
Citation: Luo, H.; Zhou, P.; Shu, L.;

Mou, J.; Zheng, H.; Jiang, C.; Wang, Y.

Energy Performance Curves

Prediction of Centrifugal Pumps

Based on Constrained PSO-SVR

Model. Energies 2022, 15, 3309.

https://doi.org/10.3390/

en15093309

Academic Editor: Maria Grazia

De Giorgi

Received: 7 April 2022

Accepted: 29 April 2022

Published: 1 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Energy Performance Curves Prediction of Centrifugal Pumps
Based on Constrained PSO-SVR Model
Huican Luo 1 , Peijian Zhou 1,2,* , Lingfeng Shu 3, Jiegang Mou 1,2, Haisheng Zheng 1, Chenglong Jiang 1

and Yantian Wang 1

1 College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China;
p20020854140@cjlu.edu.cn (H.L.); mjg@cjlu.edu.cn (J.M.); zhs980514@163.com (H.Z.);
jcl021600@163.com (C.J.); whjx456@163.com (Y.W.)

2 Zhejiang Engineering Research Center of Smart Fluid Equipment & Measurement and Control Technology,
Hangzhou 310018, China

3 Power China Huadong Engineering Corporation Limited, Hangzhou 311122, China; shu_lf@hdec.com
* Correspondence: zhoupj@cjlu.edu.cn

Abstract: It is of great significance to predict the energy performance of centrifugal pumps for the
improvement of the pump design. However, the complex internal flow always affects the perfor-
mance prediction of centrifugal pumps, particularly under low-flow operating conditions. Relying
on the data-fitting method, a multi-condition performance prediction method for centrifugal pumps
is proposed, where the performance relationship is incorporated into the particle swarm optimiza-
tion algorithm, and the prediction model is optimized by automatically meeting the performance
constraints. Compared with the experimental results, the performance under multiple operating
conditions is well predicted by introducing performance constraints with the mean absolute relative
error (MARE) for the head, power and efficiency of 0.85%, 1.53%,1.15%, respectively. By comparing
the extreme gradient boosting and support vector regression models, the support vector regression
is more suitable for the prediction of performance curves. Finally, by introducing performance
constraints, the proposed model demonstrates a dramatic decrease in the head, power and efficiency
of MARE by 98.64%, 82.06%, and 85.33%, respectively, when compared with the BP neural network.

Keywords: centrifugal pump; performance relationship; support vector regression; particle swarm;
performance prediction

1. Introduction

With the significant development of the economy and society, the utilization of energy
resources by humans is gradually increasing. Centrifugal pumps are key to energy trans-
mission and utilization systems. The fluid driven by the mechanical energy generated by
the prime mover can be transported to a designated target. At present, many industries
rely on energy transportation because of the huge demand for centrifugal pumps [1], such
as municipal sewage, power systems, agricultural irrigation, and chemicals. Therefore,
an inevitable problem is proposed regarding the effective design of centrifugal pumps.
In traditional design and manufacturing methods, a large amount of time is consumed
owing to the complicated operation process, which leads to high costs [2]. Performance
prediction is one of the most effective ways to improve the optimization design of centrifu-
gal pumps, which helps researchers quickly understand the performance of the designed
pump, thereby accelerating the development of pump products and saving costs.

In recent years, numerical simulation methods based on computational fluid dynamics
(CFD) have always been the main method used by researchers for performance predic-
tion [3–14]. The 3D simulation of the impeller and its stationary flow in the centrifugal
pump casing were analyzed using CFD [3,14], and the head and efficiency of the pump
under different flow rates were obtained. Yang [4] used computational fluid dynamics

Energies 2022, 15, 3309. https://doi.org/10.3390/en15093309 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15093309
https://doi.org/10.3390/en15093309
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-9184-9840
https://orcid.org/0000-0001-9738-356X
https://doi.org/10.3390/en15093309
https://www.mdpi.com/journal/energies
http://www.mdpi.com/1996-1073/15/9/3309?type=check_update&version=4


Energies 2022, 15, 3309 2 of 19

(CFD) to predict the performance of a single-stage centrifugal pump in forward and reverse
modes and verified it with experimental data. To improve the performance of a centrifugal
pump, a new impeller structure was explored using a numerical simulation method [5]. By
calculating the head and efficiency of the centrifugal pump and comparing them with the
experimental data, it was found that the overall performance of the centrifugal pump was
improved based on the proposed impeller design. However, complex numerical simulation
of turbulent flow has always been an unsolved difficulty in computational fluid dynamics
(CFD) [11]. High-quality grids and appropriate boundary conditions require a strong work
experience for designers, and the long simulation time of CFD is also not conducive to the
design of centrifugal pumps.

Theoretical models have also been used for the performance prediction of pumps [15–31],
which is a prediction method based on empirical formulas and various assumptions. Among
these, theoretical loss models are widely used for performance prediction [22–25]. This
method, which classifies the losses in the suction chamber, impeller, and pressurized water
chamber of the pumps, uses different calculation methods to calculate the losses of each part
and then obtains the performance curves according to the basic equation of the pump [25].
A theoretical model based on an Oseen vortex was proposed to optimize the performance
of multistage multiphase pumps. Through verification of the three-stage multiphase pump,
the optimized pump head and efficiency can be increased by an average of 0.29% and 0.19%,
respectively. To explore the changing condition of the pump performance curves under
different speeds, three different methods were summarized by Pedersen [30] to predict the
pump performance curves based on proportional law. The results show that the highest
prediction accuracy occurs when the speed difference method is used. Although the influence
of various factors, such as secondary flow and return flow, is fully considered by the loss
model, it is an assumption made under certain conditions, and satisfactory results can only be
obtained within a certain range. When conditions change, the model is no longer applicable
and is not universal.

Over the last 10–20 years, tremendous progress has been made in the computer
industry, and the computing power of computers has become very powerful. In this
process, a large amount of data is accumulated, and there is an urgent need for a method
that can reasonably utilize the data for analysis. In recent years, machine learning has
attracted widespread attention as a method for processing large amounts of data. In the
pump industry, machine learning is widely used for pump fault diagnosis [32,33] and
performance prediction [34–44]. Deep learning methods based on neural networks are
widely used for pump performance prediction [35–38]. The BP neural network is one of
the most widely used deep learning methods. Considering the huge computing resources
and running time required for numerical simulation, a hybrid neural network based on
a theoretical loss model and a BP neural network was proposed in [37]. By introducing
the theoretical loss model, the mean-squared error of the head and the efficiency are
both significantly reduced. A performance prediction method for a centrifugal pump
based on the Levenberg–Marquardt training algorithm and a double-hidden-layer BP
neural network [38] is proposed to solve the shortcomings of the traditional single-hidden-
layer BP neural network. Compared with the traditional single hidden layer structure,
the convergence time of the improved neural network is significantly reduced, and the
situation of low learning efficiency and falling into a local optimum is effectively solved.
Because the isentropic efficiency plays a significant role in the system performance of the
eddy current pump, a prediction model of the isentropic efficiency of the eddy current
pump was constructed by Ping [39], which was combined with experimental data and
deep learning methods. In [41], to improve the performance of a centrifugal pump, a
global optimization algorithm combining an artificial neural network with an artificial
bee colony was developed to redesign the geometry of the impeller, and the CFD method
was used to analyze and verify all the regions inside the centrifugal pump. However, a
slow learning rate and complex network topology have always been problems with neural
networks [37]. Even though the desired neural network structure can be searched using a
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genetic algorithm, the selection of parameters of the genetic algorithm also has a significant
impact on the convergence accuracy [43]. In addition, it is cumbersome to readjust the
structure and weights of the neural network when new data dimensions need to be added
to the training data to improve the prediction accuracy of pump performance [33].

Unlike the way in which the neural network continuously approximates the true value,
support vector regression (SVR) has a good prediction effect on small-scale and multidimen-
sional data based on its solid theoretical foundation [43]. However, the relationship between
centrifugal pump performance can be fragmented when only machine-learning methods
are used to make predictions. Furthermore, different model structures can yield different
prediction results. Therefore, an energy performance prediction method for centrifugal
pumps based on performance constraints was proposed. By combining the relationship
between centrifugal pump performance, particle swarm optimization (PSO), and support
vector regression, a performance prediction model that satisfies the performance constraint
is found. The remainder of this paper is organized as follows. A detailed theoretical
description of the proposed method is provided in Sections 2 and 3, respectively. Section 4
discusses the building process of the performance-prediction model and determines the
final model structure. Section 5 presents the effects of the model structure. In addition, a
comparison of XGBoost with performance constraints and BP neural networks without
performance constraints is provided. The conclusions are presented in Section 6.

2. Geometric Features

Centrifugal pumps are regarded as important devices in drainage systems. The wide
applications of centrifugal pumps benefit from their easy installation, low maintenance cost,
etc. Three main components are passed by the fluid when the centrifugal pump operates:
inlet tube, impeller, and volute, as shown in Figure 1. The impeller is the core component
of the centrifugal pump that converts the mechanical energy of the rotor into the kinetic
energy of the fluid. Therefore, a commonly used method is to optimize the parameters
of the impeller to obtain a satisfactory pump performance [45]. The main geometrical
parameters are described in Figure 2, including the inlet diameter of the impeller Dj, the
inlet diameter of the blade D1, the hub diameter of the impeller dh, the inlet angle of the
blade β1, the outlet diameter of the impeller D2, the outlet width of the impeller b2, the
outlet angle of the blade β2, the wrap angle of the blade ϕ and the number of blades z.

Figure 1. The inlet pipe, the impeller and the volute of the centrifugal pump.
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Figure 2. Geometric parameters of centrifugal pump impeller.

Another important component is the volute, which plays a significant role in improv-
ing the performance of a centrifugal pump, as shown in Figure 3. The main structure of
the volute is the diameter of the base circle D3, placement angle of the cut tongue ϕ0, and
width of the inlet b3. The structural diagram of the eighth section of the volute is shown
in the upper-left corner. It is accepted that kinetic energy can be converted into pressure
energy using a reasonable volute structure.

Figure 3. Geometric parameters of the volute.

Usually, energy performance is described by head H, efficiency η, and power P.
In addition, the flow rate Q is usually regarded as a significant operating condition.
Therefore, nine geometric parameters, namely Dj, dh, D2, b2, β2, ϕ, D3, b3, z, and the
flow rate Q are considered as the input variables, which represent the major parame-
ters of the centrifugal pump. Mathematically, it can be expressed as S ={X, Y}, where
X ={x1, x2, . . . , xm}T ∈ Rm×10, Y = {y1, y2, . . . , ym}

T ∈ Rm×3, and m are the dimensions
of the variable. Furthermore, the i th sample of the centrifugal pump can be written as
Equation (1).

Si =

{
xi = [Dj(i), dh(i), D2(i), b2(i), β2(i), ϕ(i), z(i), D3(i), b3(i), Q(i)]T

yi = H(i), P(i), η(i)

}
(1)



Energies 2022, 15, 3309 5 of 19

3. Theoretical Analysis
3.1. Performance Relationship of Pumps

The enhancement of the energy per unit weight of fluid from the pump inlet to the
outlet is called head H (the height of the fluid pumped by the pump, m).

H = Ed − Es (2)

where Ed and Es are the energy per unit weight of fluid at the pump outlet and inlet,
respectively.

There is always a close relationship between energy and power. The effective energy
obtained in the fluid pump per unit time is called output power Pe. According to the
definition of head H, the effective power Pe can be expressed as:

Pe = ρgQH (3)

where ρ, g, and Q are the density (kg/m3), acceleration of gravity (m/s2), and flow rate
(m3/s) of the fluid delivered by the pump, respectively.

Usually, the input power of the pump is provided by default, which is transmitted by
the prime mover to the pump shaft, also called shaft power P. During the operation of the
pump, it is inevitable that a certain energy loss can be generated, namely loss power ∆P,
thus, the effective power of the pump is equal to the difference between the shaft and loss
power:

Pe = P− ∆P (4)

To clarify the state of the pump during running time, the ratio between the effective
power and shaft power is defined as the efficiency η of the pump. Thus, the relationship
between the head H, power P, and efficiency can be derived as follows:

η =
P− ∆P

P
=

ρgQH
P

(5)

3.2. Support Vector Regression

It is widely acknowledged that support vector regression is suitable for processing
small-scale samples. By mapping the data into a high-dimensional space, Support vector
regression expected to find the “support vector factor” that minimizes the distance between
sample points and the hyperplane [46,47]. The specific representation of the model can be
written as:

f (x) = ωTφ(x) + b (6)

where ω, b are the parameters to be obtained by the model, x is the input data, which are
represented in the form of a matrix, and φ represents the mapping of the samples to the
high-dimensional space.

A relaxation factor is introduced to adjust the fault tolerance of the model and prevent
overfitting. Therefore, the optimization function of support vector regression can be shown
in Equation (7):

min
ω,b,ξi ,ξ̂i

1
2‖ω‖

2 + C
m
∑

i = 1
`ε

(
ξi + ξ̂i

)
s.t.yi − f (xi) ≤ ε + ξi,

f (xi)− yi ≤ ε + ξi,
ξi ≥ 0, ξ̂i ≥ 0, i = 1, 2, · · · , m

(7)

where C is the penalty coefficient, which is used to adjust the generalization performance
of the model, ξi and ξ̂i are the introduced relaxation factors; and `ε is the ε− insensitive
loss function.
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Finally, the solution of support vector regression can be obtained by transforming the
problem into a dual problem:

f (x) =
m

∑
i = 1

(α̂i − αi)κ(x, xi) + b (8)

where αi and α̂i are Lagrange multipliers, and κ(x, xi) is the kernel function of the model.

3.3. Particle Swarm Optimization

A particle swarm optimization (PSO) algorithm is applied to combine the performance
relationship with the SVR model. One of the most important characteristics of a particle
swarm optimization algorithm is information sharing between the particle and swarm.
During the optimization process, each particle has two attributes: speed v and position
x, where speed v determines the pace of particle motion, and position x determines the
direction of particle motion. The particle is allowed to search for the optimal solution
within a specific range and record its current optimal value pop. The optimization approach
is shown in (9).

vi = ωvi + c1α
(
popi − xi

)
+ c2α

(
gopi − xi

)
xi = xi + vi

(9)

where gop is the global optimal solution, the speed v and position x of each particle are
always adjusted continuously according to its own optimal solution pop and the global
optimal solution gop, i represents the ith index of the particle; ω is the inertia factor, which
is used to adjust the global optimization ability of the particle, c1 and c2 are the particle and
swarm learning factors, which have the ability to weigh the local and global optimization
of particles, respectively.

4. Model Construction

To obtain sufficient samples, 30 performance curves of single-stage and single-suction
centrifugal pumps in different models were selected, with specific speeds ns ranging from
23.1 (m/s2)3/4 to 195.6 (m/s2)3/4; the specific speeds formula is shown in Equation (10).
From each curve, the performance indices of 14–20 operation points were collected. In total,
the geometric and performance parameters were recorded under 535 different working
conditions. The samples were then divided into two groups: 428 for training and 107 for
testing, in proportion to 4:1.

ns =
3.65n

√
Q

H3/4 (10)

4.1. Data Porcessing

There are many geometric parameters for centrifugal pumps with different data ranges
for each parameter. In the process of training, the parameters of small data ranges tend to
be covered by those of large ones, so the small data range parameters cannot be well fit
into prediction models. Normalization is an effective method for addressing this problem.
By reducing the data range from 0 to 1, the geometric parameters could be fully trained in
the prediction model. The specific normalization formula is shown in Equation (11), and a
portion of the normalized data is shown in Table 1.

x∗ =
x− xmin

xmax − xmin
(11)

where xmax and xmin are the maximum and minimum values of the samples, respectively.
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Table 1. Partially normalized dimensionless geometric parameters.

Number
Series Q Dj dh D2 b2 β2 z ϕ D3 b3

1 0.0196 0.0606 0 0.4156 0 0.36 0 0.8276 0.4060 0.0588
2 0.0283 0.2272 0.6944 0.5121 0.0385 0.52 0 0.9342 0.5639 0.1324
3 0.1907 0.3485 0 0.1596 0.3077 0.48 0.5 0.2884 0.1429 0.3235
4 0.9212 1 1 0.5121 1 0.4 0.5 0 0.5639 1
...

...
...

...
...

...
...

...
...

...
...

533 0.0176 0.0606 0 0.4156 0 0.36 0 0.8276 0.4060 0.0588
534 0.0434 0.1591 0 0.0074 0.1154 0.6 1 0.3135 0 0.1471
535 0.2738 0.6136 0 0.3191 0.4327 0.1 1 0.1693 0.3383 0.4412

4.2. Implementation Steps of Prediction Model

Based on the particle swarm optimization algorithm, a performance prediction model
of a centrifugal pump that considers performance constraints is proposed. Because there
were deviations around the experimental value for the predicted performance, and undeni-
able error occurred in the calculation efficiency. Taking the constraint relationship indicated
by Equation (5) as the constraint condition of the model, the predicted value of each sample
will be close to or satisfy the equation. The specific form is shown in (12).

1
m

m

∑
i = 1

(
ηi − η′i

)2 (12)

where m is the number of samples, ηi is the test efficiency of the ith sample, and η′ i is the
calculation efficiency, which is calculated from the predicted head H′i and predicted power
P′i according to Equation (5).

A few-shot kernel machine-learning method (SVR) is adopted in this study. The
predicted performance curves of the SVR model are smoother than that of other machine
learning methods because it finds a high-dimensional hyperplane, which makes it widely
used in few-shot prediction models [48]. The prediction accuracy of the model depends
mainly on the type of kernel function, coefficient γ of the kernel function, penalty coefficient
C, and tolerance parameter ε. Among these, the kernel function is of utmost importance.
However, there is no efficient method for selecting a kernel function. Currently, some
kernel functions are widely used: linear, polynomial, sigmoid, and radial basis functions
(RBF). RBF is one of the most widely applied functions for good spatial mapping.

κ
(
xi, xj

)
= e−γ‖xi−xj‖2

(13)

where i, j are the index of the samples.
The prediction accuracy is significantly affected by the SVR model parameters. The

penalty coefficient C and kernel function coefficient γ are the most important parameters
of the SVR model. The penalty coefficient C is used to prevent overfitting so that the
test samples can be better predicted. Kernel function coefficients γ are used to adjust the
complexity of the model, which increases when the dimensionality of the sample is too
high. In this study, the penalty coefficient C and kernel function coefficient γ were selected
to minimize the performance constraint functions built by Equation (12). The specific steps
are shown in Figure 4.
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Figure 4. Construction Process of PSO-SVR model.

Step 1: Collect 535 samples under different working conditions to build the prediction
model and divide 428 samples for training and 107 samples for testing. All samples were
normalized using Equation (11).
Step 2: Establish the relationship between the optimization variables and performance
constraint functions, as shown in Equation (14), determine the optimization range of the
optimization variables, and select the appropriate kernel function according to the sample
characteristics.

ς =
1
m

m

∑
i = 1

(
ρgQ fHi (γ, C)

fPi (γ, C)
− ηi

)2

(14)

where ς is the constraint error, fHi (γ, C) and fPi (γ, C) are the predicted head and power,
respectively.
Step 3: Randomly distribute 100 particles in the optimization range, adjust the local learning
factor c1 and the global learning factor c2, and assign a relatively large value for the inertia
factor ω to improve the global optimization ability.
Step 4: Introduce Equation (14) into the objective function to determine the particle with
the smallest constraint error. The maximum evolution generations were set to 15.
Step 5: Determine whether the particle velocity tends to converge. If it converges, switch to
Step 6. Otherwise, go back to Step 2.
Step 6: Establish and train the SVR model based on the position of the globally optimal
particle.
Step 7: Predict the head and power based on 107 test samples. Calculate the efficiency
using Equation (5) and compare it with the experimental efficiency to determine whether
the constraint accuracy is satisfied. If not, return to Step 2. Otherwise, switch to Step 8.
Step 8: Output the SVR model to predict the energy performance of the centrifugal pump.

4.3. Establishment of PSO-SVR

Overall, 100 particles were randomly generated within the optimization range, and each
particle contained two pieces of variable information: the penalty coefficient C and the kernel
function coefficient γ. In the iterative process, apart from advancing around itself, the particle
is affected by the global optimal particle. Figure 5 illustrates the changing situation of two
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random particles during the iterative process. This reveals that the initial position of the
particle is randomly assigned, which can be an ideal or relatively large value. As the number
of iterations increased, the particle continuously updated its speed and direction.

Figure 5. Iterative process of random particles. (a): Iterative process of particle A; (b): Iterative
process of particle B.

Particle A changes greatly in the process of updating, and its maximum mean square
error reaches over 10,000 after the seventh iteration. Then the particle direction is changed,
oscillating back and forth where the penalty coefficient C ranges from 9000 to 10,000 and
the kernel function coefficient γ ranges from 1 to 2. The iterative process of particle B
resembles that of particle A, which also constantly changes its speed and direction, finally
oscillating around C = 9000–10,000 and γ = 1–2. The difference lies in the fact that Particle
B is at an ideal position, and the overall change is not significant.

The iterative process of the optimal particle Figure 6a and the overall constraint error
variation surface Figure 6b of the performance prediction model is shown in Figure 6. As can
be seen from Figure 6a, the optimal particle starts to iterate from around C = 9000, γ = 4, and
then the iteration moves toward the direction where C is decreasing. When the constraint
error is perceived to be increasing, both C and γ simultaneously begin to change, in the
direction of γ decreasing and C increasing. Finally, it reaches the global optimal value after
13 iterations, which is 2.165. The constraint error changing surface is shown in Figure 6b. It
reveals that the constraint error has multiple peaks and troughs. When C and γ both approach
0, the peak increases rapidly, and the larger the peak, the less the predicted performance
satisfies the relationship between the performance. The trough appears where γ = 1–2 or 2–3.
Furthermore, the deeper the trough, the better the predicted performance is in line with the
relationship among the performance. The minimum value occurs where γ = 1–2, and the
minimum value is 1.48. The specific parameters of the model are shown in Table 2.

Table 2. Parameters of performance prediction model.

Name of Parameters Value

PSO

number of particles 100
range of optimization 1–10,000\1–5

times of iteration 15
learning factor 0.5\0.5
weight factor 0.8

SVR

kernel function RBF
C 10,000
γ 1.48

tolerance 0.001
ε 0.1
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5. Discussion and Results
5.1. Prediction Analysis of Tset Sample

A total of 107 test samples were used to predict the head and power of the single-
stage single-suction centrifugal pump, and the predicted results are shown in Figure 7.
The comparative results of the predicted and experimental performances are presented in
Figure 7a,b, respectively. It can be observed that the prediction results of the head and power
are close to the experimental results, indicating that the performance prediction accuracy
of centrifugal pumps meets the requirements of engineering practice by considering the
performance constraints. The absolute relative errors (ARE) of the head and power are
shown in Figure 7d,e. This reveals that the prediction results of the model are in line, with
expectations, with the absolute relative errors of the head and power being less than 12%.
The experimental value of the head in the entire fluid field is generally large, such that the
denominator of the relative error equation is large, thus leading to small calculation results
for the head. The specific ARE equation is

ŷ =
∣∣(yi − y′i

)
/yi
∣∣, i =1 ∼ 107 (15)

where i is the index of the test sample, yi is the test experiments of the ith sample, and y′i is
the predicted value of the ith sample.

A comparison of the predicted and experimental efficiencies is shown in Figure 7c. In
the figure, there is only a slight error between the predicted and test efficiencies, which
proves that the predicted head and power of the model are close enough to the test head
and power so that the efficiency is calculated by the performance constraint Formula (5) is
also similar. In Figure 7f, the ARE of the efficiency is less than 13%, and the mean absolute
relative error (MARE) is only 1.82%, which further indicates that the centrifugal pump
performance prediction model that is based on the performance constraints has sufficient
prediction accuracy.
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Figure 7. Comparison results of test sample. (a–c) are the comparison of test samples and prediction
samples; (d–f) are the absolute relative error of head, power, and efficiency.

5.2. Prediction of Multi-Condition Samples

To verify the applicability of the prediction model, five single-stage single-suction
centrifugal pumps with specific speeds of 23.4, 46.2, 63.2, 90.7, and 125.3 are selected as the
research objects to predict their head and efficiency under 7–10 operating conditions. The
geometric and performance parameters of the single-stage single-suction centrifugal pump
are listed in Table 3.

Table 3. Geometric parameters of centrifugal pump.

ns Q/(m3/h) Dj/mm dh/mm D2/mm b2/mm β2/(◦) z ϕ/(◦) D3/mm b3/mm

23.4 12.5 50 14 251 6.5 32.5 4 142 255 18
46.2 50 80 0 252 6.5 39 5 135 260 22

...
...

...
...

...
...

...
...

...
125.3 100 90 0 173 20 29 5 112 178 34
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Figure 8a–e correspond to five single-stage single-suction centrifugal pumps with
specific speeds of 23.4, 46.2, 63.2, 90.7, and 125.3, respectively. There was a good perfor-
mance in the prediction results of the five centrifugal pumps under multiple operating
conditions. The best prediction effect appears for the centrifugal pump with a specific
speed of 46.2, in which the MARE of the head, power and efficiency are 0.36%, 0.46%, and
0.55%, respectively. For the centrifugal pump with a specific speed of 90.7, the MARE
of the head, power and efficiency were 0.56%, 1.52%, and 1.15%, respectively. The worst
prediction effect occurs in the centrifugal pump with a specific speed of 125.3, and the ARE
of the head and power is up to 5.76% and 6.43%, respectively. The remaining two sets of
validation samples are sufficiently close to the experimental values.

Figure 8. Comparison of performance prediction results of five single-stage single-suction centrifugal
pumps. (a–e) are the prediction results of centrifugal pumps with ns = 23.4, 46.2, 63.2, 90.7 and 125.3,
respectively.

By observing the prediction results of five single-stage single-suction centrifugal
pumps, it can be found that: the overall prediction effect is poor when the specific speed
is too low or too high. The initial value of the performance curve has a significant impact
on the prediction results, and the larger the relative error of the performance under low-
flow conditions, the worse the effect of the model under the entire flow field. In most
cases, the maximum ARE of centrifugal pumps occurs outside the design conditions.
The prediction results show that the multi-condition performance prediction model can
be established effectively by particle swarm optimization and constraint errors, and the
prediction accuracy for engineering practice is satisfied.

5.3. Comparsion with XGBoost Model

Extreme gradient boosting (XGBoost) is widely used in the field of regression predic-
tion owing to its advantages of fast running speed, good prediction effect, and ability to
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handle large-scale data [49]. The performance prediction of centrifugal pumps is being
studied using a variety of machine learning algorithms, but the performance prediction of
centrifugal pumps based on XGBoost is rare. In this study, XGBoost was used to predict the
performance of centrifugal pumps using performance constraints. The specific parameters
for optimizing the XGBoost are listed in Table 4.

Table 4. Performance prediction model of centrifugal pump based on XGBoost.

Name of Parameters Value

PSO

number of particles 100
range of optimization 3~10\0.1~0.8\300~1000

times of iteration 15
learning factor 0.5\0.5
weight factor 0.8

XGBoost

Max depth 10
Learning rate 0.1204

Estimators 720
objective Squared error

jobs −1

Two sets of single-stage single-suction centrifugal pumps with specific speeds of
46.2 and 90.7 were used to verify the applicability of the PSO-XGBoost prediction model
and were compared with the PSO-SVR prediction model. The comparison results are
shown in Figures 9 and 10, respectively.

Figure 9. Comparison of performance prediction models for single-stage single-suction centrifugal
pumps with a specific speed of 46.2. (a–c) are the predictions of head, power and efficiency; (d–f) are
the absolute relative error of head, power and efficiency.
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Figure 10. Comparison of performance prediction models for single-stage single-suction centrifugal
pumps with a specific speed of 90.7. (a–c) are the predictions of head, power and efficiency; (d–f) are
the absolute relative error of head, power and efficiency.

In summary, the prediction accuracy of the XGBoost model is good for the MARE of the
head, and the power and efficiency of the two centrifugal pumps are 2.11%, 2.61%, 4.03%,
2.50%, 4.08%, and 5.95%, respectively. The overall mean absolute error is less than 6%.

Compared with the SVR prediction model, it was found that the performance predicted
by the XGBoost prediction model had a large ARE for individual operating conditions, as
shown in the red boxes in Figure 9a,c and Figure 10a,c. The sudden shift in the prediction
trend is poor, which can cause unknown difficulties in the prediction of centrifugal pump
performance. In addition, the performance curves of XGBoost model prediction are not
smooth compared with the SVR model, mainly attributed to the fact that SVR has better
prediction continuity by finding hyperplanes in high-dimensional space, which is only
affected by a small number of samples. Compared with the ARE of the two centrifugal
pumps, the ARE of the XGBoost model is higher than that of the SVR model, with the
MARE of head, power and efficiency rising by 486%, 467%, 633% and 346%, 168%, and
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417%, respectively. Therefore, it proves that the SVR prediction model is more suitable for
the study of performance curves prediction of centrifugal pumps.

5.4. Comparisons with BP Neural Network

A BP neural network model that does not consider performance constraints is used for
comparison with the PSO-SVR model and the comparison results are shown in Figure 11.
The absolute relative error between the predicted and experimental performance for the
five centrifugal pumps shows that the prediction error of the BP neural network model is
higher than that of the SVR model with performance constraints. Although the MARE of
the head, power and efficiency are 2.24%, 8.53%, and 7.85%, respectively, which are all less
than 9%, the maximum ARE the of three types of performance predicted by the BP neural
network model are all greater than 15%. In contrast, the maximum ARE of the performance
predicted by the constrained SVR model was less than 10%, indicating that the method
of introducing performance constraints can effectively reduce the prediction error. It is
worth mentioning that the ARE of the three performances based on the BP neural network
model oscillate with a certain regularity, mainly because of the inaccurate prediction under
small flow conditions. In other words, a small test value leads to a low denominator of
Equation (14), resulting in a large calculation value. Table 5 presents a comparison of the
SVR, XGBoost, and BP neural networks.

Figure 11. Comparison of BP neural network and SVR performance prediction model. (a–c) are the
are the comparisons of head, power and efficiency.

Table 5. Comparison of PSO-SVR, PSO-XGBoost, and BP neural network models.

BPNN PSO-XGBoost PSO-SVR

MSE 26.225 14.37 0.638
R2 score 0.9914 0.9913 0.9993
MARE 6.21% 3.76% 1.18%



Energies 2022, 15, 3309 16 of 19

6. Conclusions

Based on the geometric parameters of the impeller and volute of centrifugal pumps,
a multi-condition performance prediction model of centrifugal pumps is proposed that
incorporates the performance relationship into the particle swarm optimization algorithm.
The performance (i.e., head, power and efficiency) of the centrifugal pumps can be pre-
dicted simultaneously and satisfied with the performance relationship. The performance
prediction model proposed in this study can be used as a reference for the prediction
method of centrifugal pump performance curves. A total of 428 samples were used to
train the performance prediction model, 107 samples to test the generalization ability of
the model, and 46 samples to verify the prediction effect of the model. The following
conclusions were drawn:

(1) The structure of the energy performance prediction model under multi-condition
operations can be effectively determined based on the particle swarm optimization and
performance relationship. The penalty coefficient C and kernel function coefficient γ of the
regression are 10,000 and 1.48, respectively.

(2) The multi-condition performance is well predicted by considering the performance
constraints, the maximum ARE of the head, power and efficiency of the 46 verification
samples are 5.76%, 6.42%, and 5.02%, respectively, and the MARE are 0.85%, 1.53%, and
1.15%, respectively. The overall MARE is less than 3%.

(3) The MARE of the head, power and efficiency corresponding to the PSO-SVR
model decreased by 58.54%, 65.38%, and 76.05%, respectively, compared with those of the
PSO-XGBoost model, indicating that the SVR model is more suitable than XGBoost for
the performance prediction of centrifugal pumps. When compared with the BP neural
network, the MARE of the head, power, and efficiency corresponding to the SVR prediction
model with performance constraints decreased by 62.21%, 82.06%, and 85.33%, respectively,
indicating that the introduction of performance constraints can effectively improve the
overall prediction accuracy.
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Nomenclature

ARE Absolute relative error
MARE Mean Absolute Relative Error
CFD Computational Fluid Dynamics
SVR Support Vector Regression
PSO Particle Swarm Optimization
XGBoost Extreme Gradient Boosting
BP Back Propagation
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Dj Inlet diameter of impeller
D1 Inlet diameter of blade
dh Hub diameter of impeller
β1 Inlet angle of blade
D2 Outlet diameter of impeller
b2 Outlet width of impeller
β2 Outlet angle of blade
ϕ Wrap angle of blade
z Number of blades
D3 Diameter of base circle
ϕ0 Placement angle of cut tongue
b3 Width of inlet
H Head
H′i Predicted head of the ith sample
P Shaft power
P′i predicted shaft power of the ith sample
Pe Output power
∆P Loss power
η Efficiency
ηi Test efficiency of the ith sample
η′ i Calculation efficiency of the ith sample
Q Flow
Ed Energy per unit weight of fluid at the pump outlet
Es Energy per unit weight of fluid at the pump inlet
ρ Density
g Acceleration of gravity
C Penalty coefficient
ξi Relaxation factor
ξ̂i Relaxation factor
`ε Loss function
αi Lagrange multipliers
α̂i Lagrange multipliers
κ(x, xi) Kernel function
v Speed of particle
x Position of particle
pop Current optimal value
gop Global optimal solution
ω Inertia factor
c1 Particle learning factor
c2 Swarm learning factor
xmax Maximum value of sample
xmin Minimum value of sample
m Number of samples
γ Coefficient of the kernel function
ε Tolerance parameter
ς Constraint error
yi Test experiments of the ith sample
y′i Predicted value of the ith sample
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