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Abstract: This paper details the selection of machine learning models for predicting the effectiveness
of a heat pipe system in a concentric tube exchanger. Heat exchanger experiments with methanol
as the working fluid were conducted. The value of the angle varied from 0◦ to 90◦, values of
temperature varied from 50 ◦C to 70 ◦C, and the flow rate varied from 40 to 120 litres per min.
Multiple experiments were conducted at different combinations of the input parameters and the
effectiveness was measured for each trial. Multiple machine learning algorithms were taken into
consideration for prediction. Experimental data were divided into subsets and the performance of
the machine learning model was analysed for each of the subsets. For the overall analysis, which
included all the three parameters, the random forest algorithm returned the best results with a mean
average error of 1.176 and root-mean-square-error of 1.542.

Keywords: heat pipe; exchanger; machine learning; effectiveness

1. Introduction

Heat pipes are utilized in various products, such as electronics, solar collectors, and
heat exchangers, to remove/transfer heat away from the system. Heat pipe techniques have
been successfully implemented in most industry applications [1,2]. Heat pipe systems have
also been successfully implemented in automobiles for exhaust gas recovery [3]. Usage of
heat pipes with environmentally friendly refrigerants has also been reported [4]. The loop
heat pipe was used for spacecraft applications and heat transmissibility was considerably
increased in this experimentation [5].

Kempers et al. [6] analysed the wicks in the form of mesh in copper heat pipes, and it
was reported that mesh layer increase led to better performance. Lower thermal resistance
using deionised water was reported by [7]. Filling ratio, inclined angles, number of turns
and heat input were tested in various articles, and it was reported that a 50% filling ratio
gives maximum performance [8,9].

The performance of heat pipes in satellite applications was investigated and it was
reported that minimum thermal resistance was observed when ammonia was used [10].
Numerical studies were reported on various models, and they have shown good agreement
with the experimental results [11,12]. Numerical studies using a Navier–Stokes equation
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have also been successfully used for the modelling of heat pipe performance [13]. The
thermal energy storage system was analysed by inserting numerous heat pipes among a
heat-carrying fluid [14].

The gravitational effect of the heat pipe, wick structure and working fluid shows
improvement in results [15–19]. The heat pipes were studied with various angles, wick
constructions and operational fluids [20–23]. In a similar study, the highest heat transfer
coefficient at 60◦ and a 50% fill ratio was reported [24]. In studies involving pulsating
HP with DI water, it was reported that the lowest thermal resistance of 0.077 K/W was
achieved at inclined angles [25].

Traditionally, statistical and heuristic techniques have been used by researchers for
the development of such prediction models. Traditional methods rely on the method of
generating a relational equation, and this model may not fit the entire data points correctly,
leading to non-uniform prediction. Machine learning is the newer technique, which
allows to us to obtain a better representation of the process as it helps to identify tricky
correlations that may exist within the dataset. ML methods develop patterns for prediction
rather than developing a single equation, which further leads to much better flexibility
in prediction. The development of prediction and optimization models is a better way of
understanding any mechanical system as it is used as a reference for future researchers
and industry experts as a means of better understanding the process. Machine learning
(ML) methods and techniques have been reported in various areas of manufacturing in an
attempt to implement Industry 4.0 [26]. ML has also been used as a tool for manufacturing
diagnostics [27] and this is also an advanced data analytics solution [28]. ML application
has also been reported by researchers in many thermal-based applications in predicting
the performance of fins [29] and the air injection effect [30] in heat exchangers. A detailed
review [31] shows how ML methods have been vastly adopted in various heat exchanger
processes for the prediction of different performance indicators.

Based on the literature it was observed that ML modelling for heat pipe exchangers
with methanol as a working fluid is an area which needs attention. Hence, this article
depicts the process for the development of an ML model that can model the effectiveness of
the heat exchanger process. Multiple models are developed, and they are further compared
to select the best among them. The algorithms are implemented through the WEKA
open-source software, which contains the algorithms for various ML methods [32,33].

2. Materials and Methods
2.1. Fabrication

The heat pipe is fabricated and substitutes the concentric tube of the traditional heat
exchanger, as shown in Figure 1. Copper material is employed for the heat pipe, and
iron, which is galvanized, is employed for the shell. The total pipe length is 1000 mm, in
which 700 mm is inserted inside the shell side of the evaporator section and 300 mm at the
condenser section. The diameter of the heat pipe is 19 mm and 17 mm at the outer and
inner edges, respectively. The evaporator and condenser shell have diameters of 50 mm
and 35 mm, respectively. The total length of the evaporator and condenser shell section
is 1000 mm and 300 mm, respectively. Two fluid tanks are fabricated for hot and cold
fluid sections. The hot fluid tank (5 L) has an immersion electric heater with a 2000 W
capacity. Two rotameters with a capacity of 3 LPM are used for measurement and flow
control. The temperatures are measured using thermocouples at all points of the heat pipe
heat exchanger.

2.2. Experimental Procedure

For both investigations, methanol is used. Methanol is charged with fill ratios of
fifty per cent of the evaporator zone volume. Thermophysical properties of the working
fluid are described in Table 1 [28]. The minimum tilt angle is set at 0◦ (horizontal) and the
maximum tilt angle is set at 90◦ (vertical). The angle varied in increments of 10◦. The mass
flow rate is set at a minimum value of 40 L per hour and a maximum of 120 L per hour.
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The intermediate values for mass flow rate that are used in the experiment are 60, 80 and
100 L per hour. Similarly, the maximum value of the set temperature is 70 ◦C and the
minimum value of temperature is 50 ◦C. The intermediate values of temperature at which
the other experiments are conducted are 55 ◦C, 60 ◦C and 65 ◦C. The various parametric
levels chosen for the experiment are described in Table 2. The experiments are carried out
with each combination of the parameter levels, leading to a total of 250 experiments. The
effectiveness of each of the settings is measured and based on this database the ML model
is executed.
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Figure 1. Schema of the concentric tube heat pipe heat exchanger.

Table 1. Thermo-physical properties of working fluid.

Properties Methanol

Boiling point 65 ◦C
Melting point −97.9 ◦C

Latent heat of evaporation (λ) 1055 kJ/kg
Density of liquid (ρl) 792 kg/m3

Density of vapour (ρv) 1.47 kg/m3

Thermal conductivity of liquid (kl) 0.201 W/m ◦C
Vapor pressure (at 293 K) 12.87 kPa

Viscosity of liquid (µl) 0.314 × 10−3 Ns/m2

Surface tension of liquid (σ) 1.85 × 10−2 N/m
Molecular weight (M) 32 g/mol
Specific heat ratio (νv) 1.33

Table 2. Parametric levels used in experiment.

S. No Factors Minimum Maximum Mean Std-Dev

1 Angle (A) 0 90 45 28.78
2 Mass flow rate (MF) 40 120 80 28.341
3 Temperature (T) 50 70 60 7.085
4 Effectiveness (Methanol) 6.84 38.98 20.13 6.177

2.3. Machine Learning Model

The prediction of the effectiveness of the heat pipe system employing methanol is
discussed in this section. Effectiveness relies upon angle, mass flow rate and temperature.
The objective of this analysis is to predict the effectiveness through various ML algorithms
and to identify the best performing algorithm among them. Angle, mass flow rate and
temperature are the inputs that affect the effectiveness of the process. These are the factors
considered in the ML model. ML is the possibility in which a PC program can learn and
conform to new data without human intervention. ML assesses a relationship between
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the factors and the output. ML methods are classified into five classes, namely: functions,
lazy learning algorithms, meta-learning algorithms, rule-based algorithms and tree-based
learning algorithms. The steps involved in the ML process are depicted in Figure 2.
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2.4. Identification and Pre-Processing of the Dataset

Pre-processing is an interaction of cleaning the missing or crude information. The
information is gathered through real-time data and is changed over to a spotless informa-
tional index. These are a portion of the fundamental pre-processing procedures that can be
utilized to change over crude information. Pre-processing is used to normalize the data as
the various data fall in different data categories and there is a need to create uniformity
among the data for better interpretation by the machine learning algorithms.

2.5. Separation, Training and Testing

Separation of datasets is performed to decide the best subset. The best subset is
a list of capabilities, which demonstrates the best exhibition in expectation exactness.
Hypothetically, the best subset can be found by assessing every one of the potential subsets.
Training is carried out by analysing every subset under 30 algorithms. Each algorithm is
applied to each subset. After training each subset in each algorithm, the output predictions
are tested and noted. Then, mean absolute errors and root-mean-square errors of all subsets
are also tested and noted.

2.6. Evaluation of Our Model

The MAE (mean average error) and RMSE (root-mean-square error) of a subset that
has fewer errors is taken as the best regression method and best subset, and their output
predictions are the best predictions of the dataset.

2.7. Dataset Description

The set or the assortment of information obtained through experimentation is known
as a dataset. The dataset’s information is arranged such that there are a set of values
which represent the input and output factors. The dataset utilized in this examination,
which comprises instances, attributes, info factors and an objective variable, was gathered
over a multi-month time. Figure 3 shows the scatter plot of the various factors against
the effectiveness.

2.8. Dataset Separation

Here, the dataset is divided into several subsets. The separate datasets are then saved
in CSV format. After separation, the loading of each subset is completed. After loading,
basic statistics such as minimum values, maximum values, mean and standard deviation are
calculated. The various subsets that can be generated in this experiment are listed in Table 3.
For each of the subsets, the prediction model is trained and tested on all possible regression
algorithms available. In similar ways, all the subsets are tested on all regression methods.
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Table 3. Determination of the subsets.

S. No. Subsets A MF T

1 A 1 0 0
2 MF 0 1 0
3 T 0 0 1
4 A-MF 1 1 0
5 A-T 1 0 1
6 MF-T 0 1 1
7 A-MF-T 1 1 1

In artificial intelligence-based regression examination, a significant strategy is to show
the interrelation between target and factors. Regression examination makes us perceive
how the change in independent variables affects the dependent variables in any process.
Regression algorithms are classified into functions, lazy learning algorithms, meta-learning
algorithms, rule-based algorithms and tree-based algorithms. Full forms of all algorithms
are shown in Table 4.

2.9. Precision of Prediction

The prediction precision of every machine learning regression strategy is utilized to
assess the difference between the real and anticipated qualities. The prediction precision is
assessed through indices such as mean absolute error (MAE) and root-mean-square error
(RMSE). An error can be defined as the difference between the experimental and predicted
value. Mean absolute error (MAE) is calculated by taking the average of the absolute error
and is shown in Equation (1).

MAE = |a1 - c1| + |a2 - c2| + . . . + |an - cn| / n (1)
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Root-mean-square Error (RMSE) is also often utilised for determining the closeness of
the predicted value with the actual value, and the formula used is shown in Equation (2).

RMSE =

√
∑n

i=1(an − cn)
2

n
(2)

Table 4. Full forms of all algorithms.

Categories Algorithms Full-Form

Functions

SLR Simple Linear Regression
LMs Least Median Square
GP Gaussian Processes

MLP Multilayer Perceptron
RBFN Radial basis Function Network
RBFR Radial basis Function Regressor

SMOREG Support vector machine Optimizer Regression

Lazy
IBK Instance Based Learner K

K star K Star
LWL Locally Weighted Learning

Meta

AR Additive Regression
BREP Bagging Reduced Error Pruning

MS Multi Scheme
RC Random Committee

RFC Random Filtered Classifier
RSS Random Subspace
RBD Random By Discretization

STACKING Stacking
VOTE Vote
WIHW Weighted Instances Handled Wrapper

Rules
DT Decision Table

M5R M5R
ZEROR ZERO R

Trees

DS Decision Stump
M5P M5P
RF Random Forest
RT Random Tree

REP TREE Reduced Error Pruning
Misc. IMC Instance Mapped Classifier

3. Results and Discussion

The best subset is selected by analysing the mean values of all tested algorithms. The
best algorithm is found by analysing all of the mean absolute errors and root-mean square
errors. Table 5 shows the result of the machine learning model when only one parameter
is taken into consideration. The three parameters are run separately and the results are
tabulated. It can be observed that angle has the least error observed at an MAE of 3.671
and RMSE of 4.417. These lowest errors are obtained through the random forest algorithm.
The next model is executed with two-parameter subsets. The three different combinations
of the input parameters were run separately and the results are reported in Table 6. It can
be observed that the angle–temperature combination has the least error as the MAE value
is 2.373 and the RMSE value is 2.921. The lowest errors are obtained through the additive
regression method.

A box plot for the RMSE is also developed to better understand the variation in the
data. Figure 4 shows the box plot of single-parameter subset performance. Angle displayed
the least RMSE with a value of 4.415; hence, it was selected as the best performing subset.
Similarly, Figure 5 shows the box plot of two-parameter subset performance. The minimum
RMSE value of 2.921 was obtained for the angle–temperature subset and thus was selected
as the best-modelled subset for two parameters.
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Table 5. Subsets with one parameter—Performance.

SUBSETS A MF T

Categories ALGORITHMS MAE RMSE MAE RMSE MAE RMSE

Functions

SLR 4.972 6.139 5.075 6.212 4.456 5.660
LR 4.972 6.139 5.053 6.199 4.456 5.660

LMs 4.974 6.421 5.080 6.229 4.432 5.686
MLP 4.986 6.126 5.179 6.280 4.372 5.654
GP 5.063 6.180 5.068 6.203 4.776 6.023

RBFN 4.914 6.061 5.058 6.195 4.462 5.601
RBFR 4.100 4.951 4.761 5.847 4.135 5.271

SMOREG 4.983 6.248 5.093 6.263 4.405 5.704
IBK 3.673 4.415 4.761 5.847 4.135 5.271

Kstar 4.208 5.166 4.790 5.882 4.208 5.304
LWL 3.900 4.691 4.815 5.903 4.136 5.274

Meta

AR 3.728 4.475 4.764 5.851 4.131 5.268
BREP 3.701 4.458 4.793 5.878 4.125 5.284

MS 5.053 6.199 5.053 6.199 5.053 6.199
RC 3.673 4.415 4.761 5.847 4.135 5.271

RFC 3.673 4.415 4.739 5.847 4.135 5.271
RSS 3.707 4.446 4.783 5.871 4.131 5.274
RBD 3.702 4.410 4.864 5.944 4.151 5.228

STACKING 5.053 6.199 5.053 6.199 5.053 6.199
VOTE 5.053 6.199 5.053 6.199 5.053 6.199
WIHW 5.053 6.199 5.053 6.199 5.053 6.199

Rules
DT 3.673 4.415 4.761 5.847 4.135 5.271

M5R 3.721 4.485 4.851 6.000 4.102 5.229
ZEROR 5.053 6.199 5.053 6.199 5.053 6.199

Trees

DS 4.567 5.613 4.979 6.065 4.152 5.317
M5P 3.843 4.632 4.873 5.997 4.115 5.229
RF 3.671 4.417 4.770 5.859 4.136 5.271
RT 3.673 4.415 4.761 5.847 4.135 5.271

REP TREE 3.683 4.427 4.818 5.876 4.195 5.333
IMC 5.053 6.199 5.053 6.199 5.053 6.199
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Table 6. Subsets with two parameters—Performance.

SUBSETS A-MF A-T MF-T

Categories ALGORITHMS MAE RMSE MAE RMSE MAE RMSE

Functions

SLR 4.972 6.139 4.456 5.660 4.456 5.660
LR 4.972 6.139 4.338 5.589 4.456 5.660

LMs 4.998 6.460 4.301 6.044 4.442 5.698
MLP 5.003 6.141 4.281 5.597 4.471 5.729
GP 5.061 6.187 4.315 5.606 4.571 5.827

RBFN 5.101 6.216 4.488 5.636 4.787 5.871
RBFR 4.557 5.608 3.676 4.791 3.883 4.971

SMOREG 5.020 6.297 4.240 5.789 4.434 5.739
IBK 3.971 4.451 2.631 3.062 3.877 5.081

Kstar 4.125 4.917 3.236 4.116 3.963 5.024
LWL 4.016 4.814 3.336 4.259 4.086 5.233

Meta

AR 3.463 3.961 2.373 2.921 3.693 4.842
BREP 3.783 4.225 2.498 2.935 3.911 5.100

MS 5.053 6.199 5.053 6.199 5.053 6.199
RC 3.971 4.451 2.631 3.062 3.877 5.081

RFC 3.971 4.451 2.655 3.152 3.877 5.081
RSS 3.986 4.786 3.331 4.175 4.287 5.319
RBD 3.766 4.306 2.578 3.075 3.761 4.951

STACKING 5.053 6.199 5.053 6.199 5.053 6.199
VOTE 5.053 6.199 5.053 6.199 5.053 6.199
WIHW 5.053 6.199 5.053 6.199 5.053 6.199

Rules
DT 3.798 4.508 2.631 3.062 3.877 5.081

M5R 3.732 4.409 2.606 3.178 4.064 5.195
ZEROR 5.053 6.199 5.053 6.199 5.053 6.199

Trees

DS 4.567 5.613 4.152 5.317 4.152 5.317
M5P 3.840 4.559 2.927 3.666 4.056 5.168
RF 3.956 4.419 2.627 3.052 3.877 5.075
RT 3.971 4.451 2.631 3.062 3.877 5.081

REP TREE 3.689 4.286 2.600 3.120 4.073 5.221
IMC 5.053 6.199 5.053 6.199 5.053 6.199

Finally, the model is run with three-parameter subsets and the entire combination
of factors is taken into consideration. Here, there is only a single combination of all the
parameters. The results from the various machine learning algorithms are listed below in
Table 7. The random forest algorithm provided the least errors as the values reported for
MAE and RMSE were 1.1755 and 1.5422, respectively.

From the subset analysis, further classification is carried out by extracting the best
models from each subset. The subsets with the least errors are listed below in Table 8.
Hence, the table represents the best models in each of the subset categories. The mean of
the MAE and the RMSE errors for each of the categories is taken and it is observed that the
lowest errors are obtained through the random forest algorithm. The MAE and the RMSE
values obtained are 2.491 and 3.004, respectively.

Figure 6 shows the interface of the Weka software, and it denotes the various statistics
such as time taken to build the model, the number of iterations, correlation coefficient,
mean absolute error and the root-mean-square error.
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Table 7. Subsets with one parameter—Performance.

S. No.
SUBSETS A-MF-T

ALGORITHMS MAE RMSE

1 SLR 4.4564 5.6602
2 LR 4.3383 5.5886
3 LMs 4.2658 5.9911
4 MLP 4.2088 5.691
5 GP 4.3014 5.5754
6 RBFN 4.8086 5.8918
7 RBFR 3.7402 4.8737
8 SMOREG 4.2041 5.7579
9 IBK 4.3151 6.6209
10 Kstar 3.2171 4.2561
11 LWL 3.5059 4.4872
12 AR 1.6308 2.0891
13 BREP 1.5975 2.0988
14 MS 5.053 6.1989
15 RC 1.3252 1.7054
16 RFC 4.6006 6.9647
17 RSS 2.5109 3.1017
18 RBD 1.9612 2.4249
19 STACKING 5.0530 6.1989
20 VOTE 5.0530 6.1989
21 WIHW 5.0530 6.1989
22 DT 2.6309 3.0623
23 M5R 2.7984 3.6392
24 ZEROR 5.0530 6.1989
25 DS 4.1520 5.3165
26 M5P 2.9438 3.7524
27 RF 1.1755 1.5422
28 RT 1.8456 2.4296
29 REP TREE 1.9963 2.5834
30 IMC 5.0530 6.1989
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Table 8. Selection of the best performances from the different subsets.

Categories
SUBSETS A A-T A-MF-T Mean

ALGORITHMS MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Functions

SLR 4.972 6.139 4.456 5.660 4.456 5.660 4.628 5.820
LR 4.972 6.139 4.338 5.589 4.338 5.589 4.549 5.772

LMs 4.974 6.421 4.301 6.044 4.266 5.991 4.514 6.152
MLP 4.986 6.126 4.281 5.597 4.209 5.691 4.492 5.805
GP 5.063 6.180 4.315 5.606 4.301 5.575 4.560 5.787

RBFN 4.914 6.061 4.488 5.636 4.809 5.892 4.737 5.863
RBFR 4.100 4.951 3.676 4.791 3.740 4.874 3.839 4.872

SMOREG 4.983 6.248 4.240 5.789 4.204 5.758 4.476 5.931
IBK 3.673 4.415 2.631 3.062 4.315 6.621 3.540 4.699

Kstar 4.208 5.166 3.236 4.116 3.217 4.256 3.554 4.513
LWL 3.900 4.691 3.336 4.259 3.506 4.487 3.581 4.479

Meta

AR 3.728 4.475 2.373 2.921 1.631 2.089 2.577 3.161
BREP 3.701 4.458 2.498 2.935 1.598 2.099 2.599 3.164

MS 5.053 6.199 5.053 6.199 5.053 6.199 5.053 6.199
RC 3.673 4.415 2.631 3.062 1.325 1.705 2.543 3.061

RFC 3.673 4.415 2.655 3.152 4.601 6.965 3.643 4.844
RSS 3.707 4.446 3.331 4.175 2.511 3.102 3.183 3.908
RBD 3.702 4.410 2.578 3.075 1.961 2.425 2.747 3.303

STACKING 5.053 6.199 5.053 6.199 5.053 6.199 5.053 6.199
VOTE 5.053 6.199 5.053 6.199 5.053 6.199 5.053 6.199
WIHW 5.053 6.199 5.053 6.199 5.053 6.199 5.053 6.199

Rules
DT 3.673 4.415 2.631 3.062 2.631 3.062 2.978 3.513

M5R 3.721 4.485 2.606 3.178 2.798 3.639 3.042 3.768
ZEROR 5.053 6.199 5.053 6.199 5.053 6.199 5.053 6.199

Trees

DS 4.567 5.613 4.152 5.317 4.152 5.317 4.290 5.415
M5P 3.843 4.632 2.927 3.666 2.944 3.752 3.238 4.017
RF 3.671 4.417 2.627 3.052 1.176 1.542 2.491 3.004
RT 3.673 4.415 2.631 3.062 1.846 2.430 2.717 3.302

REP TREE 3.683 4.427 2.600 3.120 1.996 2.583 2.760 3.377
IMC 5.053 6.199 5.053 6.199 5.053 6.199 5.053 6.199

The scatter plots of the predicted versus the experimental values for the various
analyses are shown in Figures 7–9. Figure 7 represents the scatter plot for predicted versus
actual values for one-parameter subset. Since only one subset is considered, it can be
observed that there is a larger amount of scatter. It is observed that when two-parameter
subsets are considered, the scatter plot is more even with less deviation overall as depicted
in Figure 8. In Figure 9, all the parameters are considered, and the scatter plot shows a more
even plot. It can be concluded that when all the factors are considered, the machine learning
model provides a much better model. Hence, it can be confirmed that the machine learning
model provides the best solution when all the factors are considered for the analysis. This
also indicates that all the factors have a significant effect on the output.

The performances of the different algorithms that have been described in this study
are best illustrated in Figure 10. The figure shows that the random forest algorithm has
the best performance when the system comprising all the three factors is considered as
a whole.

From the above analysis, we can understand that random forest is the best regression
strategy (best algorithm) for predicting the effectiveness of a heat pipe system when
methanol is used as the working fluid. Random forest builds multiple decision trees and
merges them to create a more accurate and stable prediction. Predicted vs. actual values
are compared by taking 15 to 20 random values from the respective outputs of their best
regression methods. Figure 11 plots the predicted vs. the experimental values and the
marked green area indicates that the deviation is acceptable. Here, the best regression
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method for effectiveness is random forest. A correlation coefficient of 0.9729, MAE of
1.1755, and RMSE of 1.5422 was obtained as the result of the analysis.
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4. Conclusions

The identification of the best machine learning model for a heat exchanger process
is discussed in this article. Heat exchanger experiments with methanol as the working
fluid are conducted with consideration of various factors such as angle, temperature and
mass flow rate and the effectiveness of each of the experiments is measured. The value
of the angle is varied from 0 to 90 in increments of 10. Values of temperature are varied
in increments of 5, starting from 50 to 70. Mass flow rate is varied from 40 to 120 in
increments of 20. The experiments are conducted for each of the combinations of the
input parameters and the effectiveness is measured for each trial. From the experiment
data, a machine learning model is developed to identify the algorithm which best fits
the experiment. Thirty algorithms were taken into consideration and the experimental
values were analysed for each of the algorithms. The experimental data were divided into
subsets and the performance of the machine learning model was analysed for each of the
subsets. Single-parameter subset analysis revealed that angle had the most correlation
with effectiveness as the MAE (3.671) and RMSE (4.417) were minimum. For the single-
parameter analysis, the random forest algorithm was found as the best fit. Similarly, for
the two-parameter subset, it was inferred that the angle–temperature combination had
the most correlation with effectiveness and the MAE and RMSE were 2.373 and 2.921,
respectively. For this, the additive regression method was identified as the best machine
learning model. For the overall analysis that included the all three parameters, the random
forest algorithm returned the best results with an MAE of 1.176 and RMSE of 1.542. The
results show that machine learning models can be successfully used for representing the
physical experiments in a numerical model. With the presence of increasing databases,
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more such studies can be conducted in the future to create robust databases that best depict
the process.
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