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Abstract: Background: The purpose of the paper is to propose different arrangements of neural net-
works for short-time 24-h load forecasting in Power Systems. Methods: The study discusses and 
compares different techniques of data processing, applying the feedforward and recurrent neural 
structures. They include such networks as multilayer perceptron, radial basis function, support vec-
tor machine, self-organizing Kohonen networks, deep autoencoder, and recurrent deep LSTM struc-
tures. The important point in getting high-quality results is the composition of many solutions in 
the common ensemble and their fusion to create the final forecast of time series. The paper considers 
and compares different methods of fusing the individual results into the final forecast, including 
the averaging, application of independent component analysis, dynamic integration, and wavelet 
transformation. Results: The numerical experiments have shown a high advantage of using many 
individual predictors integrated into the ensemble which are responsible for the final forecast. Es-
pecially efficient is the application of non-standard wavelet application in the formation of an en-
semble, as well as the use of LSTM as the basic prediction unit. The novelty of the paper is the critical 
comparative analysis of the time series prediction methods applied for load forecasting in the power 
system. The presented approach may be useful for the users involved in power system operation 
management. 
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1. Introduction 
The economics of the power system operation is one of the most important issues in 

the power industry. Electricity demand forecasting is a central and integral process for 
planning periodical operations of the system. The accurate hourly electric load forecasting 
allows the power operators to adjust the electric supply according to the real-time fore-
casted load and in this way provides the normal operation of electric power systems [1]. 
In this context, the accurate forecast of the 24-h load profile for the next day is very im-
portant, as this knowledge enables the network operator to include or exclude the active 
operation of some units in the power plants. Thanks to this the reliability of the power 
supply and delivery system has increased. 

Demand response programs in multi-energy systems including heat and gas are also 
of great interest nowadays [2,3]. These programs allow counteracting the limited capacity 
of the power system by integrating more demand-side resources. Hourly forecasting of 
consumers’ electricity demand enables the planning of appropriate management actions 
under the demand response program. In this way, the hourly power forecasting task can 
be considered an introductory step in this program. 
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The electricity load pattern is principally a time series. Therefore, the methods of time 
series analysis and prediction are usually applied. As with any time series, the load pat-
tern can be represented by a linear or nonlinear model supplied by the carefully selected 
input attributes. 

Nowadays, the most successful in this field are the approaches based on artificial 
intelligence, especially neural networks. Artificial intelligence and machine learning 
methods applied to the nonlinear types of neural structures have accelerated the progress 
in designing the prognosis systems, which better reflect the nonlinear character of the 
electric load patterns. Many different solutions are based on either feedforward networks, 
like multilayer perceptrons (MLP), radial basis function (RBF), support vector machine 
for regression (SVR), or on recurrent structures like Elman or long short-term memory 
(LSTM). Although many different approaches have been proposed in the past, there still 
exists the need to improve the accuracy of prediction as much as possible. 

In paper [4], the use of support vector regression was proposed, which achieved a 
mean absolute percentage error (MAPE) of about 2% for the dataset of the North Ameri-
can utility. In paper [5], a hybrid form of predicting electricity demand for 3 building clus-
ters was developed. This used a multi-layer perceptron and a random forest and achieved 
a MAPE value ranging from 2.56% to 8.10% depending on the cluster. In paper [6], a com-
bined forecasting method based on a backpropagation neural network, an adaptive fuzzy 
inference network, and a difference seasonal autoregressive integrated moving average 
system was presented, showing its advantages over the three individual methods work-
ing separately. In papers [7,8], the autoencoder was used for short-term electric load fore-
casting and its advantages in the forecasting tasks were demonstrated. 

In recent years, deep learning methods have attracted much attention in predicting 
short time series [9–14]. The main advantage of deep learning is that the deep structure 
automatically combines the generation of the diagnostic features and their further pro-
cessing in regression mode to generate the predicted time series. The examples of such an 
approach are based either on convolutional neural networks [9–11] or recurrent LSTM 
networks [12–14]. In papers [9–11], a combination of a convolutional neural network and 
a recurrent LSTM for load forecasting was presented, which achieved a MAPE of 1.40% 
for the dataset of a city in northern China [9] and a MAPE of 3.96% for the dataset in the 
Italy-North region [10]. In [12], an LSTM model was presented using the concept of active 
learning with moving windows to improve the prediction. In [13], the LSTM-based neural 
network was used in different configurations in combination with a genetic algorithm to 
build forecast models for short- to medium-term aggregated load forecasts. In [14], the 
application of LSTM was demonstrated for 24-h and 1-h forecasting of electricity demand 
in a large power system and a small power region. 

To increase the prediction accuracy, many individual solutions are combined into a 
final prediction (so-called ensemble of predictors). In [15], some methods of data fusion 
were analyzed, including averaging, principal component analysis, and blind source sep-
aration, showing the advantages of the latter method. Another approach based on dy-
namic local ensemble integration was proposed in [16] for pollution prediction. The dis-
cussed methods are mainly based on the application of different types of neural networks 
and their combination in an ensemble responsible for the final decision. 

This paper presents an overview of pragmatic methods developed by the authors 
over many years that can be used to build power system load prediction models. The first 
solutions started from single applications of neural networks. Great attention was paid to 
the development of a suitable structure of the applied network and the definition of the 
efficient input attributes. The next steps were aimed at assembling some individual solu-
tions into an ensemble responsible for the final prediction. Such a task requires solving 
the problems of selecting appropriate members of the ensemble and the way of merging 
the results predicted by each member. The first approaches in this area relied on the ap-
plication of neural feedforward predictors based on MLP, RBF, and SVR [15]. The next 
solutions were based on recently defined recurrent LSTM networks, which are well suited 
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to the task of time series prediction. To achieve good ensemble performance, special inte-
gration techniques were developed. They started with simple weighted averaging of in-
dividual results and evolved to more complex strategies based on the use of principal 
component analysis, independent component analysis, or local dynamic approach [15,16]. 
In this work, we also propose another philosophy to create the ensemble based on the 
wavelet transform, which has proven to be very efficient. 

The forecasting methods proposed in the paper allow for an increase in the accuracy 
of time series prediction. The results of numerical experiments performed on the real task 
in the Polish Power System have shown the possibility of reducing the values of MAPE in 
a significant way in comparison to the results presented in the papers [1–7]. 

Any predicting task involves two basic steps: definition of a proper set of diagnostic 
features of the modeled process and application of them as the input attributes to the re-
gression units. In the classical neural network approach, both steps are separated. The 
user is responsible for defining the features, which are then delivered to the input of the 
final regression units, formed usually by neural structures, like MLP, RBF, SVR, Kohonen 
network, or Elman. The diagnostic features may be selected directly from the measured 
data or generated algorithmically using, for example, deep structures like autoencoder or 
CNN. Very interesting is the application of deep LSTM networks, which combine in their 
structure both tasks inseparably. 

Irrespective of the type of the individual predictors they may be combined into an 
ensemble. The predicted results of the individual ensemble members are fused in the final 
verdict, which is of better quality (usually better than the best individual result). The main 
problem is to develop an efficient method of integrating the individual results into the 
final forecast of the ensemble. The existing approaches, based mainly on averaging, are 
not very efficient and need some additional study. Therefore, different forms of integra-
tion will be presented and compared in this paper. They include weighted averaging of 
the individual results, application of independent component analysis, wavelet decompo-
sition, as well as the dynamic approach to the integration. 

The results of numerical experiments performed on the data of the Polish Power Sys-
tem (PPS) will illustrate these approaches. The real contribution of the paper is to show 
and analyze the efficiency of different methods of creating the ensemble of predictors 
composed of different units. The results of experiments have shown a high advantage of 
using many individual predictors integrated into the ensemble. Different ways of fusing 
individual predictions have been analyzed and compared. Especially efficient is the ap-
plication of non-standard wavelet application in ensemble creation as well as the applica-
tion of the LSTM as the basic predicting unit. The novelty of the work is the critical com-
parative analysis of the time series forecasting methods used in power system load fore-
casting. The presented forecasting systems can be useful for users involved in the man-
agement of power system operations. 

The rest of the paper is structured as follows: Section 2 presents the numerical data-
base of the Polish Power System used in experiments. Section 3 is devoted to the applied 
methods of forecasting based on the application of artificial neural networks, belonging 
to feedforward structure, recurrent LSTM, and the self-organizing Kohonen principle. The 
problems associated with the creation of an ensemble of predictors are considered in Sec-
tion 4. Section 5 presents and discusses the results of numerical experiments, comparing 
the accuracy of different approaches to forecasting the 24-h pattern of load demand. The 
last is the concluding section, which summarizes and discusses the main results of the 
paper. 

2. Materials 
The database of the Polish Power System of the last few years [17] will be used in all 

numerical experiments (The database of the Polish Power System within different years 
is available from https://www.pse.pl/obszary-dzialalnosci/krajowy-system-elektroener-
getyczny/zapotrzebowanie-kse, (accessed on 1 January 2022)). The total demand for 
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power in the system has changed over the years. The yearly average and maximum values 
in the form of mean and maximal power demand are presented in Figure 1 for the period 
1989–2021. Large differences between these two load patterns are visible. For example, in 
the year 1992, the mean was 17,730 MW with a maximum of 21,508 MW, while in 2013 the 
mean was 22,150 MW and the maximal demand 24,848 MW. 

 
Figure 1. Mean and maximal power demands in MW, for every year between 1989 and 2021 in 
Polish Power System [17]. 

Predicting the next hour’s load demand, we should consider its value from the pre-
vious hours. Therefore, the hourly load pattern changes are of great importance. This is 
illustrated in Figure 2 for the years 2018 and 2021. Irrespective of similar shapes for both 
years we can observe also great local differences. First of all, the maximum values of 
power differ a lot. To deal with this the normalization of data for each year is needed. It 
was done by dividing the real values by their yearly mean. Detailed analysis of the 
changes in power demand from hour to hour for both years also reveals large differences 
and no repeatability. The developed model should be resistive to such structural changes. 
It means that learning data should contain the patterns corresponding to many years (a 
large learning set). 

Moreover, irrespective of the year we can observe some seasonal changes. The high-
est demand corresponds to the winter season (the first and the last segments of the pat-
tern). The smallest demand for power is observed in the summer months. This observa-
tion suggests including this information as additional input to the model. Two bits repre-
senting the season, coded in a binary way: winter (11), spring (01), summer (00), and au-
tumn (10), may be added to each partition. The analysis of weekly patterns also reveals 
significant differences in demand for weekends and the rest of the 5 days of the week. 
Therefore, the binary code of the working and not working days of the week delivered as 
additional information to the model, may be of help. 

The additional problems in obtaining accurate results of forecasting occur for not 
typical periods of the year. An example is Christmas and New Year’s Eve, in which the 
load patterns on working and non-working days are different from the typical. The reason 
is that most institutions and factories have long holidays or work at half-scale. The remedy 
is to prepare additional network structures trained on the data declared only for this pe-
riod. 
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Figure 2. The hourly patterns of power demand in the Polish Power System for 2 years: 2018 and 
2021. 

3. Neural Network Structures for Prediction 
Many neural network predictors have been developed in the past. The most popular 

and often used are feedforward structures (MLP, RBF, SVR, Kohonen) and recurrent net-
works (LSTM). Each may perform the same task and their results might be treated as a 
final forecast or combined in the ensemble. The important advantage of neural networks 
is their generalization ability. The structure trained on learning data, after freezing its pa-
rameters, performs the role of reproducing the input data to the output signals and such 
a process is very fast. However, due to the changing trend of power demands within the 
succeeding years, the system needs additional retraining on the available new data set. 
According to our experience, it is enough to undertake such retraining every year. The 
retraining process of the network starts with the current values of its parameters and uses 
only the newly obtained data samples. 

3.1. Feedforward Neural Predictors 
MLP and RBF neural networks are the universal feedforward approximators. They 

differ by the applied activation function. MLP belongs to the global approximators since 
it uses the sigmoidal function for which the neurons participate in the whole range of 
values of input attributes in generating output predictions. RBF network is the local ap-
proximator and operates with Gaussian function representing the local approximation 
ability. The learning algorithms of both networks are different in a significant way. This 
is the reason why their output signals in response to the same excitation may also differ 
and their performance is statistically independent.  

Support Vector Regression (SVR) is the support vector machine structure for regres-
sion, which can apply any form of a nonlinear kernel satisfying Mercer conditions, alt-
hough the most universal is the Gaussian kernel [18]. It works in a regression mode, trans-
forming the regression task into classification by defining some tolerance region of the 
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width ε around the destination. The most important feature of learning tasks is transform-
ing them into a quadratic optimization problem, relatively easy and robust in computer 
implementation. The learning procedure also uses a few hyperparameters: the regulari-
zation constant C, the width parameter σ of the Gaussian kernel, and the tolerance ε. They 
should be defined in advance by the user. In practice, their values are adjusted by repeat-
ing the learning experiments for the limited set of their predefined values and accepting 
this one, which results in the minimum error on the validation data set.  

All of these networks can share the same set of input attributes, formed from the 
information related to the past hourly power demands of the system. The analysis of reg-
istered load patterns in many years has revealed that hourly changes of load consumption 
in succeeding hours have a significant dependence on their past values, type of the day 
(workday or weekends and holidays), and four seasons of the year [15].  

Figure 3 depicts a graphical form of the statistical distribution of the power demand 
depending on the type of the day in the form of a so-called Kohonen map of 49 prototype 
vectors representing the averaged day load patterns on the weekdays. The 24-h power 
demand vectors have been grouped in clusters of similar load patterns. The 24-h load pat-
terns corresponding to Saturdays and Sundays create clusters on the right side of the im-
age. The other (working) days from Monday to Friday are grouped on the left and are not 
interlaced with the weekend days. 

 
Figure 3. The graphical presentation of 24-h load pattern distribution in the form of a Kohonen map 
corresponds to two types of days: working days (from Monday to Friday) and weekends (Saturdays 
and Sundays). Both groups of days are well separated. 

So, the membership of the day type is the important factor that should be considered 
in building the mathematical model of the process. As a result, the typical mathematical 
model of prediction considers the input data in the form of the 24-h load pattern of the 
previous day, code of the day type (working versus weekend days), and 2-bit code of the 
seasons of the year (winter, spring, summer, and autumn). Therefore, the input vector to 
these three neural predictors (MLP, RBF, SVR) responsible for forecasting the 24-h load 
pattern for (d + 1) day is in the form containing 27 elements, 

x = [p(d,1), …, p(d,24), season _code, day_code] (1) 

in which p(d,i) represents a normalized load of dth day and ith hour, the season_code con-
tains 2 bits (11-winter, 10-spring, 00-summer, 01-autumn) and the day_code represents 
day type (1—working day, 0—non-working day). The destination vector represents the 
24-h power pattern for the next (d + 1) day 

d = [p(d + 1,1), …, p(d + 1,24)] (2) 
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In the case of SVR, only one-hour load demand can be predicted. Therefore, 24 SVR 
networks responsible for the prediction of the power needed for the succeeding 24 h are 
needed. Each network is supplied by the same input vector of the form (1). 

The other way of creating the input attributes to these predictors is an application of 
an autoencoder [19]. Autoencoder is a deep neural solution that uses a few hidden layers. 
The role of succeeding layers is to reduce the dimensions of the input data, step by step. 
In the learning process, the input data x is coded to the vector h = f(x) of reduced dimen-
sion. The parameters of the network are adapted in a way to minimize the difference be-
tween the actual input vector and its representation reconstructed from the coded one 
(auto-association mode). To increase the generalization ability, the additional terms rep-
resenting the regularization are also applied. They consider minimization of weights, the 
sensitivity of hidden neurons to minor changes in input signal values, as well as speciali-
zation of neurons in particular areas of input data [19]. The learning procedure is repeated 
individually for the succeeding hidden layers. After then the reconstructing parts are 
eliminated from the structure. The signals of the reduced dimensionality from the last 
hidden layer are treated as diagnostic features and applied as the input attributes to neural 
predictors. 

Input data to the autoencoder applied in this paper is created from the hourly data 
of the whole previous week, including the 2-element code of the season, so it is composed 
of a 170-element vector representing the data of the previous week. The diagnostic fea-
tures of the reduced dimension are generated from this 170-element vector by an autoen-
coder as the signals of the last hidden layer. Based on these features delivered to the input 
of the neural predictor the power forecast for the next week is created by the network. So, 
this kind of solution can forecast a 24-h load pattern for all days of the next week. 

Note, that in contrast to the previous approach, where the form of input data is de-
fined directly by the user, the data characterization formed by an autoencoder is generated 
by an automatic self-organizing process without human intervention. The different num-
ber of hidden layers and neurons should be tried in experiments to get the best perfor-
mance of the predicting system. The best generalization ability of the system was achieved 
in the experiments by using two hidden layers. The number of neurons in these layers 
was selected also in an experimental way. 

3.2. Recurrent LSTM Approach to Load Prediction 
The most efficient approach to time series forecasting is the application of the long 

short-term memory recurrent neural network [20,21]. This is due to the fact that the hourly 
needs of power demand are closely related to the previous values, and this is naturally 
embedded by the nature of the recurrent structure of LSTM [20]. The network structure is 
composed of an input signal layer, one hidden layer of mutual feedback between neurons 
represented by so-called LSTM cells, and an output layer, which is fed by the cell signals 
of the hidden layer. The network is composed of many parallel LSTM cells. The important 
role of signal processing in the cells performs the so-called multiplication gates, responsi-
ble for transmitting the previous information to the next instant of the time. The neuron 
hidden states pass through time; therefore, the recurrent network can take a learning in-
put sequence of any length up to t→T and then can generate an output sequence also of 
any length. The user decides what is the length of the learning input sequence and what 
is the length of the predicted output time series values. 

The parameters of the LSTM units are adapted in a supervised mode using the set of 
training sequences and applying a gradient descent algorithm, for example, stochastic 
gradient descent (SGD) or its modification in the form of adaptive moment estimation 
(ADAM). The input signals are delivered to the network, pass through the hidden layer 
and an output signal is calculated. The error between the actual output and the destination 
signals is backpropagated through the network allowing for the calculation of the gradi-
ent, in the gradient descent minimization procedure. 
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After the training the parameters of the network are frozen and the network responds 
to the delivered excitation [xt1, xt2,..., xT] and delivers the forecasted next k time point sam-
ples representing the future.  

3.3. Competitive Self-Organization for Load Prediction 
Self-organization of data is another approach to time series prediction. The 24-h load 

patterns are represented by the vectors. These vectors are grouped into a set of clusters 
according to their similarity measures. The clusters are represented by their centers. To 
obtain the proper representation of data belonging to the same-day type of previous years 
trend elimination is needed. In such a case, the 24-h real power consumption vector Pj 

corresponding to jth day should be normalized to the so-called profile vector pj, [15] 

( )j m
j

j

j
σ
−

=
P P

p  (3) 

where Pm(j) represents the mean value vector of real power consumption in jth day and 
jσ  its standard deviation. Both parameters are estimated based on data corresponding to 

the previous years existing in the database. The self-organization procedure using the Ko-
honen algorithm applied to the set of normalized learning data (profile vectors) leads to 
the creation of cluster centers representing the set of patterns of 24-h daily load. Figure 4 
presents some exemplary distribution maps of 49 center vectors created in the learning 
process of the Kohonen network. The curve inside of the box depicts the shape of the 24-
h load pattern of this particular center. 

 
Figure 4. The exemplary patterns of the load profiles in the power system generated by the Kohonen 
network at the application of 49 neurons. Each neuron is represented by the 24 weights correspond-
ing to the center vector of the cluster. 

The load demand for any day of the year (for example Tuesdays of July) can be re-
constructed as the weighted sum of the learned center vectors wi of the Kohonen map, to 
which the 24-h load demand of the mentioned day belonged in the past. The weight value 
depends on the number of times this day belonged in the past years. The forecasted profile 
vector pj for jth day (for example Tuesdays of July) can be now defined in the form  

1

1

n

ji i
i

j n
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i

k

k

=

=

=
∑

∑
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p  (4) 

where wi is the vector of the ith cluster center (i = 1, 2, …, n) and kji represents the number 
of times the ith center was encountered in the past by the jth day under consideration. The 
value kji is zero when the ith center was never the winner for the considered days. Observe 
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that this algorithm of profile prediction is applicable for any days ahead. This is a great 
advantage concerning supervised learning approaches, in which a previous day’s load is 
needed to predict the next one.  

However, to obtain the real load vector Pj of jth day we need to predict also the mean 
and standard deviation for this day, since ( )j j j m jσ= +P p P . These variables may be esti-
mated using the data nearest to the day for which the forecast is needed or building addi-
tional predictors for them. 

4. Ensemble of Neural Predictors 
It was found that the combination of many methods applied simultaneously and in-

tegrated into the ensemble outperforms, on average, the individual-specific methods and 
provides better accuracy of prediction [22]. Ensembles of predictors are regarded now as 
the most competitive form in predictive tasks. However, the independence of its members 
is the most crucial condition for success. This may be provided in different ways, for ex-
ample applying the bagging with different random bootstrap samples of the original 
training set or using different types and diversified parameters of the predicting units, for 
example, MLP, RBF, SVR, self-organization, autoregression. Both approaches are used in 
numerical experiments. 

4.1. Weighted Averaging 
The important point in the ensemble approach is providing the efficient integration 

(fusion) of the results of its members. In the case of a regression problem, the most often 
used is weighted averaging, with the weights dependent on the prediction accuracy esti-
mated for each member based on learning results [15,22,23]. In calculating the weights, 
different approaches might be used: relative accuracy of predictors in the learning stage 
or application of a special linear combiner. The simplest approach to averaging is taking 
an ordinary mean of all results. However, this method of fusion may produce final statis-
tical results inferior to the best unit in an ensemble. 

4.2. Application of PCA and ICA in the Fusion Procedure 
The interesting approach to the fusion of many results is to apply the principal com-

ponent analysis (PCA). The vectors predicted by all units of the ensemble are concatenated 
into one longer vector, which is subject to PCA decomposition [15]. The limited number 
of principal components is used in the reconstruction of the original vectors correspond-
ing to all members of the ensemble. In this way, the reconstructed vectors are deprived of 
the least important components, representing the noise. Averaging these reconstructed 
vectors generates the final forecast. 

The other approach to fusion is a separation of the time series predicted by different 
units into the set of independent time series and the elimination of terms corresponding 
to the identified noise. This can be done by the independent component analysis (ICA) 
[24], delivering the set of independent time series. The process of deflation using only the 
important components allows for reconstructing the predicted time series deprived of the 
not important components, treated as the noise [15,24]. This procedure is illustrated in 
Figure 5. The set of M predictors generates M time series x(k), which are delivered to the 
ICA process represented by matrix W. The output signal vector y = [y1(k), y2(k), …, yM(k)]T 
is the result of linear ICA operation y = Wx and contains the independent signals. The 
switches in the figure represent the possible elimination of the inappropriate independent 
components at the reconstruction stage of the data. The inversed matrix W−1 represents 
the deflation process, i.e., reconstruction of the signals. 
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Figure 5. The illustration of ICA in the integration process of the ensemble of predictors [15]. The 
time series predicted by M predictors are separated into independent components using ICA rep-
resented here by the matrix W. The switches are used to eliminate the inappropriate independent 
components in the reconstruction stage of the data. The passed components are used to reconstruct 
the noise-free prognosis through matrix W−1 (so-called deflation process). 

The original data x is reconstructed by using the inverse operation, called deflation 
[24] 

1ˆ ˆ−=x W y  (5) 

The variable x̂  denotes the reconstructed time series and ŷ —the independent 
component data set. The set ŷ  is chosen from the original data y by eliminating the rows 
recognized as the noise. If there is a problem with recognizing the noise, we may try all 
combinations of independent components, substituting the eliminated components (ap-
propriate rows of y) with zeros. The best combination of signals obtained in the learning 
stage represents the final solution. In the testing phase, only this combination is used.  

4.3. Wavelet Application 
The interesting approach to the ensemble prognosis is the application of wavelet 

analysis [25]. The wavelet decomposition of the load pattern is performed on a few levels. 
As a result, the analyzed signal is decomposed into as many time series as is the number 
of levels. Some levels, usually of the highest resolution (the most difficult for prediction), 
may be treated as noise and eliminated from further considerations. The prediction task 
of the load pattern is now decomposed into separate predictions of the time series on each 
decomposition level. This is a much easier task, due to their lower variability compared 
to the original time series. The prediction is done by building as many neural predictors, 
as is the number of considered decomposition levels. The predicted signals create a set of 
partial representations of this load pattern. The reconstruction of the final load values is 
performed by simply summing the predicted wavelet coefficients. 

Figure 6 illustrates the result of wavelet decomposition of the time series representing 
the hourly load of one year. Daubechies wavelet function db4 [25,26] and five-level de-
composition have been applied. The upper curve s represents the original time series, a5 
is the coarse approximation of the signal s on the 5th level, and d1–d5 represents the de-
tailed wavelet representations of the original signal on five levels with different resolu-
tions. The time series d1 is of the highest resolution and includes the lowest impact on the 
approximation of the original time series. In practice, it may be eliminated from the recon-
struction.  

The forecasting task is applied for the wavelet coefficients on each level of decompo-
sition including the coarse approximation. In predicting the wavelet coefficients corre-
sponding to dth day and hth hour the wavelet pattern of the previous day (d−1) and the 
same day one week ago (d−7) corresponding to the hours hth, (h−1), and (h−2) create the 
input attributes. They are supplemented by the day number of the week (the numeric 
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notation of the day, from 1 to 7) and the numeric notation of the month (from 1 to 12). All 
data in the columns are normalized linearly to the range from 0 to 1. Any type of neural 
network or any other predictor can be applied in this process. 

 
Figure 6. The graphical results of wavelet decomposition of the time series represent the hourly load 
of one year. The upper curve represents the original time series s, a5 -the coarse approximation on 
5th level, and d1 - d5 - the detailed wavelet representation of the analyzed signal s on five levels. 

Figure 7 presents the general structure used for the prediction of the wavelet coeffi-
cients Di(d,h) for the particular hour h of the day d on the ith level for i = 1, 2,..., N. An 
identical structure is used for the prediction of the coarse approximation signal AN(d,h).  

 
Figure 7. The neural system is used for the prediction of wavelet coefficients Di(d,h). An identical 
structure is applied for the prediction of the coarse approximation signal AN(d,h) on the final Nth 
level of the wavelet decomposition. 

The introductory experiments have shown that five-level wavelet decomposition (N 
= 5) is enough to predict the load pattern for each hour of the day. In this way 6 neural 
predictive networks (5 detailed coefficient Di and one approximate (coarse) signal A5 are 
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used). In the learning process, the destination (the target output signal) is associated with 
the known value of the appropriate wavelet coefficient for each hth hour of the dth day. 
Based on the predicted wavelet coefficients the real prediction of the load at hth hour for 
dth day is made by simply adding them (N is the number of decomposition levels). 

1 2( ) ( ) ( ) ... ( ) ( )N Ns n d n d n d n a n= + + + +  (6) 

4.4. Local Dynamic Integration 
The other interesting approach to the integration of the ensemble is the local dynamic 

method. The prediction of the time series for the next day is made here by only one mem-
ber of an ensemble, which was the best in the learning stage for the input vector, closest 
to the applied input (testing) data. Thanks to such an arrangement we avoid the situation 
when the worst unit reduces the accuracy of the whole ensemble. The best predictor is 
selected based on its prediction accuracy for the learning sample in the neighborhood of 
the actual testing sample. The quality of each member of the ensemble is checked on the 
learning data closest to the actual testing sample. The most competent predictor, provid-
ing the smallest prediction error in the learning mode is chosen. Thanks to this we can get 
an increased level of forecasting accuracy since each task is performed by the predictor 
best suited to it. Moreover, such an arrangement of integration allows the use of units of 
very different statistical accuracy without decreasing the quality of the final prediction. 

Given an input vector xt in the testing mode, we select its closest neighbor xl among 
all input vectors existing in the learning set. The Manhattan distance measure is used  

1
-) ,( ltltd xxxx =  (7) 

In the next step, we compare the selected quality measure (MAPE, MAE, or RMSE) 
of the units forming the ensemble, in the regression task for this vector xl. The member of 
the smallest prediction error corresponding to xl is chosen and applied in the prediction 
task at the application of xt. Its generated result is regarded as the final verdict of the whole 
ensemble. In the case of predicting the time series, each element of this vector might hap-
pen to be predicted by different units of an ensemble. Occasionally, two or more predic-
tors might show the same highest local accuracy for the tested vector xl. In such a case all 
of them are used in the prediction task. The final decision of an ensemble is their average. 
In summary, the general organization of the succeeding steps of the proposed signal pro-
cessing in the forecasting system can be presented in the form of the flowchart shown in 
Figure 8. 

 
Figure 8. The flowchart of signal processing leads to the final forecast of the load pattern. 

The input data consists of the daily electricity consumption in combination with in-
formation about the type of day and season. The next step is the definition of input 
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attributes and their normalization. The attributes can be defined manually using expert 
knowledge or automatically by applying a deep autoencoder. The attributes after normal-
ization are delivered to the set of neural predictors that form the ensemble. The final step 
is the fusion of the results generated by each member of the ensemble. This general form 
of the flowchart allows applying different structures of individual predictors as well as 
various methods of integrating the results of their prediction. 

5. Results of Numerical Experiments 
The numerical experiments have been conducted on the database of the Polish Power 

System corresponding to many years [17]. They have been performed using the computer 
with an Intel i7 processor of 32 GB memory and Nvidia GeForce GTX 1080Ti. The compu-
tations have been done using the MATLAB platform. The MLP network was trained using 
Levenberg-Marquardt quasi-Newton method. In training the RBF network, the clusteri-
zation combined with the singular value decomposition was used. The support vector 
machine learning procedure was accomplished by applying a sequential minimal optimi-
zation procedure. In the case of the LSTM, the stochastic gradient descent in the ADAM 
version was applied in learning.  

This section will present the results corresponding to the individual solutions and 
their integration into an ensemble. The comparison will be based on mean absolute per-
centage error, which is regarded as the most objective measure of prediction accuracy. If 
we denote by )(hP  and )(hP



 the real and predicted load at hth hour, respectively, and 
by n the total number of hours of prediction, the MAPE is defined as follows [15,23] 

%100
)(

)()(1
1

⋅
−

= ∑
=

n

h hP
hPhP

n
MAPE
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 (8) 

This measure may be calculated separately for the learning and testing data. Here we 
will present only the testing results, related to the data not taking part in learning since 
this information is the most important from the practical point of view. Moreover, the 
presented results correspond to the average of many learning/testing runs at different 
contents of both subsets (each time selected randomly¨ at the proportion of 70% learning 
and 30% testing).  

5.1. Individual Predictors 
Five years of PPS data have been used in experiments. The learning and testing data 

have been randomly chosen from this set in the proportion of 70:30. Ten repetitions of 
experiments at different contents of learning and testing data have been done. The forecast 
of 24-h load patterns with the application of individual predictors can be solved in differ-
ent ways. The first results will correspond to the model represented by Equation (1) at the 
application of MLP, RBF, and SVR of the Gaussian kernel as the predictive units. In this 
case, the input attributes of the predictors have been selected manually by the user. They 
were formed by the normalized loads of the nearest past 4 h of the actual day and 5 h (the 
actual hour and 4 nearest past) for 3 previous days (19 components together). They have 
been supplemented by the type of season (two nodes coded in a binary way: 00—spring, 
01—summer, 10—autumn, and 11—winter) and type of the day (two nodes: 1—working 
days, 0—non-working days).  

The first task in the learning process is to set the correct structure of the neural pre-
dictors. This was done utilizing introductory experiments in which different values of the 
network parameters (number of hidden neurons in MLP and RBF as well as different val-
ues of regularization parameter C, coefficient σ of Gaussian kernel, and tolerance ε in SVR) 
were tried. The additional annual data, which were not used in the further experiments, 
was used in this stage. The parameter values corresponding to the minimum validation 
error were applied next. Their optimal values vary according to the different arrange-
ments of the input attributes resulting from the applied definition. The results of 
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experiments for testing data in the form of the mean value of MAPE in 10 trials and stand-
ard deviation are presented in Table 1. As it is seen the MAPE values corresponding to 
different predictors are close to each other, concerning mean and standard deviation.  

Table 1. The statistical results of prediction of 24-h load pattern at an expert selection of input at-
tributes (number of applied hidden neurons in MLP was 35, in RBF 70, σ = 0.9, ε = 0.01, and C = 1000 
in SVR). They correspond to the testing data. The values of MAPE and standard deviation corre-
spond to the mean of 10 repetitions of experiments. Irrespective of the applied neural predictors, 
their values are not very far from each other. 

Neural Network MAPE [%] 
MLP 2.08 ± 0.14 
RBF 2.26 ± 0.16 
SVR 2.27 ± 0.08 

The other approach to input attribute selection for the neural predictors is to apply 
an automatic system in the form of the autoencoder. The input data to the autoencoder is 
composed of 170-element vectors representing the load data of the previous week (168 
samples) and the 2-element binary code of the season. The autoencoder of two hidden 
layers was selected. It is responsible for reducing the size of the population, guaranteeing 
the best performance of the system. The number of neurons in these layers was selected 
by additional experiments. The last layer of the autoencoder represents diagnostic fea-
tures that will be used as the input attributes for the applied neural predictors: MLP, RBF, 
and SVR. Note, that in contrast to the previous approach, where the input features of data 
were chosen by the expert, the input vector to the above predictors in this method is gen-
erated by an automatic self-organizing process without human experience-based inter-
vention. The solution has been applied in forecasting the 24-h power demand for 7 days 
of the next week. Despite the increased horizon of prediction, the numerical results were 
quite encouraging, however, different for each type of predictor. The best testing results 
of each predictor have been obtained at different structures of the autoencoder. The details 
of the autoencoder structure, as well as the numerical values corresponding to the testing 
results in the form of MAPE and standard deviation for the best choice of autoencoder 
layers, are presented in Table 2. This time the highest accuracy has been obtained at the 
application of the RBF network as the predicting unit. The application of SVR was the 
least efficient (the highest MAPE value). 

Table 2. Mean values of MAPE testing error for three individual neural predictors cooperating with 
an autoencoder (number of hidden neurons of MLP was 40, in RBF 50, σ = 0.5, ε = 0.01, and C = 3000 
in SVR). 

Autoencoder Structure 
Neural Predictors 

MLP RBF SVR 
170-60-30 1.96 ± 0.19%   
170-80-40  1.81 ± 0.14%  
170-95-50   2.13 ± 0.07% 

The self-organizing (Kohonen) approach to forecasting the profile vectors has been 
applied using 100 neurons, chosen on the ground of good generalization ability of the 
network. The mean value Pm(d) and standard deviation σ(d) of day d, which are needed in 
the final prediction of the real load demand for dth day, have been predicted using the 
additional MLP network. The number of self-organizing neurons and the structure of 
MLP have been adjusted after a series of numerical experiments using the validation data 
[17]. When predicting the profile vector for a particular day of the week (e.g., Monday in 
July), we estimate it by averaging the winning vectors for that day (e.g., all Mondays in 
July) from the past learning data using Equation (4). The final MAPE value depends on 
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the accuracy of the profile estimation and the prediction of the mean and standard devia-
tion. The prediction of standard deviation had the largest effect on this measure since its 
value was characterized by the largest changes from one day to the next day. The final 
statistical results for the test data in terms of the mean of MAPE and the standard devia-
tion of a total load of days were MAPE = 2.34 ± 0.16%. This value is slightly worse than 
the results of the neural predictors shown in Table 1. However, this approach can be ap-
plied to any day of the year at any time in advance. 

The LSTM predicting system relies on a sufficiently different principle since it takes 
directly into account the memorized previous load pattern. The input data delivered to 
the network is composed of a series of 24-dimensional vectors x representing the 24-h 
patterns of the previous daily load. They are associated in the learning stage with the pre-
dicted target vector of the 24-h load pattern of the next day. The training procedure uses 
the pairs of vectors: input x(d) and output x(d + 1). The testing phase is very simple. The 
load pattern for the next day is predicted by the trained network based on the delivered 
input vector of the already known pattern of the previous day.  

In the experiments, we used the structure of the LSTM network 24-nh-24, where nh 
represents the number of LSTM cells. In the experiments, the input pattern to the network 
is composed of 24 h loads of the last (known) day. As a result of introductory experiments, 
the number of hidden neurons was set to 600. 

In the PPS we have observed high differences in patterns in the period of the last 10 
days of the year, including the Christmas holiday and New Year’s Eve. The load pattern 
in this period is different from day to day and is not repeatable. The reason for this is that 
during this period most institutions and factories have long holidays or work on half-scale 
on other days.  

Since the operation of LSTM is sensitive to the shape of learning patterns, we have 
decided to learn two different LSTM models. In the case of a network designed for the 
prognosis of the Christmas holiday period, the population of data is very small. Therefore, 
the experiments have been done including together the data of the last 10 days of the six 
years (from 2014 to 2019) resulting in six runs of learning and testing phases. Five-year 
data (the combinations of five years of data in the period 2014–2019) have been used in 
learning and the remaining year for testing. The experiments have been repeated 6 times 
for each arrangement of learning and testing data. The mean of all testing results repre-
sents the forecast for this holiday period [14]. 

In the second case (all days of the year except the last 10 related to Christmas and 
New Year’s Eve) the experiments have been organized differently. The data of 3 years 
(2017, 2018, and 2019) have taken part in experiments. One-year data (355 days of it) was 
used for learning and the whole next year’s data were served for testing. In this way, three 
independent LSTM systems of the same architecture and hyperparameters have been 
learned. The first was trained on the data set of 2017 and predicted the daily load for the 
year 2018. The second was trained on the data of 2018 and predicted the daily load of the 
year 2019. The third system for predicting the load in 2017 used the data set of 2018 in 
training. The final statistical results of these experiments are presented in Table 3 [14]. 
They represent the average values and standard deviations of MAPE obtained in all runs 
of experiments. 

Table 3. Statistical results of numerical experiments in 24-h load pattern prediction in PPS using 
LSTM predictor. 

Year MAPE [%] 
Days except for the last 10 days of the year 1.52 ± 0.09 

Last 10 days of the year 3.53 ± 0.70 
Weighted average for the whole year 1.63 
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As it is seen LSTM prediction results represent the highest accuracy. This is well seen 
in the case of a typical day, where the MAPE error achieved a very small value. However, 
in the case of the not typical period (like the Christmas holiday), the performance of the 
LSTM predictor is significantly worse. This is mainly due to the very small amount of 
learning data available for this short 10-days Christmas period. 

5.2. Ensemble of Predictors 
The ensemble of predictors is composed of many independent units operating on the 

same database. To provide the independence of predictors different approaches are used: 
bagging of the learning data from the learning set, different types of predictors, and dif-
ferent values of hyperparameters. The other crucial point is the fusion procedure. The 
results predicted by the members of the ensemble are combined into a final forecast. Here 
we will compare different solutions concerning the MAPE value calculated for the same, 
common sets of testing data.  

The simplest approach to the fusion of results is averaging the predictions of all mem-
bers of the ensemble. Different arrangements of predictors can be tried. In the case of MLP, 
RBF, and SVR predictors supplied by the input attributes chosen manually according to 
the expert’s knowledge, the final value of MAPE was reduced from an average of 2.11% 
(Table 1) to 1.83%. The application of PCA with 11 principal components to the transfor-
mation of individual predictions into diagnostic features for these 3 neural networks has 
reduced the MAPE to 1.81%. Replacing the PCA procedure with ICA has further reduced 
this value to 1.73%.  

Better results of averaging have been obtained with the application of autoencoder 
in the role of automatic generation of the input attributes for these 3 neural networks. The 
MAPE value has been reduced to 1.61%. Application of dynamic fusion was found not 
competitive. The MAPE, in this case, was reduced to only 2.09% from the average of 
2.11%.  

Interesting results have been obtained with the application of wavelet transfor-
mation. The time series representing the hourly load pattern of each year has been decom-
posed onto the detailed coefficients of 6 levels and the approximated signals on the 6th 
level. All of them have been transformed to the standard resolution. Half of the data of 
each year has been chosen for learning and the second half for testing purposes. The divi-
sion was done randomly in such a way that each month of the year has been represented 
in both sets. Two neural networks (MLP and SVR) have been trained for the prediction of 
the wavelet coefficients of each level. In this way, 7 predictive networks specialized for 
the prediction of 6 detailed coefficients (for each of 6 levels) and one network for the ap-
proximated signal on the 6th level have been trained. The trained networks have been 
tested on the testing set, not used in learning. The resulting MAPE at the application of 
MLP as the applied predictors was 1.98%, while at SVR application the MAPE was much 
smaller and equal to 1.54%. 

The principle of application of LSTM in the predictive model is sufficiently different 
from previous approaches and could not cooperate directly with them in the ensemble 
system. However, it is possible to arrange the ensemble composed of only LSTM net-
works, by applying many runs at different hyperparameter values of the networks and 
integrating their results. The MAPE value of the ensemble is integrated in the following 
way 

1

( ) ( )1 100%
( )

p
m

ensemble
h

y h d h
MAPE

p d h=

−
= ⋅∑  (9) 

where p represents the number of hours for which the predictions are made, ym(i) is the 
mean of values predicted for hth hour by all members of the ensemble, and d(h) is the true 
value of the load at the hth hour. The number of repetitions of the learning/testing proce-
dure represents the number of ensemble members. The experiments have shown that 5 
members are optimal. Their application has reduced the mean value of MAPE from 1.52% 
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(Table 3) to 1.46% (for the data except for the Christmas period) and for all days (including 
Christmas) from 1.63 to 1.53%.  

Figure 9 shows the graph of MAPE values corresponding to different approaches to 
load forecasting. Their positions, denoted by the following numbers, represent: 
1. individual MLP predictor at the manual expert selection of input attributes 
2. individual RBF predictor at the manual expert selection of input attributes 
3. individual SVR predictor at the manual expert selection of input attributes 
4. individual MLP predictor employing autoencoder for selection of input attributes 
5. individual RBF predictor employing autoencoder for selection of input attributes 
6. individual SVR predictor employing autoencoder for selection of input attributes 
7. self-organizing Kohonen network application 
8. individual LSTM predictor 
9. ensemble composed of MLP, RBF, and SVR integrated by ordinary averaging for suc-

ceeding hours 
10. ensemble composed of MLP, RBF, and SVR integrated using PCA 
11. ensemble composed of MLP, RBF, and SVR integrated using ICA 
12. ensemble composed of MLP, RBF, and SVR integrated using autoencoder 
13. ensemble based on wavelet decomposition and application of SVR 
14. ensemble composed of 5 integrated LSTM predictors 

 
Figure 9. The comparison of MAPE values at the application of different individual tools as predic-
tive units and their integration in the ensemble. The particular solutions are denoted by numbers 
from 1 to 14. LSTM is unbeatable in all cases. 

As is seen, the best results correspond to the application of the LSTM predictor, both 
in the individual role and also in an ensemble arrangement. It is also seen that in all cases 
the ensemble of predictors is superior to the individual performance. However, the rela-
tive improvement of results differs and depends on the applied strategy of fusion. In the 
case of the application of feedforward neural networks (MLP, RBF, SVR) the rate of im-
provement will be calculated concerning the mean of their average individual perfor-
mance (MAPE = 2.20%). In the case of LSTM, this rate is compared to the individual per-
formance of the LSTM predictor (MAPE = 1.63%). Figure 10 depicts such a graph.  
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Figure 10. The relative improvement of MAPE at the application of the different methods in the 
fusion of individual results of ensemble members. The first 5 bars represent the feedforward solu-
tion of predictors and the last corresponds to the recurrent LSTM network. 

The following bars represent the percentage value of improvement related to the fol-
lowing methods of integration 
E1—integration by averaging results of MLP, RBF, and SVR for particular hours 
E2—application of PCA in integration 
E3—application of ICA in integration 
E4—application of autoencoder in the integration scheme of MLP, RBF, and SVR 
E5—wavelet approach combined with SVR compared to the classical application of SVR 
E6—integration of a few LSTM predictors compared to individual LSTM performance 

The relative improvement of the best predictor (LSTM) is the lowest one. This is be-
cause the application of the same type of predicting units changing only by the limited 
number of hyperparameters and changing contents of the learning data does present only 
the limited independence of its members. Moreover, the reference point of the accuracy 
of the individual members was of a very high level. Relatively large is the improvement 
introduced by the wavelet transformation. Observe, that in this case, the wavelet terms on 
different decomposition levels cooperating with the SVR predictor represent different ap-
proaches to the methodology of building the ensemble system. Therefore, their independ-
ent operation is achieved to a very high degree. 

6. Conclusions 
The paper has presented a comparative analysis of the performance of different neu-

ral-based approaches to predicting the hourly electricity demand (24-h load patterns) in 
electrical power systems. Two types of approaches have been presented: the individual 
solutions based on a choice of a single neural predictor and an ensemble of many predic-
tors combined into one final forecast obtained by integration of a few individual predic-
tions. The considered neural network solutions include feedforward supervised struc-
tures (MLP, RBF, and SVR), recurrent networks (LSTM), and self-organizing Kohonen 
networks. Different approaches to creating the set of input attributes to the networks have 
been presented: expert suggested choice, application of additional analysis of data based 
on PCA, ICA, wavelet transformation, or deep autoencoder.  

The accuracy of each predictor depends on the type of network structure used. The 
lowest MAPE value in the test data was observed for the recurrent LSTM network. Despite 
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a very simple prediction model in this solution, the prediction accuracy obtained with the 
LSTM is better than when standard feedforward neural predictors are used. This is be-
cause the recurrent structure of this network allows reflecting very well the trends of the 
changing character of the power consumption. 

The extensive numerical experiments performed on the PPS database have shown 
that by combining the ensemble of predictors and the sophisticated input attribute gener-
ation system, the accuracy over the individual predictors can be significantly increased. 
The improvement is made possible by mutual compensation of the errors committed by 
the individual predictors. The rate of improvement observed for the prediction of the 24-
h load profile in PPS, due to the application of the ensemble, varied between 6% and 30%, 
depending on the type of ensemble created. In this case, the application of the wavelet 
transforms and the division of the prediction task among the predictions of many decom-
position levels is particularly efficient.  

All experiments have been carried out for the data of PPS. It is rather difficult to com-
pare these numerical results to the results obtained for power systems of different coun-
tries. Comparing the detailed results that correspond to the very different load patterns 
of countries will not be fair. It is well known that the results of the predictions depend 
heavily on the complexity of the patterns, which change considerably for different coun-
tries. However, the comparative relative results corresponding to different approaches 
considered in the paper are still of great information, valid also for other world regions. 
In such a case the analysis of the available data set is required to find the most important 
factors characterizing the days’ patterns of the week and the seasons of the year. It is nat-
ural that the data distributions in tropical countries differ a lot from European countries 
and in input data preparation this fact should be considered. 

It should be noted that the accuracy of the proposed systems based on ensemble is 
on the acceptable level to the experts working in the electricity markets of the country. 
Therefore, the method has a certain perspective for practical application.  

From the research point of view, the presented methods indicate the new directions 
in developing efficient approaches to load forecasting in power systems. Especially inter-
esting is the application of wavelet decomposition, which was never used in the previous 
approaches to load forecasting. Moreover, the forecasting methods presented here can be 
adapted quite easily to other time series forecasting tasks, such as forecasting the demand 
for different types of fuels. The neural network structures used and the way the ensemble 
is created provide a universal approach to such problems. 

The presented system of the highest accuracy is composed of many predicting units 
combined into an ensemble. Thanks to such an arrangement increased accuracy in com-
parison to the existing approaches [1–7] is obtained. A disadvantage of such a solution is 
the long training time, since each unit should be trained separately. The learning process 
takes approximately a few minutes for each network. Future work will focus on a parallel 
approach to the learning procedure of each unit. The other direction is to apply the other 
deep structures in the time series prediction system and the extension of the ensemble 
models by using a larger number of different units implementing various prediction 
mechanisms. 
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Abbreviations 
The following abbreviations are used in this manuscript: 

PPS Polish Power System 
MLP Multi-layer perceptron 
RBF Radial basis function 
SVR Support vector machine in regression mode 
CNN Convolutional Neural Network 
PCA Principal Component Analysis 
ICA Independent Component Analysis 
LSTM Long Short-Term Memory 
MAPE Mean Absolute Percentage Error 
SGD Stochastic Gradient Descent algorithm 
ADAM ADAptive Moment estimation algorithm 
SGD Stochastic Gradient Descent algorithm 
ADAM ADAptive Moment estimation algorithm 
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