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Abstract: The pyrolysis characteristics of oil shale during heat treatment dominate the oil production
of kerogen. In this study, the pyrolysis characteristics of oil shale in a laboratory microwave appara-
tus were investigated based on a novel fully coupled three-dimensional electromagnetic-thermal-
chemical-hydraulic model according to the experimental microwave apparatus. By simulating the
electric field, temperature distribution, and kerogen decomposition within oil shale subjected to
microwave irradiation, several parameters, including waveguide, position, and power, were success-
fully optimized. The results indicated that the non-uniform temperature distribution was consistent
with the distribution of the electric field. Double microwave ports were more effective than single
ports in terms of heating rate and temperature uniformity. There was an optimal location where the
highest heating efficiency was obtained, which was on the left of the cavity center. When irradiation
was conducted over a range of microwave powers, a higher power was suitable for achieving a rapid
temperature increase, whereas a lower power was suitable to gain a high efficiency of the pyrolysis
rate. Therefore, a variable power heating mode was introduced to decrease the heating time and
improve the heat uniformity simultaneously during oil shale pyrolysis. Specifically, the secondary
reactions of oil products should be maximally avoided by controlling the microwave power.

Keywords: oil shale; pyrolysis; microwave; simulation; finite element method

1. Introduction

As society and technology develop by leaps and bounds, large amounts of oil and
gas are consumed worldwide, and these resources are projected to satisfy up to 55% of
the world’s energy demand in 2040 [1,2]. With the decline in light oil reserves, attention
has shifted toward unconventional energy sources, such as shale oil and gas, which can
contribute to future demands. Oil shale, as an important fossil fuel, is a vital energy replace-
ment for conventional hydrocarbon resources [3,4]. Oil shale is a promising unconventional
resource because it can provide almost 400 billion tons of shale oil, which can be extracted
from oil shale resources all over the world [5–7]. To obtain oil and gas, oil shale needs to
be pyrolyzed via heating in order to transform its organic matter—called kerogen—into
hydrocarbons [8–10].

A variety of experimental research shows the great potential of microwave heating
in oil engineering [11–13]. Taheri-Shakib et al. [12] conducted an experiment comparing
heavy crude oil heated by a microwave heating technique versus the conventional heat-
ing technique. The results showed that the microwave heating technique was beneficial
in increasing light carbonic components and decreasing the sulfur content in heavy oil.
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Conventional heating, including electrical heating and steam heating, has been compre-
hensively investigated for the pyrolysis of oil shale; however, its low heating rate, low
transformation efficiency, and high energy consumption cannot be avoided [14,15]. Consid-
ering that it has many unique advantages in comparison with conventional heating [16–19],
microwave heating has been proposed for oil shale pyrolysis [20–22]. Samer et al. [23]
introduced a novel technique to extract shale oil from oil shale and tested several solvents
for extractive capacity at different temperatures during the microwave irradiation of oil
shale. Ana et al. [24] studied the transformation of an oil shale sample using two different
heating strategies: microwave irradiation and conventional heating. They found that
the two strategies afforded similar yields of liquid products; however, the overall energy
requirements were considerably lower when microwave irradiation was conducted. El
Harfi et al. [25] designed a special microwave cavity and reactor to study the pyrolysis of
oil shale and concluded that the oil obtained by microwave heating was more maltenic,
less polar, and contained lower amounts of sulfur and nitrogen than the oil obtained using
conventional technology. Therefore, the microwave heating of oil shale in domestic experi-
ments has tremendous advantages, including low energy consumption and the generation
of high-quality oil products.

Laboratory experiments are a direct and credible approach to research microwave
heating; however, they cannot accurately reveal the pyrolysis process under microwave
heating and thus cannot optimize the heating parameters. Some meaningful data cannot
be obtained through physical experiments, including the electromagnetic distribution of
the microwave oven and the internal thermal evolution of sample [26,27]. Numerical
simulations have increasingly become an auspicious way to visualize and quantify the
microwave heating process because of the availability of higher computational power
and the development of efficient numerical methods [28,29]. For oil shale pyrolysis, there
is a lack of numerical simulations of the microwave heating method. Zhao et al. [30]
investigated the promotion of oil shale pyrolysis using heat-carrying supercritical carbon
dioxide (SC-CO2) in laboratory experiments and numerical simulations and obtained the
diffusion and velocity distributions of SC-CO2. Wang et al. [31] identified and investigated
the chemical structural parameters of kerogen from Yaojie oil shale and determined a
reasonable three-dimensional model of Yaojie kerogen via molecular simulation methods,
anneal dynamics simulations, and geometry optimization calculations. Zhu et al. [32]
established a mathematical model to investigate the in situ upgrading of oil shale reservoirs
and analyzed the effects of microwave power and the thermal conductivity of oil shale.
They found that higher power was associated with higher oil and gas production. Fur-
thermore, if the power was too high and the reservoir’s thermal conductivity too low, an
underground overheating phenomenon near the wellbore was observed. When applying
electromagnetics, the waveguide number and sample position are also important for the
heating efficiency. However, few reports are available in the literature that present the
effects of the heating parameters on oil shale pyrolysis through microwave heating.

The microwave pyrolysis of oil shale involves the complex coupling of electromagnet-
ics, heat transfer, chemical reactions, and mass transport. To better understand the pyrolysis
process, a fundamental model is required to provide quantitative information regarding the
most important physical changes and chemical reactions that occur during oil shale pyroly-
sis. In this study, the simulation results were verified using temperature data obtained from
laboratory experiments. In summary, the objectives of this research were to (1) establish
and resolve a coupled electromagnetic-thermal-chemical-hydraulic model to investigate
the mechanism of oil shale pyrolysis; (2) validate the model by grid-independent tests and
laboratory experiments; (3) optimize the heating parameters, including waveguide, sample
position, and microwave power; and (4) analyze the mass transfer of oil and gas products
within oil shale based on the optimal parameters for microwave irradiation.
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2. Governing Equations

The pyrolysis of oil shale under microwave irradiation involves electromagnetic wave
excitation, heat transfer in porous media, chemical reactions, mass transfer, and product
flow; thus, the governing equations include Maxwell’s equations, the energy conservation
equation, the chemical reaction rate equation, the mass conservation equation, and the
Brinkman equations. The coupling relationship among these equations is shown in Figure 1.
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Figure 1. The coupling relationship among the governing equations for the microwave pyrolysis of
oil shale.

2.1. Electromagnetic Wave Excitation

Electromagnetic analysis at a macroscopic level involves solving Maxwell’s equations,
which are subject to certain boundary conditions. For general time-varying fields, Maxwell’s
equations can be written as follows:

∇× µ−1
r (∇× E)− k2

0

(
εr −

jσ
ωε0

)
E = 0 (1)

where µr represents the relative permeability, E denotes the electric field intensity (V/m),
k0 denotes the wave number, σ denotes the electrical conductivity (S/m), ω denotes the
angular frequency (rad/s), ε0 denotes the vacuum permittivity(F/m), and εr denotes the
relative permittivity, which can be expressed as follows:

εr = ε′ + jε′′ (2)

where ε′ denotes the dielectric constant and ε′′ denotes the loss factor. Given the coupling
of electromagnetics and heat transfer, it is utmost importance to the dielectric constant and
the loss factor changing with an increase in temperature.

During microwave heating, the electromagnetic losses Qe (W/m3) can be regarded as a
heat source in the heat transfer part of the model, and are given by the following equation:

Qe = Qrh + Qml =
1
2

Re(J · E∗) + 1
2

Re(iωB ·H∗) (3)

where Qrh represents the resistive losses (W/m3), Qml represents the magnetic losses
(W/m3), J denotes the current density (A/m2), B denotes the magnetic flux density
(Wb/m2), and H denotes the magnetic field intensity (A/m).
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The boundary of the waveguide and cavity can be considered as impedance boundary
conditions, which are calculated by:√

µ0µr

ε0εr − j σ
ω

n×H + E− (n · E)n = 0 (4)

2.2. Heat Transfer in Porous Media

Based on the conservation of energy, heat transfer in the oil shale sample can be
acquired as follows:

(ρCP)eff
∂T
∂t

+ ρCPu · ∇T +∇ · q = Q (5)

q = −keff∇T (6)

where T denotes the absolute temperature (K), ρ denotes the density of the fluid, Cp denotes
the heat capacity of the fluid at a constant pressure (J/(kg·K)), (ρCp)eff denotes the effec-
tive volumetric heat capacity, keff denotes the effective thermal conductivity (W/(m·K)),
q denotes the conductive heat flux (W/m2), u denotes the velocity field (m/s), θp de-
notes the solid volume fraction, and Q is the heat source (W/m3), which includes the
electromagnetic losses Qe and the heat generated from complex chemical reactions Qc.

The effective thermal conductivity of the solid-fluid system (W/(m·K)), keff, is related
to the thermal conductivity of the solid, kp, and to the thermal conductivity of the fluid, kf,
and is calculated by the following equations:

keff = θpkp +
(
1− θp

)
k f (7)

For the thermal field, the boundary of the domain is defined as the thermal insulation
boundary condition, which is written as:

n · (−k∇T) = 0 (8)

2.3. Chemical Reactions

Chemical reactions occur based on the reaction rate. We compute the reaction rates
of the thermal decomposition of kerogen in oil shale samples by using the first-order rate
law because all the chemical reactions that we consider are first-order rate reactions. The
reaction rate equation is as follows:

rk = KkCk (9)

Here, rk and Kk denote the reaction rate (mol/(m3·s)) and the reaction rate constant of
the k-th reaction (mol/(m3·s)), respectively, and Ck denotes the concentration of reactant k
(mol/m3). Kk is defined as follows:

Kk = Ak exp
(
− Ek

RgT

)
(10)

Here, Ak and Ek denote the frequency factor (1/s) and activation energy (J/mol) of
the k-th reaction, respectively, and Rg is the gas constant (8.314 J/(mol·K)). The frequency
factors and activation energies of the kerogen pyrolysis reactions are listed in Table 1.

The heat Qc generated from complex chemical reactions (W/m3) is defined as follows:

Qc = −∑
k

kk Hk (11)

where Hk denotes the enthalpy of reaction k (J/mol).
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Table 1. Kinetic reactions of kerogen decomposition [33].

Decomposition Reaction Frequency Factor (1/s) Activation Energy (kJ/mol) ∆H (J/mol)

Kerogen→ 0.279HO + 0.143LO + 0.018Gas +
0.005Methane + 0.555Coke1 1.0 × 1013 213.4 −46,500

Heavy oil (HO)→ 0.373LO + 0.156Gas + 0.03Methane
+ 0.441Coke2 5.0 × 1011 225.9 −46,500

Light oil (LO)→ 0.595Gas + 0.115Methane + 0.290Coke3 3.0 × 1013 225.9 −335,000
Coke1→ 0.031Gas + 0.033Methane + 0.936Coke2 1.0 × 1013 225.9 −46,500
Coke2→ 0.003Gas + 0.033Methane + 0.964Coke3 5.0 × 1011 225.9 −46,500

2.4. Mass Transfer

The products of the chemical reactions from oil shale degradation are transported
via diffusion and convection. The mass conservation equation is applied to resolve the
products distribution as follows:

∂(εpci)

∂t
+∇ · Ji + uc · ∇ci = Ri (12)

where εp denotes the porosity of oil shale, Ri represents the mass source (mol/(m3·s)), uc
denotes the mass average velocity vector (m/s), and Ji denotes the mass flux relative to the
mass-averaged velocity (mol/(m2·s)), which is defined as:

Ji = −De,i∇ci (13)

where De,i denotes the effective diffusion coefficient of component i (m2/s).

De,i =
εp

τF,i
DF,i (14)

In Equation (14), DF,i denotes the single-phase coefficient for component i (m2/s) and τF,i is
the tortuosity of the porous media based on the Millington and Quirk model:

τF,i = ε−1/3
p (15)

The bottom of the sample and the inner wall of the cavity are defined as a no-flux
boundary condition, which is expressed as:

n·(−De,i∇c) = 0 (16)

2.5. Products Flow

The Brinkman equations are applied to describe the product flow in oil shale samples,
which is governed by a combination of the continuity and momentum equations as follows:

∂

∂t
(
εpρ
)
+∇ · (ρu) = Qm (17)

ρ

εp

(
∂u
∂t

+ (u · ∇) u
εp

)
= −∇p +∇ ·

[
1
εp

{
µ
(
∇u + (∇u)T

)
− 2

3
µ(∇ · u)I

}]
−
(

κ−1µ+
Qm

ε2
p

)
u (18)

where µ denotes the fluid’s dynamic viscosity (Pa·s), u denotes the velocity vector (m/s), ρ
denotes the density of the fluid (kg/m3), p denotes the absolute pressure (Pa), εp denotes
the porosity, κ denotes the permeability of the matrix (m2), and Qm denotes the mass source
(kg/(m3·s)), which is given by:

Qm = ∑ ci Mi (19)

where Mi denotes the molar mass of the species i (g/mol).
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3. Simulation Model
3.1. Model Assumptions

The following assumptions were made to simplify the model and improve its compu-
tational efficiency:

Assumption 1. The oil shale sample is homogeneous and isotropic.

Assumption 2. The walls of the waveguide and cavity are made of copper.

Assumption 3. The simulation is performed by considering a single 2.45 GHz magnetron frequency.

Assumption 4. The rectangular port is excited by a transverse electric wave.

Assumption 5. The mass and momentum transfer of moisture is negligible.

3.2. Geometry Model and Input Parameters

A cylindrical oil shale sample, with a diameter of 25 mm and length of 50 mm, was
placed at the bottom of the oven, as shown in Figure 2. It is necessary to illustrate that
sample positions 1–9 correspond to top central coordinates (220, −185, 165), (185, −185,
165), (150, −185, 165), (220, −185, 200), (185, −185, 200), (150, −185, 200), (220, −185, 235),
(185, −185, 235), and (150, −185, 235), respectively.
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Figure 2. Geometry model of microwave oven and its nine sample positions in the simulation.

The input parameters are listed in Table 2. Some temperature-dependent properties of
oil shale, including the dielectric constant, loss factor, density, heat capacity, and thermal
conductivity, were cited in this study as interpolation functions. Figure 3 shows the specific
changes in the four parameters with increasing sample temperature. The thermodynamic
properties of the mixture fluid were calculated based on the Peng–Robinson gas phase
model established by the thermodynamic system in COMSOL Multiphysics.

Table 2. Parameters in this model.

Parameter Symbol Value Source

Oil shale sample initial temperature T0 20 ◦C Given
Microwave frequency f’ 2.45 GHz Given

Microwave power P 1000 W Given
Concentration of kerogen c_ker 370 mol/m3 Ref. [33]

Molecular weight of kerogen M_ker 647 g/mol Ref. [34]
Molecular weight of heavy oil (C25H50) M_ho 352 g/mol Ref. [34]

Molecular weight of light oil (C9H20) M_lo 128 g/mol Ref. [34]
Molecular weight of non-hydrocarbon gas (CO2) M_gas 44 g/mol Ref. [34]

Molecular weight of methane (CH4) M_ch 16 g/mol Ref. [34]
Molecular weight of coke M_coke 13 g/mol Ref. [34]

Porosity of oil shale φ 0.1 Measured
Permeability of oil shale k 0.11 mD Measured
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Figure 3. Oil shale properties dependent on temperature: (a) dielectric constant and loss factor [35],
(b) density [36], (c) heat capacity [30], and (d) thermal conductivity [37].

3.3. Grid-Independent Validation

To obtain accurate results, it is necessary to carry out grid-independent validation
on account of the significant influence of mesh on finite element analysis results [38]. In
this study, a variety of variable-size meshes were used to define the different domains;
however, for all mesh sizes, the maximum element size was refined to below 1/6th of the
microwave wavelength to carry out an accurate investigation of the pyrolysis characteristics.
Tetrahedral elements were used for all the domains. The normalized absorbed power (NPA)
is often used in mesh-independent studies [39,40]. When the value does not change with
the increase in element number, the simulated results are independent from the mesh. The
NPA of geometry under various element numbers is shown in Figure 4. When the grid
number exceeded 143,820, the relative difference of NPA value did not exceed 0.04% of that
of the finer grid. Therefore, a grid number of 143,820 was finally chosen during the whole
numerical simulation.

The numerical models based on the finite element method (FEM) in this research were
resolved by the COMSOL Multiphysics software [41]. The simulation was conducted on
a workstation computer with an Intel Xeon CPU E5-2643 v4@ 3.40 GHz processor with
128 GB RAM memory and a 64-bit Windows 7 enterprise operating system.
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3.4. Experimental Verifications

Three oil shale samples were collected from an open-pit mine in Maoming, Guadong
province; their basic properties are presented in Table 3. For model verification, microwave
experiments were conducted after oil shale dewatering. As shown in Figure 2, the structure
of the microwave cavity was similar to the actual microwave apparatus, which helped
to verify the correctness of the simulation model. The self-made microwave heating
apparatus with a frequency of 2.45 GHz was used to irradiate the three oil shale samples.
During irradiation, an armored thermocouple was used to test the surface temperature
of the sample. The oil shale was heated at three power levels in the experiment and
simulation under the same conditions, including 600 W, 800 W, and 1000 W. Figure 5
shows the temperature changes on the sample surface over time at the three different
power levels. When the microwave power was 600 W, the experimental and numerical
temperature curves were in good agreement. When the microwave power was increased,
the experimental temperature was slightly lower than the numerical result. A fast heating
rate easily leads to an excessive temperature region within the material, which causes
intense heat and mass transfer from inside to outside. This result would decrease the
temperature, especially for the surface temperature contacting the outside gas. Based on
the above analysis, the numerical model established in our study is reliable and will be
analyzed in the further discussion.

Table 3. Analysis of three oil shale samples.

Item
Proximate Analysis (wt%) Ultimate Analysis (wt%) Porous Features

Moisture Volatiles Ash Fixed
Carbon H O N S C Porosity Permeability

mD

S1 0.64 18.66 75.5 5.2 2.7 5.38 0.44 1.01 15.96 0.09 0.098

S2 0.98 17.32 75 6.7 2.88 5.98 0.66 1.11 17.32 0.08 0.087

S3 0.74 18.66 72.5 8.1 2.74 6.11 0.59 1.09 16.36 0.1 0.11
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4. Results and Discussion

As a kind of electromagnetic wave, microwave frequency is typically 2.45 GHz or
0.915 GHz. Therefore, it is necessary to determine the appropriate frequency applied in the
microwave apparatus. To be transported into the cavity, the microwave frequency must
be larger than the cutoff frequency of the waveguide. For a rectangular waveguide, the
propagation constant β is given by [42]:

β =
2π

c

√
f 2 − f 2

c (20)

where f denotes the frequency of microwaves (Hz), fc denotes the cutoff frequency (Hz),
and c denotes the light velocity (m/s).

The cutoff frequency depends on the shape and size of the waveguide cross-section.
The formula for the cutoff frequency of a rectangular cross-sectioned waveguide is given
by [43]:

fc =
c
2

√
(

m
a
)

2
+ (

n
b
)

2
(21)

For the TE10 mode, the values of the mode numbers are m = 1 and n = 0, where a and
b are the dimensions of the cross-section of the rectangular waveguides (cm). Therefore,
the cutoff frequency in our model is defined as:

fc =
c

2a
(22)

Below this frequency, the waveguide attenuates or blocks the power. Based on
Equation (22), the cutoff frequency in our model was 1.9 GHz. Therefore, other frequencies
below 1.9 GHz, such as 0.915 GHz, could barely be transported into the cavity and could
not be utilized in this study. Therefore, a frequency of 2.45 GHz was considered suitable
for this simulation.
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4.1. Effect of Microwave Waveguide

Although microwave irradiation has the advantage of a fast heating rate, there are also
some defects associated with microwave heating, such as uneven temperature distribution.
For oil shale pyrolysis, investigations have demonstrated that the secondary cracking of oil
shale products occurs more easily at high temperatures [44]. To avoid excessive tempera-
tures, changing the number and location of the waveguide may be a solution. The effect
of the waveguide on the electric field of the oil shale is shown in Figure 6. In Figure 6, a
three-view drawing including the left view, right view, and front view of the cavity is shown
to reflect the electric distribution, which directly determines the temperature outcomes. For
waveguide 1, the electric field distribution of the cavity was highly uneven, and its mini-
mum and maximum electric field strengths were 0 V/m and 3.8 × 104 V/m, respectively.
For waveguide 2, the distribution was uneven, and its minimum and maximum electric
field strengths were 0 V/m and 4.5 × 104 V/m, respectively. For the double waveguide,
the distribution seemed to be similar to that of waveguide 2; however, its minimum and
maximum electric field strengths were 0.11 V/m and 2.6 × 104 V/m, respectively, indicat-
ing that the electric field distribution under the double waveguide was more homogeneous
than under the single waveguide. These phenomena indicate that the waveguide has a
significant influence on the electric field of the microwave cavity, and the utilization of a
double waveguide is helpful in obtaining a more uniform electric field.
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Figure 7 shows the electric field and temperature distributions within oil shale. The
electric field strength scope of waveguide 1, waveguide 2, and the double waveguide
were 688–1.24 × 104 V/m, 4.34 × 103–2.34 × 104 V/m, and 2.44 × 103–1.43 × 104 V/m,
respectively. In addition, Figure 7 shows that the thermal field temperature distribution was
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similar to the electric field of the oil shale sample. To better evaluate the thermal uniformity
within oil shale, the coefficient of variance was introduced, as shown in Equation (23).

COV =
1
T

√
1
n

n

∑
i=1

(
Ti − T

)2 (23)

Here, Ti and T denote the individual and average temperatures, respectively. The COV
of the temperature indicates the deviation degree between the point temperature and the
average value; a larger COV value represents a greater thermal heterogeneity. As shown
in Figure 8, the COV curve of waveguide 1 first increased from 0 to 0.55 during 180 s and
then gradually decreased to 0.507 at 350 s. The COV curve of waveguide 2 increased to
0.553 at 70 s, then decreased to 0.437 at 300 s, and finally increased sharply. When a double
waveguide was used in microwave heating, its COV increased to 0.417 until 100 s and
then gradually fell to 0.290. The peak of the COV under the double waveguide was less
than the majority of the COV values under a single waveguide. Therefore, the operating
condition of the double waveguide gained better temperature conformity than that of a
single waveguide.
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4.2. Effect of Sample Position

Double waveguides have been proven to be helpful in decreasing the temperature
uniformity of samples during microwave heating; however, the sample position also
influences its electric and temperature distribution. A schematic of the nine positions of the
heated oil shale sample in the microwave apparatus is shown in Figure 2. It is necessary to
illustrate that a double waveguide was used in this study, and the power was set to 1000 W.

As depicted in Figure 9, the electric field and temperature field of samples in different
locations varied significantly, and the temperature distribution was also consistent with the
electric field distribution. The oil shale at location 6 had the largest electric field strength
and temperature compared to those in the other locations, whereas the oil shale at location 2
exhibited the minimum electric field strength and temperature. However, it is necessary
to consider the effects of the heating efficiency and homogeneity simultaneously. On
the one hand, in Figure 10a, the COV results demonstrate that locations 3, 4, 9, and 6
showed more uniform temperature distributions within the oil shale. On the other hand,
Figure 10b shows the corresponding average temperature of oil shale during 800 s. It
can be concluded that oil shale samples at locations 4 and 6 led to a higher temperature
distribution. Therefore, to simultaneously achieve a high heating efficiency and low COV,
location 4 is the best choice for oil shale pyrolysis.
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4.3. Effect of Microwave Power

Microwave power is an important parameter that influences the heating rate of oil
shale. Moreover, the heating rate plays a significant role in oil shale pyrolysis on account
of its considerable influence on the amount and composition of oil and gas products [45].
During oil shale pyrolysis, transformation efficiency and energy consumption should
be considered simultaneously, and the microwave power can optimized based on the
conditions of the double waveguide and location 4. Figure 11 shows the electric field and
temperature distribution of the oil shale at different microwave powers after irradiation for
10 s. A higher microwave power led to a higher electric field intensity as well as maximum
temperature, which is consistent with the results of many laboratory experiments.
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To better understand the pyrolysis characteristics of oil shale under microwave heating,
Figure 12a demonstrates that the average temperature of oil shale at different microwave
powers had a similar upward trend. The higher the microwave power, the faster the
heating rate. The temperature rise of oil shale could be characterized by “slow-fast”, and
the turning point of the maximum temperature curve occurred at approximately 500 ◦C.
This phenomenon results from the increase in the dielectric constant and loss factor of oil
shale, as shown in Figure 3a. Moreover, as with the transformation of oil shale, there exists
a heat source in exothermic chemical reactions. The pyrolysis rate is defined as the mass
ratio of pyrolyzed kerogen to the original kerogen:

Pyrolysis rate =
Mass of pyrolyzed kerogen

Mass of original kerogen
(24)
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As shown in Figure 12b, once the pyrolysis was started, it could be completed in a
short time, depending on the power value. In other words, a higher microwave power led
to a shorter heating time. The energy consumption is defined as:

Energy consumption = Microwave power × Time (25)

Table 4 shows three energy consumption analysis schemes to illustrate the pyrolysis
effect with varying powers. In Figure 13d, all the curves of the oil shale pyrolysis rate
with energy consumption at different power level resemble an “S” shape, while they have
different slopes. For example, at a power of 500 W, the pyrolysis rate increased gradually
compared with that at other powers before 1,000,000 J. However, after this, the pyrolysis
rate increased rapidly and was the first one to finish the oil shale pyrolysis. When the
power was 2000 W, the curve of the oil shale pyrolysis rate with energy consumption
quickly increased, and the pyrolysis rate was higher than that at other powers before
1,025,000 J; however, the pyrolysis rate increased gradually afterwards. On the whole, a
high power of 2000 W obtained a high pyrolysis rate at the initial stage and a low power
of 500 W obtained a high pyrolysis rate at a later stage. To further analyze this regulation,
Figure 13a–c show the pyrolysis rate changes and COV of oil shale temperature with power
when the energy consumption was 960,000 J, 1,020,000 J, and 1,080,000 J, respectively. The
COV of temperature always increased with microwave power, with the highest value
corresponding to 2000 W and the lowest value corresponding to 500 W. The power of
2000 W yields the highest pyrolysis rate, whereas the lowest rate is obtained at 800 W, as
shown in Figure 13a. As shown in Figure 13b, the power of 2000 W yields the highest
pyrolysis rate, whereas the lowest rate occurs at 1000 W. The power of 500 W yielded the
highest pyrolysis rate, whereas the lowest rate occurred at 1500 W, as shown in Figure 13c.
Based on the above phenomena, it was concluded that a higher power leads to a higher COV,
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which implies that the spatial heterogeneity of the thermal fields increases considerably,
owing to the higher microwave power. The lower power was associated with a lower COV,
consuming less energy than that at a higher power during the pyrolysis process. The higher
power was suitable for achieving a rapid temperature increase, whereas the lower power
was suitable for achieving a high efficiency pyrolysis rate. The essence of this proposed
method is variable microwave power, and it leverages the advantages of both high power
and low power. The groups of 2000 W × 300 s and 500 W × 1085 s will be researched in
the following study.

Table 4. Three energy consumption analysis schemes.

Energy Consumption of 960,000 J

Power (W) 500 800 1000 1200 1500 2000
Time (s) 1920 1200 960 800 640 480

Energy consumption of 1,020,000 J

Power (W) 500 800 1000 1200 1500 2000
Time (s) 2040 1275 1020 850 680 510

Energy consumption of 1,080,000 J

Power (W) 500 800 1000 1200 1500 2000
Time (s) 2160 1350 1080 900 720 540
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pyrolysis under varying energy consumptions: (a) energy consumption of 960,000 J, (b) energy
consumption of 1,020,000 J, (c) energy consumption of 1,080,000 J, and (d) relationship between
pyrolysis rate and energy consumption.
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4.4. Analysis of Products Distribution

After optimizing the waveguide, sample position, and microwave power, the pyrol-
ysis characteristics were analyzed based on the double waveguide, at location 4, with
the variable power heating mode. Figure 14a shows the pyrolysis rate of the group of
2000 W × 300 s + 500 W × 1085 s. In Figure 14b, the profile slope of the average tempera-
ture at 500 W is smaller than that at 2000 W, and the final average temperature is 582.54 ◦C,
which is less than the final average temperature at 2000 W. The COV of the temperature
decreased after 300 s, indicating that the coupled power significantly improved the tem-
perature distribution. The variable power heating mode was better than the single-power
mode in terms of fast heating efficiency and uniform temperature distribution.
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Based on the parameter optimization, Figure 15a shows the kerogen distribution
within the oil shale sample over irradiation times. At 800 s, the minimum concentration
of kerogen was 367 mol/m3 rather than the initial value of 370 mol/m3, revealing that
kerogen started to decompose in the maximum temperature region. The thermal visualiza-
tion showed that as the time increased, the blue area expanded in the entire area of the oil
shale; this phenomenon is a strong direct indication of oil shale pyrolysis. As time went
by, the kerogen under microwave heating transforms into various hydrocarbon chemicals,
which can be categorized into four categories, including heavy oil, light oil, methane,
and non-hydrocarbon gas, according to the reaction kinetics in Table 1. In Figure 15, the
concentrations of the four products were different, but the distributions looked similar. To
quantify the pyrolysis process, Figure 16 shows that a large amount of kerogen decomposi-
tion occurred near 1000 s, and the production of heavy oil and light oil decreased rapidly;
when the heating time was close to 1290 s, a reduction in the concentration was observed,
indicating the occurrence of secondary oil cracking. Additionally, the concentrations of
methane and other non-hydrocarbon gases increased under microwave heating. Based
on the production efficiency, methane has a low economic value, and non-hydrocarbon
gas is considered as waste. Therefore, it is necessary to control the microwave parameters
to optimize oil production. Specifically, the secondary reactions of oil products should be
avoided as much as possible by controlling the temperature distribution of the oil shale.

Several kinds of heating methods for oil shale pyrosis are compared and analyzed
in Table 5, including supercritical carbon dioxide, superheated water steam, in situ com-
bustion, electric heating, and microwave heating. Every approach has its benefits and
drawbacks, and this paper provides guidance for enhancing the pyrolysis efficiency of oil
shale under microwave heating.
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Table 5. The comparison of different heating methods for oil shale pyrolysis.

Type of Heating Benefits Drawbacks References

Supercritical carbon
dioxide

Supercritical carbon dioxide can effectively
extract organic matter from oil shale.

Prolonging the pyrolysis time and
increasing the temperature can lead to the

aggravation of secondary cracking.
[30]

Superheated water
steam

Products have high mobility at high
temperatures.

Oil shale with very low permeability
hinders the entry of high-temperature

steam.
[46,47]

In situ combustion This technology conserves energy and
decomposes the oil shale more thoroughly.

The pyrolysis and combustion process are
extremely difficult to control. [9,48]

Electric heating

Heating by the resistive loss technique is
suited to achieving uniform heating. The
corresponding research started early and

this method is relatively fully studied.

The heating rate is slow and the energy
consumption is very high. [49–51]

Microwave heating The temperature rise is fast and pyrolysis
efficiency is high.

The uniformity of temperature distribution
needs to be improved in the future. This paper

5. Conclusions

A fully coupled three-dimensional electromagnetic-thermal-chemical-hydraulic model
was successfully resolved based on the FEM to research the pyrolysis characteristics of oil
shale irradiated by microwaves. This complex transformation process involves an electro-
magnetic field, heat transfer, mass transfer, and fluid flow. The temperature-dependent
properties of oil shale, including dielectric constant, loss factor, heat capacity, and thermal
conductivity, were considered. According to laboratory experiments, the simulated results
were consistent with the experimental data, thus proving the reliability of the model.

Based on the analysis of the electric field and temperature distribution, the frequency,
waveguide, and sample position were optimized as 2.45 GHz, double ports, and location
4, respectively. The utilization of a double waveguide is beneficial to obtain more a
uniform electric field and heat transfer field. The electric field and temperature field of
the sample in different locations varied significantly from each other, and there was an
optimal location where the highest heating efficiency was obtained, which was on the
left of the cavity center. A higher microwave power contributed to a faster temperature
rise in the oil shale. The higher power was suitable for achieving a rapid temperature
increase, while a lower power was suitable for achieving a high-efficiency pyrolysis rate.
Therefore, a so-called variable power heating mode was proposed to decrease the heating
time and improve the heat uniformity simultaneously during oil shale pyrolysis. The
typical case of double ports, location 4, and variable power heating mode was selected to
further investigate the mechanism of chemical product evaluation. The variable power
heating mode showed better results than the single-power mode in terms of fast heating
efficiency and uniform temperature distribution. Through the analysis of the transformation
production distributions within oil shale, the results indicated that significantly high
temperatures decreased the oil production, owing to secondary reactions. By optimizing
the microwave heating parameters, the temperature distribution of the oil shale could
be controlled, thereby enhancing the oil production. This study provides guidance for
enhancing the pyrolysis efficiency of oil shale under microwave heating.
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