring is 80% then decision
D1 is optimal and, therefore, the option value of smart charging is zero; this is because
conventional reinforcement is the only technology that guarantees output that has zero
social cost under this scenario of high load growth. On the other hand, when the probability
of S1 is less than or equal to 25%, the optimal decision is D3 because this decision involves
some social cost if S1 occurs, which has relatively small likelihood. When the probability of
scenario S1 takes a value between 40% and 50% then the optimal decision becomes equal
to D4, which involves smaller social cost than D3 (which is selected for smaller value of
probability of S1) since conventional reinforcement allows for zero social cost.

6. Comparison of the Backwards Induction Framework (BIF) with the Stochastic
Optimization Framework (SOF)
6.1. Basic Case Study

The SOF has been established in literature for application to advanced models for
power system planning under uncertainty. As outlined in Section 2, this method explores all
possible combinations for investment and system operation to find the optimal solution that
yields the minimum expected total system costs. Authors in [2] present an example of an
advanced SOF for the network expansion problem with demand side response investments
and scenario tree representation of uncertainty. Furthermore, [33] proposes the modelling of
EV smart charging for the integration in SOF for network expansion planning. In the current
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work, a modified version of the model in [2] and the smart charging modelling in [33]
have been used to validate the optimality of the solution generated from the proposed
BIF approach; this validation is confirmed by comparing the solutions of the two pla-
nning methods.

The case study presented in Section 4 translates to a two-stage scenario tree, where the
first stage corresponds to the present decision point, and the second stage is the uncertainty
realization point. All case study assumptions have been kept the same. For the base
case study, the results obtained using SOF are identical to the results obtained using the
BIF, i.e., identical optimal decisions, option values, and optimal values for the objective
function. In the next subsection, other case studies are presented showing differences in the
two frameworks.

6.2. Sensitivity Analysis

The same sensitivity analyses presented in Section 5 are performed using the SOF,
allowing the comparison of the two frameworks. Specifically, the figures below present the
optimal system cost (optimal value) under SOF and BIF for different levels of flexibility
(Figure 15), social cost (Figure 16), and scenario probabilities (Figure 17).
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Figure 15. Optimal total expected system cost as a function of smart charging flexibility, under SOF
and BIF.
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Figure 16. Optimal total expected system cost as a function of social cost, under SOF and BIF.

In almost all cases the optimal solutions obtained using SOF and BIF are identical.
Specifically, in Figures 16 and 17 all optimal costs are the same, while in Figure 15 there are
some cases where the SOF yields a better solution (smaller cost) as can be observed by the
height of the bars. Since the BIF is not based on mathematical optimization as opposed to
SOF, the optimal expected system cost obtained using the latter can never be worse (i.e.,
greater) than that obtained using BIF; it can either be equal or better (i.e., smaller) as is the
case in this sensitivity analysis.
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Figure 17. Optimal total expected system cost as a function of scenario probabilities, under SOF and BIF.

Figure 18 shows that as the investment cost of Smart Charging of EV increases, which
means that the technology becomes more expensive to invest in, its Option Value drops; this
applies for both values of flexibility (40% and 80%). Expectedly, a higher level of flexibility
lead to higher Option Value as it leads to a greater amount of EV peak demand that can be
reduced, thereby leading to reduced investment in expensive conventional reinforcement.
As a result, with the increase in the flexibility level, a higher value for the investment cost
of Smart Charging is needed, for its Option Value to become zero.

Energies 2022, 15, x FOR PEER REVIEW 20 of 23 
 

 

Figure 17. Optimal total expected system cost as a function of scenario probabilities, under SOF and 
BIF. 

In almost all cases the optimal solutions obtained using SOF and BIF are identical. 
Specifically, in Figures 16 and 17 all optimal costs are the same, while in Figure 15 there 
are some cases where the SOF yields a better solution (smaller cost) as can be observed by 
the height of the bars. Since the BIF is not based on mathematical optimization as opposed 
to SOF, the optimal expected system cost obtained using the latter can never be worse (i.e., 
greater) than that obtained using BIF; it can either be equal or better (i.e., smaller) as is the 
case in this sensitivity analysis. 

Figure 18 shows that as the investment cost of Smart Charging of EV increases, which 
means that the technology becomes more expensive to invest in, its Option Value drops; 
this applies for both values of flexibility (40% and 80%). Expectedly, a higher level of flex-
ibility lead to higher Option Value as it leads to a greater amount of EV peak demand that 
can be reduced, thereby leading to reduced investment in expensive conventional rein-
forcement. As a result, with the increase in the flexibility level, a higher value for the in-
vestment cost of Smart Charging is needed, for its Option Value to become zero. 

 
Figure 18. Option Value of investing in Smart Charging of EV (vertical axis) as a function of its 
investment cost (horizontal axis), for different values of Smart Charging flexibility, conducted via 
BIF. 

The comparison of the proposed BIF with the SOF demonstrates that, in almost all 
cases, both approaches lead to the same optimal solution. Therefore, the proposed BIF is 
validated using the well-established SOF. 

The main drawback of SOF is its complexity, since it arrives at the optimal solution 
using algorithms that are based on mathematical optimization theory. Whereas, the BIF is 
a heuristic approach, akin to natural decision-making, and which has the benefit of trans-
parency and simplicity, which may be particularly attractive characteristics of a planning 
methodology. 

In addition, as opposed to BIF, the SOF conducts an exhaustive search of possible 
feasible solutions in order to identify the optimal solution which involves evaluating each 
and every investment combination, i.e., every combination of types of technologies, loca-
tions of deployment, timing of connections, and magnitudes of investment. As a result, 
the SOF tends to require significant computational power, resulting in large solution 
times, depending on the dimensions of the problem. 

  

45
35

25
15

5
0 0 0 0 0

140

114

87

61

41
31

22
12

2
0

20

40

60

80

100

120

140

160

10 20 30 40 50 60 70 80 90 100

op
tio

nl
 v

al
ue

 (k
£)

Investment cost of Smart Charging (£/EV)

Option Value (flexibility 40%)

Option Value (flexibility 80%)

Figure 18. Option Value of investing in Smart Charging of EV (vertical axis) as a function of its
investment cost (horizontal axis), for different values of Smart Charging flexibility, conducted via BIF.

The comparison of the proposed BIF with the SOF demonstrates that, in almost all
cases, both approaches lead to the same optimal solution. Therefore, the proposed BIF is
validated using the well-established SOF.

The main drawback of SOF is its complexity, since it arrives at the optimal solution
using algorithms that are based on mathematical optimization theory. Whereas, the BIF
is a heuristic approach, akin to natural decision-making, and which has the benefit of
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transparency and simplicity, which may be particularly attractive characteristics of a plan-
ning methodology.

In addition, as opposed to BIF, the SOF conducts an exhaustive search of possible
feasible solutions in order to identify the optimal solution which involves evaluating
each and every investment combination, i.e., every combination of types of technologies,
locations of deployment, timing of connections, and magnitudes of investment. As a result,
the SOF tends to require significant computational power, resulting in large solution times,
depending on the dimensions of the problem.

7. Conclusions and Future Work

This paper presents the Backwards Induction Framework (BIF), which is used for
investment decision-making under uncertainty. To the best of the authors’ knowledge,
this is the first application of this framework in the context of power systems, in the
literature. This framework employs the backwards induction technique to identify the
optimal investment solution, which is the one that corresponds to the minimum expected
system cost. The framework quantifies the Option Value of a smart technology, and
specifically of investing in Smart Charging of EV. Unlike regular stochastic optimization
modeling approaches, the BIF does not conduct an exhaustive search i.e., it does not
examine the entire set of possible combinations of investment decisions, with respect to
timing, magnitude, and location, but rather it examines specific investment strategies
decided a priori. In this context, the BIF can be used to provide a first insight into the
investment requirements of an electricity network, under uncertainty. In addition, it can
provide such insight much faster than with complex stochastic optimization models that
may take even days or weeks to yield the optimal solution.

Furthermore, a case study is presented where the BIF is applied to electricity distribu-
tion network planning under uncertain future EV penetration. The analysis shows that the
Smart Charging technology has significant Option Value due to the fact that it possesses
flexibility to deal with uncertainty and the optimal decision is to invest in a mix of smart
and conventional technologies. Sensitivity analyses are conducted on this solution as well.
First, these studies indicate that the greater the flexibility of Smart Charging, the greater
its Option Value, and vice versa. Moreover, as the social cost of not accommodating EV
capacity increases, conventional reinforcement becomes the optimal investment, given that
additional network capacity can guarantee full accommodation of EV demand under all
scenarios as opposed to Smart Charging of EV that may not achieve full accommodation
of power flows under high load-growth scenarios. Moreover, the probability of scenario
1 affects the optimal solution; when it is high, then decision D1 is optimal and, therefore,
the option value of smart charging is zero. On the other hand, when the probability of
S1 is relatively small, the optimal decision is D3 with some social cost appearing in the
solution. The Backwards Induction Framework has also been compared with the Stochastic
Optimization Framework for the case study presented in this paper, yielding optimal
solutions that are for the most part identical to each other. Since the BIF is not based on
mathematical optimization as opposed to SOF, the optimal expected system cost obtained
using the latter is never worse (i.e., greater) than that obtained using BIF.

These findings can have significant policy implications. Specifically, current network
planning standards do not yet provide an explicit formal framework for the calculation
of the Option Value of investing in smart technologies. This may pose an obstacle in the
establishment of a level-playing field, where all candidate investment technologies can be
compared based on the entire value that they bring to the system operation and investment,
including their Option Value, which is the value of the flexibility that they possess to deal
with uncertainty. Therefore, an update of the planning standards is necessary by formally
including methodologies that can assist in this direction. However, the complexity that is
inherent in the proposed stochastic optimization frameworks used for the calculation of
the Option Value may become a barrier to their implementation, because the higher the
modeling complexity, the lower the model transparency is. In this context, the BIF has the
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benefit of transparency given its simplicity, while at the same time it can provide a first
insight at the optimal investment strategies.

Future work includes the development of multi-stage Backwards Induction frame-
works that can span across many years into the future, with the horizon discretized in more
than two stages. In addition, it is of interest to the authors to include a greater variety
of novel Smart Technology options, such as Soft Open Points [34–36] and Dynamic Line
Rating systems [37] as well as Vehicle-to-Grid and Vehicle-to-Building technologies [33,38].
The authors are also interested in comparing the BIF with the Least Worst Regret framework
and analyzing the factors that drive the differences in the solutions produced with these
two frameworks.
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