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Abstract: The paper presents a novel method for non-intrusive appliances identification. It can be
used for energy load disaggregation in a smart grid. The approach identifies changes in the state of
the particular appliance by measuring and processing the common supply current signal. Analysis
of the instantaneous changes in the aggregated current on the output of the analyzed circuit in the
power network is exploited here. The signal is processed using the time alignment of the current
and voltage signals samples represented in the array form. The scheme includes filtering, event
detection and identification, which is performed by comparing parameters of the detected event
against previously determined signatures of monitored appliances. The analysis is performed in the
time domain; therefore (unlike other existing methods), the information contained in the original
signal is not lost. The approach was tested in the laboratory designed specifically for this purpose.
All tests have been conducted with up to 12 appliances operating at the same time in the single power
supply circuit. The measurement setup was developed and used to record appliances’ switching
on/off events. During tests, 2300 events for devices were recorded. Collected data were processed
to identify particular devices with the accuracy of 98.8% and macro-averaged F-score measure of
0.9874. High identification accuracy was achieved despite the high number of devices operating in
the background.

Keywords: NILM; smart grid; smart metering; load disaggregation; electrical appliances; non-intrusive
load monitoring

1. Introduction

Accurate energy management, including load disaggregation in the end-user area,
allows for reducing the energy demand during peak loads. This can be achieved by the
information derived from NILM (Non-Intrusive Load Monitoring) analysis. The aim
of such systems is to determine the operational state of electrical Energy Appliances
(EA) in the selected time instants and estimate their energy consumption in the long
term through disaggregation. In the NILM concept (proposed in 1992 [1]), the sources of
information for the appliance identification are aggregated currents and voltages measured
in a single location, near the energy meter. From these signals, various features (such
as power or impedance) are extracted. This way, each appliance may be represented as
a vector of characteristic parameters describing its state. Analysis of such vectors leads
to knowledge extraction by Machine Learning (ML) methods [2]. It was shown that the
feedback information from such systems may lead to decrease in the energy consumption
by 12% [3].

In this paper, a novel method for the appliance identification is proposed. It exploits
the analysis of the current and voltage signal samples during the time of 20 ms (for a
50 Hz network), which is the period of the fundamental harmonic of the power signal. The
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method for processing the current signal allows for extracting signal components carrying
device-specific information that are short-lived relative to the period of the fundamental
component. First, periodicity of the network voltage is exploited. It allows for dividing
the signal into separate periods (for instance, by assuming the beginning of the period as
the time instant of the fundamental component’s zero crossing). From them, the array-like
representation of the current samples is constructed. It allows for the current signal filtering
in terms of the fundamental component, reducing the noise level of the appliance signature.
The latter is determined residually, i.e., by subtracting signal samples from periods before
and after the change of the device’s state. The analysis is performed in the time domain,
unlike other known methods. The method for transforming and filtering the signal was
developed, to make our approach resilient to the number and configuration of appliances
operating in the background, which was the main purpose of this study. The influence of
the signal sampling rate and filter order of the proposed signal processing method on the
identification accuracy were analyzed.

To identify devices, a large number of scenarios must be considered. For this task, the
modified measurement system [2] was used to record 2300 events (turning appliances on
and off). The content of the paper is as follows. In Section 2, works related to non-invasive
load monitoring in households are reviewed. Section 3.1 covers the applied measurement
system for data collection. In Section 3.2, the method for calculating the appliance’s current
signature is presented. Section 3.3 covers the proposed algorithm for the detection and
identification of appliance’s states. Obtained results are in Section 4, while in Section 5, the
summary and future prospects are presented.

2. State of the Art

Numerous NILM methods (developed since the 1980s) differ in sampling frequency,
extracted characteristics and identification methods. All have limitations (are useful for
a certain class of receivers, may be constrained to EA with switched-mode power supply,
etc.); therefore, new approaches must be investigated. According to the NILM systems
classification presented in [2,4–8], the main taxonomy criterion is the sampling frequency fs
of the current signal. Three groups of algorithms may be distinguished:

• LF (Low Frequency) group where signals are measured with fs between fractions of
the single Hz and 50 Hz;

• MF (Medium Frequency) group, where fs is between 1 and 90 kHz;
• HF (High Frequency) group, with fs between tens of kHz and single MHz.

The last one was introduced for the analysis of high-frequency disturbances, which
were generated by the specific group of appliances (such as motor-driven devices or with
the switched-mode power supply) [9]. The general NILM architecture is presented in
Figure 1. Its crucial components include signal acquisition and characteristic features
(symptoms) extraction modules. Based on the symptoms’ changes, the appliance iden-
tification module discovers the device that changed its state (further called appliance
recognition). To detect the state change (event), the calculated feature vector is compared to
the set of stored signatures (dictionary entries). Each entry is obtained from measurements
taken in the controlled conditions for the single device operating in the network with all
others switched off.

Virtually all appliance identification methods [2] are based on the analysis of measured
physical quantities, averaged for the multiplicity of the fundamental component’s period in
the network. In the case of the LF group, acquired quantities may be the Root Mean Square
(RMS) value of the current or the active power for signals recorded with the frequency up
to 50 Hz. In older LF methods, appliance signatures include changes in the value of the
consumed current after the state change [10–14]. Since 2018, NILM publications utilizing
deep Artificial Neural Networks (ANN) dominate the field for low-frequency data [6,15–17],
as well as methods based on hidden Markov chains [18,19]. Typically, the active power
P [6] is analyzed. The HF Group covers methods based on the analysis of high-frequency
disturbances in the voltage and current signals [20,21]. Here, signature elements include
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parameters describing changes in the spectrum after changing the appliance’s state [9]. The
disaggregation is performed based on the FFT (Fast Fourier Transform) output analysis.
Even when STFT (Short-Time Fourier Transform) is applied, information about the time
instant of the sample’s value changes is lost (only frequency components remain). Partly,
this problem can be solved by using the Wavelet Transform (WT), which uses a variable-
width analysis window [21,22]. The NILM methods using WT are vulnerable to changes in
the background signal [22].

Figure 1. General architecture of a non-intrusive load monitoring system.

In the MF group, to which the method described in this paper belongs to, the typical
features are current harmonic components [23–25], which are often calculated using FFT
for the window of a couple of milliseconds duration. The short-term, non-zero values of
the higher harmonic components are therefore averaged, and the information carried by
them is suppressed.

The method proposed in this paper is most similar to approaches exploiting the
voltage–current (V-I) trajectory analysis, which was first introduced in [26]. Initially, classi-
fication was based on features extracted from shapelets such as looping direction, number
of intersections or enclosed area [27]. Additional features were used in [28]. As a result,
information about the time instants of the samples values’ changes in the cycle is lost.

Analogically, in the MF group, there was also a significant increase in the use of deep
ANN. The image representation of V-I trajectories is exploited in [29]. Later publications
proposed including more information from images analyzed by ANN [30]. In [31,32], a new
way of creating classified images based on V-I trajectories was proposed, with Adaptive
Weighted Recurrence Graph (AWRG) blocks. The Fryze power theory and Euclidean
distance similarity function were applied in [33]. The only method where both time and
frequency domain information is preserved is [34]. In their model, the Gramian Angular
Field (GAF) matrices and Markov Transition Field (MTF) algorithms were used to encode
the static and dynamic current series information in the time domain.

In addition to the loss of information about the time instants of the values’ changes
inside the cycle, we see additional risks in the above MF methods. Most of them are verified
against popular data sets [35] acquired using submeters for each appliance or having only
up to two devices active in the background, such as PLAID [30–34] and WHITED [30,32].

The number of appliances working in the background during the analysis affects the
quality of the appliance identification. The same is with V-I trajectories used as the source
of features. Simulated scenarios from known data sets [36] are not suited for real-world
data processing, as they do not represent the influence of devices other than those being
aggregated (for example, operating in the standby mode). Depending on the measurement
technology, differences in the voltage signal and noise level may occur [37]. Decreasing
accuracy with the increase in the number of devices working in the background is a serious
concern [10,33,38–40].

In this paper, the method for transforming the current signal to an array-like represen-
tation is proposed. To some extent, a similar approach was used in [41], where analysis
of the graphical representation of the transient state with ANN was conducted. Contrary
to that approach, we do not have to resample the voltages and interpolate the currents.
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Our signal processing method (especially filtering) allows for de-noising and stabilizing
the signal. This way, the high identification accuracy is maintained, despite the increasing
number of appliances operating in the background.

3. Test Stand and Methods
3.1. Laboratory Test Stand and Experiments

The proposed measurement system (Figure 2) based on [2] allows for performing Data
Acquisition (DAQ) with the frequency between a couple kHz to a single MHz. It consists
of two computers working as DAQ modules and software for processing the collected data.
The first computer (MF unit) is used to acquire samples with the frequency fs = 62.5 kHz
on 16 channels simultaneously with 16-bit resolution. The second computer (HF unit)
allows for the DAQ with fs up to 10 MHz on two channels at the same time, with the
12-bit resolution. Signals representing values of the total current in the main power line
uHF2(t) and the j-th socket (j ∈ (1, 15)) uj(t) are measured using the current transformers
(indicated in Figure 2 as THF and Tj).

Figure 2. Scheme of measuring system.

The key for automatically describing measurement data is the simultaneous current
measurement for each appliance connected to the network. In the presented system, it
is possible thanks to sensors attached to each socket. The MF unit allows for acquiring
samples of currents consumed by the particular appliances connected to sockets. The
identification algorithms use data derived from the aggregated current itotal (signal uHF2)
and supply voltage utotal (signal uHF1).

Measurements by both computers (MF and HF) are implemented in the LabVIEW-
based software [2]. In the HF setup, measurements are performed with fsHF = 250 kHz,
while for the MF, fsMF =12.5 kHz. Descriptions of the measured data (labeling the actual
appliances state in the particular time instants) are added automatically after acquisition us-
ing the Matlab script. Characteristics of the measured appliances (including the number of
events recorded during the laboratory tests) are in Table 1. The column “a” contains the ap-
pliance identifier. The column “Number of events” presents the number of events recorded
during laboratory tests, which is caused by the change of this particular appliance’s state.
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Table 1. Characteristics of the electrical appliances (EAs) selected for experiments.

a Measured Appliance Number of Events a Measured Appliance Number of Events

8 Vacuum cleaner Zelmer 163
1 Light bulb 176 9 Lamp LED Osram 13 W 192
2 TV LED Samsung 220 10 LED Osram 17 W 203
3 4x LED Lightec Eco 5 W 167 11 Electric Kettle 104
4 Slow juicer 185 12 Hair dryer 162
5 LED Philips lamp 13W 146 13 Fluorescent lamp 207
6 Fan 118 14 Fridge 0
7 Air heater 1100 W 140 15 Microwave 153

Experiments were conducted for 15 typical devices used in the household. In our
research, we focused on two-state appliances, as it is easy to determine their actual con-
figuration, enabling unambiguous verification of the results. In the case of multi-state
appliances (such as a washing machine or dishwasher), it is often difficult to isolate their
specific operational states. The fridge measured on channel no. 14 was not identified,
working constantly in the background to verify the ability of the EA identification with ad-
ditional signal components present. The fridge operation is characterized by the periodical
changes in the current consumption.

The problem of identifying appliances with the non-zero background was introduced
in [38]. Disaggregation algorithms in the configuration of multiple devices working simul-
taneously were considered in [42–44] but disregarding the influence of the background
on the appliances’ identification. This makes the proposed research the next step of the
NIALM systems’ development.

The data collection consisted of repeatedly turning the single device on or off and
acquiring samples related with the state change. As a result, the training data set was
created, containing examples representing particular events with the following elements:

• Event type (on or off);
• The actual device identifier;
• Time instant of the event occurrence;
• Recorded current samples;
• Recorded supply voltage samples;
• Other information regarding the appliance identification methods (such as the number

and type of appliances operating in the background).

To include all appliances into the data set, the currents were measured in all sockets
simultaneously. During the online implementation, the information about the sockets to
which the devices are connected is not given, but during the training, the actual configura-
tion of the network is known.

3.2. Appliance Signature Construction

During the stable operation of the appliance, the recorded instantaneous current values
repeat in the periodically recurring time instants (tm). The period is determined using the
timestamps t0k, i.e., the moments when the fundamental voltage component crosses zero
(changes from negative to positive). The index k is number of the period in the supply
voltage fundamental component. When adding the appliance to the network, turning it on
or off, or changing its state, the instantaneous values of the current change. Steps required
to extract the vector of changes ∆I(a,s)

k occurring in the k-th period are presented in Figure 3.
To describe the event, u(n) and i(n) samples are needed. They are the result of sampling
signals itotal(t) and utotal(t) by the HF unit (see Figure 2).
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Figure 3. Subsequent steps are required to extract the vector of changes ∆I(a,s)
k .

The proposed method can be used independently of the supply voltage frequency,
so it is applicable for both European and American households. The idea is to determine
the difference between instantaneous values of the current in the specific periods of the
voltage fundamental component, which were measured at the time instants tm in different
periods k. The nominal frequency of the supply network signals is assumed constant, but in
practice, small changes are present around fractions of the single Hz [45]. To suppress any
deviations, the time instant t0k must be determined for each consecutive period. The proper
selection of time instants t0k requires low-pass filtering (LPF in Figure 3) of the original
voltage signal u(n) with the cut-off frequency of 70 Hz, outputting the signal u f (n). This is
needed to eliminate the influence of harmonics higher than the fundamental component.
In Figure 4a, the current pattern during the event of turning the sconce with four LED
bulbs on (device with identifier a = 3) is presented. The method for extracting the appliance
signature from the red fragment of Figure 4a is in Figure 4b. Time instants t0k, for which
the voltage samples u f (n) change signs from negative to positive are indicated by red dots.
They show initial moments for subsequent periods k. Here, the turn-on event is detected in
the 23rd period.

Time instants t0k are used for transforming collected current samples i(n) into the
array IP. Its particular elements represent the instantaneous current values occurring in the
same time position within each period k = 1, . . . , K. The latter contains M samples, which
are identified by the index m. The period’s duration is 20 ms (50 Hz supply voltage) for the
sampling frequency fs = 24,900 Hz, while the IP array contains M = 24900 Hz

50 Hz = 498 rows,
each processed by the median filter (of the 15th order), leading to the array I. Figure 5a
presents the first 250 samples in each row of IP, while Figure 5b shows corresponding
rows Ik (1) of I. These constitute the first halves of the current periods (see Figure 4a).
Comparison between Figure 5a,b shows the effect of the median filtering (elimination of
the high pitch indicated by the blue dot). Differences between two neighboring periods
(k = 23 and 24) reveal changes in the instantaneous current values caused by the appliance
state change (the respective green and red dots).

Ik = [i1,k, . . . , im,k, . . . , iM,k] (1)

The last step is determining the vector of changes ∆I(a,s)
k (2) after the appliance state

change. For this purpose, the difference between vectors equally distant in time from the
k-th vector of the array I is calculated. The distance (number of periods) is defined by the
value o ∈ {15, 30, 60, 120} set individually (see Tables 2 and 3) for each of a appliances
(a = 1, . . . , A). It is obtained by subtracting samples of all periods’ pairs (such as k = 1 and
k = 2, k = 3 and k = 5 and so on) in the steady state of the appliance operation. The difference
∆im,k (3) is calculated for each sample m in the periods preceding (k − o) and succeeding
(k + o) the period of interest (k).

∆I(a,s)
k = Ik+o − Ik−o , f or k ∈ N ∧ k ∈ 〈o + 1, K− o〉 (2)
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∆im,k = im,k+o − im,k−o (3)

Figure 4. An example of a recorded current signal and filtered voltage u f (a). During recording, a
wall lamp with 4 LED lamps was turned on (b, period no. 23).

Figure 5. An example of changes in a pseudo-periodic signal caused by the inclusion of an additional
appliance. (a,b) represent the same event. The signal on (a) array IP was not filtered, the signal on
(b) array I was filtered by the 15th order median filter.
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Table 2. Values of o and SFTa,s for events of turning the appliances on.

a s o SFTa,s a s o SFTa,s

1 ON 15 5 8 ON 30 5
2 ON 60 5 9 ON 15 2
3 ON 15 2 10 ON 15 2
4 ON 30 5 11 ON 15 5
5 ON 15 2 12 ON 15 5
6 ON 15 5 13 ON 30 2
7 ON 30 5 15 ON 120 5

Table 3. Values of o and SFTa,s for events of turning the appliances off.

a s o SFTa,s a s o SFTa,s

1 OFF 15 5 8 OFF 30 5
2 OFF 60 2 9 OFF 15 2
3 OFF 15 2 10 OFF 15 2
4 OFF 15 5 11 OFF 15 5
5 OFF 15 2 12 OFF 30 5
6 OFF 30 2 13 OFF 15 2
7 OFF 30 5 15 OFF 30 5

The set of changes ∆I(a,s)
k is the feature vector, which is used to classify the appli-

ance’s state s. It is identified by comparing the currently analyzed vector and all dictio-
nary entries ∆I(a,s)

pattern representing appliances recognized in the network. Figure 6 shows

vectors IP(a,s)
k calculated for the signal from Figure 5a and I(a,s)

k for the signal from Figure 5b.

Figure 6. Determination of changes in the current signal—determination of the vector of changes

∆IP(a,s)
k , on the unfiltered signal (a,c,e) and the change vector ∆I(a,s)

k on the filtered signal median of
the 15th order (b,d,f) for k = 23, a = 3, s = ON, o = 15. (Before the analyzed event took place, another
7 EAs was already on, working in the background).
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Similarly to [27], the proposed method allows for identifying the specific appliances
with all possible combinations of devices working in the background. Recording only the
single state change of each appliance is required for this purpose. During the event from
Figures 4 and 5, the transient state lasts for less than one period of the voltage signal, which
is enough in our case. Vectors of samples’ changes ∆I(a,s)

pattern obtained when turning the
selected appliances on are presented in Figure 7. Black patterns extracted from the filtered
array I are visible with original, green vectors from the IP array in the background. Similar
patterns were observed while turning the devices on: LED Philips 13 W—Figure 7c and
LED Osram 13 W—Figure 7e.

Figure 7. Comparison between sample vectors ∆I(a,s)
pattern for selected appliances. (a) switch ON of the

light bulb—AE no. 1, (b) switch ON of the TV—AE no. 2, (c) switch ON of the led lamp Philips 13W–
AE no. 5, (d) switch ON of the fan—AE no. 6, (e) switch ON of the LED lamp OSRAM—AE no. 9,
(f) switch OFF of the LED lamp OSRAM—AE no. 9.

Filtering allowed for highlighting the signal components’ characteristics.
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3.3. Event Detection and Appliance Identification

The event detection in the proposed method is carried out independently for each
appliance. Subsequent steps taken during each period are presented in Figure 8. Selected
14 devices can be in 2 states (ON or OFF), which gives 28 categories to identify.

Figure 8. Current signature calculation algorithm.

Table 2 shows the most useful values of o ∈ {15, 30, 60, 120} for specific subsets of
devices. To detect the appliance change, the differences between vectors ∆I(a,s)

k (2) are calcu-

lated to determine the similarity SFa,s,k ∈ (0, ∞) (5) between the analyzed pattern ∆I(a,s)
pattern

and all patterns in the dictionary. The minimum Euclidean distance dE

(
∆I(a,s)

k , ∆I(a,s)
pattern

)
identifies the event {a, s }, i.e., device a changing state into s. The average absolute value
σ (4) of ∆I(a,s)

pattern normalizes values of SF in (5) for different devices. Calculation of the
Euclidean metric facilitates visualization of the values of SF. When SFa,s,k exceeds the
threshold value SFTa,s for the device a and state s, it means that in the k-th period, the event
a, s occurs. The thresholds are experimentally set to either 2 or 5, the former being enough
for devices with power below 50 W.

σ =
1
M
·

M

∑
i=1
|xi| =

1
M
·

M

∑
i=1
|∆I(a,s)

pattern(i)| (4)

SFa,s,k =
σ

dE

(
∆I(a,s)

k , ∆I(a,s)
pattern

) =
σ

||∆I(a,s)
k − ∆I(a,s)

pattern||
, k ∈ N ∧ k ∈ 〈o + 1, K− o〉 (5)

To indicate the potential time instants of events in the system, the detection array
SFDa,s,k is calculated:

SFDa,s,k =

{
1, SFa,s,k ≥ SFTa,s
0, SFa,s,k < SFTa,s

. (6)

Summing columns of SFDa,s,k produces the detection vector SFDVk, indicating how
many appliances potentially changed state in the k-th period.

SFDVk =
15

∑
a=1

∑
s={ON,OFF}

SFDa,s,k, where k ∈ < 1, K >. (7)

Potential errors of the algorithm are due to the similar patterns ∆I(a,s)
pattern for different

appliances. For instance, events a,s = {5,ON} (turning the LED Philips 13 W on) and
a,s = {9,ON} (turning the LED Osram 13 W on) are difficult to distinguish. In particular, it
is possible that for more than one device, the value of SFa,s,k exceeds the threshold value
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SFTa,s. In such a situation, the device with the highest value of SFa,s,k is considered to be
the one that changed its state.

To limit false-positive detections, it was assumed that two subsequent events have to
be separated by at least 0.2 s. Secondly, the duration of the event (number of consecutive
periods during which the value of SFa,s,k is greater than threshold value SFTa,s) must
last longer than half of the value o. That eliminates false detections resulting from short-
term changes in the signal during which the vector of changes ∆I(a,s)

k is similar to any

pattern ∆I(a,s)
pattern.

4. Experimental Results

The proposed method can be used to detect and recognize states of single appliances.
Evaluated events are presented in Table 4 with the number of the turn on and off events
meeting this criterion for each device (corresponding to Table 1).

Table 4. Number of events related to the switch off or on events for selected appliances.

App No. 1 2 3 4 5 6 7 8 9 10 11 12 13 15 Overall

ON 79 104 81 92 72 58 69 82 93 99 52 81 100 69 1131
OFF 80 95 84 92 71 57 69 81 97 99 51 80 101 64 1121

overall 159 199 165 184 143 115 138 163 190 198 103 161 201 133 2252

4.1. Appliance Recognition Accuracy with Known Time Instant of the State Change

This section presents the scenario when the time instant of the event is already known.
This case was considered to make comparisons with results obtained for data sets such
as REDD [28], PLAID [30–34] or WHITED [30,32], where the event detection was not
considered. This allows for verifying just the event classification accuracy (assuming the
detection is already complete). To evaluate the usability of transforming the signal into
the array form and median filtering of each row, the classification of events was applied,
exploiting the dictionary method, i.e., by finding the smallest Euclidean distance between
the changes vector ∆Iev of the analyzed example and all feature vectors ∆I(a,s)

pattern in the
data set, containing 28 entries, as each category is represented by only one “ideal” example.
The testing set consisted of 2252 events belonging to 28 categories.

In the laboratory conditions (where each socket current is individually measured),
the actual configuration of appliances connected to the network is always known. It was
then possible to determine in which period the particular event should be detected. The
classified changes vectors are defined as follows:

∆Iev = Ikev+o − Ikev−o , f or k ∈ N ev ∈ 〈1, 2252〉 (8)

where kev is the period number, in which the ev-th event (change of the state s by the
appliance a) occurred. Values of o were predefined for periods kev + o and kev − o ,
where the device was already in the steady state. Pattern vectors ∆I(a,s)

pattern were selected
to represent events where only the device a was active. Though the base fs = 250 kHz,
lower frequencies were used to check if accurate event classification is possible for them.
Comparison of the identification accuracy for different sampling frequencies is shown in
Table 5. The green color indicates the best result for each frequency.

The detection accuracy is proportional to fs, which has a significant impact on the
system accuracy. Application of the median filter allowed for increasing the accuracy by
an average of 5%. The preferred values of its length are between 9 and 25 (this selection is
of secondary significance, because most results around optimal values are similar). The
highest accuracy (ratio of the correctly identified events) was 98.80%, which was achieved
for fs = 250 kHz and 23rd order median filter.
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Table 5. Event identification accuracy using the dictionary method.

Filter Order

Sampling Frequency [kHz]

0.10 0.15 0.20 0.25 0.50 1 2.5 5 10 25 50 250

Accuracy [%]

1 36.28 68.25 70.12 83.17 84.77 87.26 92.41 93.21 93.83 93.96 94.01 93.96
3 38.14 71.45 75.53 85.66 86.72 89.21 93.34 93.56 94.36 94.45 94.32 94.36
5 39.03 73.00 76.78 86.86 86.68 90.54 95.83 96.14 96.71 96.98 96.85 97.02
7 41.52 75.36 79.22 89.39 90.45 93.69 97.65 97.87 98.58 98.67 98.67 98.62
9 42.05 75.67 78.24 90.01 90.59 93.87 97.65 98.00 98.49 98.62 98.62 98.58

11 41.56 76.24 79.93 90.14 90.76 94.49 97.65 97.60 98.53 98.62 98.58 98.58
13 40.85 76.15 78.46 90.63 91.21 94.27 97.82 97.74 98.62 98.67 98.58 98.58
15 41.12 78.64 80.28 90.05 90.72 94.85 97.91 97.51 98.62 98.71 98.62 98.67
17 43.74 78.91 80.51 90.41 91.47 95.34 97.74 97.69 98.62 98.76 98.62 98.62
19 44.14 78.69 80.24 90.67 91.39 94.76 97.87 97.74 98.62 98.62 98.62 98.67
21 42.98 78.82 80.60 91.03 91.65 94.85 97.69 97.78 98.58 98.76 98.67 98.76
23 42.10 77.71 80.11 90.76 90.99 94.58 97.78 97.82 98.71 98.71 98.76 98.80
25 43.38 77.26 80.20 89.92 91.12 94.14 97.56 97.87 98.62 98.67 98.76 98.80
50 38.94 72.74 75.22 88.54 88.90 91.39 95.56 96.58 96.94 97.16 97.11 97.07
100 40.28 69.09 74.78 86.10 86.10 89.03 92.90 94.76 95.25 94.94 95.03 95.03

Detailed results are presented using the confusion matrix, where the main diagonal
represents the correct classifications (True Positive—TP) and the other values represent
misclassifications [22,46]. Figures 9 and 10 show confusion matrices for particular events in
the optimal combination of the filter’s length and sampling frequency (switching devices
on and off, respectively). The risk of the identification error decreases as the device
power increases. This is a result of the increasing Euclidean distance between the device
patterns (see (5)). Overall accuracies were calculated separately only for switching-on
events (Figure 9) and switching-off events (Figure 10).

Figure 9. Confusion matrix for recognizing switch-on events of tested appliances using the dictio-
nary method.
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Figure 10. Confusion matrix for recognizing switch-off events of tested appliances using the dictio-
nary method.

Identification errors for the tv set (EA 2, OFF) are caused by the fact that this device
does not have the constant duration of the transient state, leading to varying values of
vectors ∆Iev calculated from (8). In this case, the proposed method does not work. For ap-
pliances with constant duration of the transient state, for 19 classes, there is 100% accuracy.

The highest number of errors (50% of all misclassifications) is encountered for the LED
Philips 13 W lamp (categories 5,ON and 5,OFF) and LED Osram 13 W lamp (categories 9,ON
and 9,OFF). Both have very similar signatures. Figure 11 shows changes’ vectors for
events 5,ON and 9,ON.

Figure 11. Comparison of sample vectors of changes for appliance of categories 5,ON and 9,ON.

Based on the results presented in Figures 9 and 10, metrics common in NILM, such
as recall, precision and F-score [46,47] were calculated—see Table 6. The lowest F-score
(0.9306) was obtained for category {5,OFF} (switching off LED Philips 13 W lamp). Four
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events of this class was classified to another class (False Negative—FN) and six events of
another class was incorrectly classified to category {5,OFF} (False Positive—FP). All false
positives for category {5,OFF} were events of category {9,OFF} and vice versa.

Table 6. Appliance recognition results with known time instant of the state change.

EA ID Number of Events TP FP FN Recall Precision F

1,ON 79 77 0 2 100.00 97.47 0.9872
2,ON 104 101 1 3 99.02 97.12 0.9806
3,ON 81 81 0 0 100.00 100.00 1.0000
4,ON 92 92 0 0 100.00 100.00 1.0000
5,ON 72 69 3 3 95.83 95.83 0.9583
6,ON 58 58 0 0 100.00 100.00 1.0000
7,ON 69 69 0 0 100.00 100.00 1.0000
8,ON 82 82 0 0 100.00 100.00 1.0000
9,ON 93 90 3 3 96.77 96.77 0.9677
10,ON 99 98 0 1 100.00 98.99 0.9949
11,ON 52 52 0 0 100.00 100.00 1.0000
12,ON 81 81 0 0 100.00 100.00 1.0000
13,ON 100 98 1 2 98.99 98.00 0.9849
15,ON 69 69 1 0 98.57 100.00 0.9928
1,OFF 80 79 6 1 92.94 98.75 0.9576
2,OFF 95 89 0 6 100.00 93.68 0.9674
3,OFF 84 83 0 1 100.00 98.81 0.9940
4,OFF 92 92 0 0 100.00 100.00 1.0000
5,OFF 71 67 6 4 91.78 94.37 0.9306
6,OFF 57 57 0 0 100.00 100.00 1.0000
7,OFF 69 69 0 0 100.00 100.00 1.0000
8,OFF 81 81 1 0 98.78 100.00 0.9939
9,OFF 97 91 4 6 95.79 93.81 0.9479

10,OFF 99 99 1 0 99.00 100.00 0.9950
11,OFF 51 51 0 0 100.00 100.00 1.0000
12,OFF 80 80 0 0 100.00 100.00 1.0000
13,OFF 101 101 1 0 99.02 100.00 0.9951
15,OFF 64 64 0 0 100.00 100.00 1.0000

average
(F-macro) 0.9874

The macro-averaged F-score was 0.9874, which is a result comparable to the most
accurate known methods with macro averaged F-scores of 0.9939 in [34] and 0.9777 in [31].
Both referenced results were achieved on the PLAID data set (only up to two devices
operating at the same time). Most of the existing methods identify the general type of
devices rather than a specific appliance. This requires a significant amount of training
data, e.g., using a 10-fold cross-validation model that is trained on 90% of the data and
tested on the remaining 10% [31]. The classifier used in our study requires only one
observation of each state change of a new device added to the system, but it identifies this
specific appliance.

4.2. Event Detection Accuracy in the Real-World Conditions

In the practical application (end-user’s apartment), the information about the time
of the event is not known. Therefore, the proper prior event detection (see Section 3.3)
must be completed. Metrics commonly used to evaluate classifiers in NILM were used
to evaluate the performance of the proposed detection method—identification accuracy,
recall, precision, and F-score [46,47]. The obtained detection results are presented in Table 7
(switching on) and Table 8 (switching off). Out of all 2252 events, 2225 were detected
correctly (TP), and the achieved detection accuracy was 98.8%. In total, 37 detections were
false alarms (FP), and 27 events were incorrectly undetected (FN). For the majority of
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appliances, the detection rate was high, including the power efficient ones (such as LED
bulbs). The latter are especially difficult to detect with multiple devices operating in the
background (as Table 9 shows). The mostly omitted events include turning the tv set off
(due to the already explained varying duration of the transient state). The relatively high
number of false detections (i.e., 13) for switching the fan off (EA ID 6, OFF) is caused by the
same effect.

Table 7. Event detection results (switching on).

EA ID Number of Events TP FP FN Recall Precision F

ALL 2289 2225 37 27 98.80 98.36 0.986
1-15,ON 1135 1123 4 8 99.29 99.65 0.995

1,ON 79 79 0 0 100.00 100.00 1.000
2,ON 104 101 1 3 97.12 99.02 0.981
3,ON 81 81 0 0 100.00 100.00 1.000
4,ON 92 92 0 0 100.00 100.00 1.000
5,ON 72 72 0 0 100.00 100.00 1.000
6,ON 58 57 0 1 98.28 100.00 0.991
7,ON 69 69 0 0 100.00 100.00 1.000
8,ON 82 82 0 0 100.00 100.00 1.000
9,ON 93 92 0 1 98.92 100.00 0.995
10,ON 99 98 1 1 98.99 98.99 0.990
11,ON 52 52 0 0 100.00 100.00 1.000
12,ON 81 81 0 0 100.00 100.00 1.000
13,ON 100 98 1 2 98.00 98.99 0.985
15,ON 69 69 1 0 100.00 98.57 0.993

Table 8. Event detection results (switching off).

EA ID Number of Events TP FP FN Recall Precision F

1-15,OFF 1154 1102 33 19 98.31 97.09 0.977
1,OFF 80 80 2 0 100.00 97.56 0.988
2,OFF 95 81 13 14 85.26 86.17 0.857
3,OFF 84 83 0 1 98.81 100.00 0.994
4,OFF 92 92 0 0 100.00 100.00 1.000
5,OFF 71 70 0 1 98.59 100.00 0.993
6,OFF 57 57 13 0 100.00 81.43 0.898
7,OFF 69 69 1 0 100.00 98.57 0.993
8,OFF 81 81 1 0 100.00 98.78 0.994
9,OFF 97 97 0 0 100.00 100.00 1.000

10,OFF 99 99 1 0 100.00 99.00 0.995
11,OFF 51 50 1 1 98.04 98.04 0.980
12,OFF 80 79 0 1 98.75 100.00 0.994
13,OFF 101 100 1 1 99.01 99.01 0.990
15,OFF 64 64 0 0 100.00 100.00 1.000



Energies 2022, 15, 3325 16 of 20

Table 9. Impact of the number of appliances working in the background on identification accuracy.

Number of Turned on Appliances at
the Time of the Recognized Event

Number of
Events

Correctly
Recognized

Accuracy
[%]

0 240 240 100
1 273 272 99.63
2 117 116 99.15
3 181 181 100
4 274 273 99.64
5 372 370 99.46
6 327 323 98.78
7 227 220 96.92
8 134 130 97.01
9 56 54 96.43
10 19 19 100
11 4 3 75
12 1 1 100

4.3. Appliance Recognition for the Detected Events

This section covers accuracy analysis of the classification module. All 2225 correctly
detected events are assigned to particular categories. Figure 12 presents the confusion
matrix for all ON events (the number of classified events for each class is equal to TP
in Table 7). Figure 13 contains the confusion matrix for the respective OFF events (the
number of classified events for each class is equal to TP in Table 8). The overall accuracies
above the confusion matrices were calculated separately for switching-on (Figure 12) and
switching-off events (Figure 13). The analyzed data were collected with fs = 250 kHz
(without subsampling). The IP array was processed by the median filter with the length of
15. Classification was completed using the nearest-neighbor approach (see Section 4.1).

Figure 12. Confusion matrix for the recognition of switching-on events of the tested appliances
using the proposed method. Only events detected by the detection algorithm were the subject
of recognition.
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Figure 13. Confusion matrix for the recognition of switching-off events of the tested appliances
using the proposed method. Only events detected by the detection algorithm were the subject
of recognition.

The average appliance identification accuracy was 98.97% (99.02% for turning the
devices on and 98.90% for turning them off). The most common errors included identifying
the state {5,ON} as {9,ON} (eight errors) and the state {5,OFF} as {9,OFF} (10 errors). These
are difficult to distinguish (both appliances are lamps with LED bulbs: Philips 13 W and
Osram 13 W, with similar signature—Figure 11). The obtained accuracy depends on the
prior ability to correctly detect the event, so the overall performance (considering detection
errors) was 97.78%. Please note that only one dictionary entry for each recognized class
was used.

Compared to Section 4.1, there were more classification errors, even though more
events were identified in Section 4.1 (2252 vs. 2225 here). This is due to the fact that in the
previous experiment, the time of state change of the appliances was precisely known. The
identified vectors of changes were determined more accurately than when the time of state
change is determined by the event detection algorithm.

For 23 categories, the accuracy was 100% (even if there are multiple appliances op-
erating in the background—see Tables 7–9). The operation of many devices at the same
time is the typical work regime of electrical appliances in the household. The obtained
results prove that the calculation of current signatures allows for the accurate identification
of appliances’ states.

5. Conclusions

A high accuracy of detection and recognition of appliances’ state changes was achieved
with the knowledge of only one observation of a particular appliance. These were used
to calculate the appliances’ signatures. A dictionary method was used for classification.
Unlike the methods described in other papers, the proposed method identifies the partic-
ular appliance and not just its general type. For the purpose of this research, a data set
containing 2252 events was created. At least five devices were operating during most of
the analyzed events.
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The presented event detection algorithm achieved an F-score of 0.986 and for specific
appliance identification, the macro-averaged F-score was 0.9874 for known events. The
flawless performance was obtained for 23 out of 28 identified categories. The algorithm
was able to distinguish appliances with similar signatures. The method fills the gap in
knowledge by being resilient to the number and configuration of appliances working in
the background.

A novel approach to analyze voltage and current signals in the time domain was
proposed. The periodicity of the network voltage was used to construct the array-like
representation of the current samples. It allows for filtering each row separately to isolate
features of each device. Applying the proposed signal processing and filtering method
allows for increasing the accuracy by an average of 5%. The median filter with the length
between 13 and 25 samples was the most useful here. Although even fs = 1 kHz provides
satisfactory results, an increase in accuracy was observed for higher frequencies. Median
filtering allows also for a reduction in the sampling rate without a decrease in the iden-
tification accuracy (accuracy 97.91% for fs = 2.5 kHz with 15th order filter compared to
93.96% fs = 250 kHz without filtering). This signal processing method can be beneficial
when applied to other NILM methods: especially methods based on the V-I trajectory
analysis, which so far have been mainly tested on data sets with a low number of devices
operating in the background

The disadvantage of the method is that it does not correctly process appliances whose
transient state duration is varying. Further research will cover verification on public data
sets and comparison against other algorithms.

This novel approach can be widely used being a part of smart meters in a smart grid,
allowing for the decrease in end-user energy consumption and cost.
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