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Abstract: The aim of this manuscript is to introduce solutions to optimize economic dispatch of loads
and combined emissions (CEED) in thermal generators. We use metaheuristics, such as particle
swarm optimization (PSO), ant lion optimization (ALO), dragonfly algorithm (DA), and differential
evolution (DE), which are normally used for comparative simulations, and evaluation of CEED
optimization, generated in MATLAB. For this study, we used a hybrid model composed of six (06)
thermal units and thirteen (13) photovoltaic solar plants (PSP), considering emissions of contaminants
into the air and the reduction in the total cost of combustibles. The implementation of a new method
that identifies and turns off the least efficient thermal generators allows metaheuristic techniques
to determine the value of the optimal power of the other generators, thereby reducing the level of
pollutants in the atmosphere. The results are presented in comparative charts of the methods, where
the power, emissions, and costs of the thermal plants are analyzed. Finally, the comparative results of
the methods were analyzed to characterize the efficiency of the proposed algorithm.

Keywords: economic dispatch and combined emissions; thermal unit; photovoltaic solar generation;
metaheuristics; optimization

1. Introduction

The energy crises that occur worldwide can be managed through the connection of
sustainable and renewable energy systems, which are needed as we attempt to reduce the
use of fossil fuels as populations increase. Interconnected grids can be divided into a power
system structure based on the joint operations to generate and transmit power to the load
demand as operational and technical controls [1–3].

The standard economic load dispatch (ELD) solution seeks to assign the total power
demand among all generators used to achieve the minimum fuel cost [4]. Deterministic
methods applied in the ELD solution are difficult to apply because of the non-continuous,
non-convex, and nonlinear nature of the problem [5,6]. However, new rules have forced
Thermoelectric Power Plant (TPP) to reduce the amount of polluting emissions into the
atmosphere, expanding the ELD issue to the economic combined emissions dispatch
(CEED) created to minimize fuel costs and pollutant emissions such as NOx, SOx, and COx
elements from the TPP. Although the ELD and CEED problems are nonlinear optimization
problems, many heuristic methods have been implemented to solve them, CEED is a multi-
objective optimization [7,8]. The concept of the price penalty factor was proposed by some
researchers to transform the CEED multi-objective issue into a single-objective issue by
unifying the emission cost equations with the fuel cost equations [9,10].

Many techniques have been proposed to solve the ELD problem in power systems [11–13],
and a nonconvex ELD difficulty has been addressed by several hybrid optimization tech-
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niques. According to [14], a technique based on particle swarm optimization with con-
striction factor (CFPSO) was proposed for ELD with valve point effects, which proved to
have fast convergence. In [15], a CEED solution was recommended using the Artificial Bee
Colony (ABC) algorithm. In [16,17] the distribution network reconfiguration was optimized
using the dragonfly algorithm (DA). In [18], the energy balances in the ELD were solved
by constraining its power generation capacity limits using Ant Lion Optimization (ALO).
In [14], multi-objective particle swarm optimization (MOPSO) was performed using a di-
versity preservation mechanism to obtain a wide range of Pareto optimal solutions. Several
hybrid techniques that combine two or more evolutionary optimization metaheuristics can
improve the optimization results used in ELD [19,20].

Different mathematical methods and genetic algorithms (GAs) were applied to solve
the ELD [21], including in studies [22] which applied DE studies and [23] used the multi-
objective DE technique to solve EELD. In [24,25], it was the multi-objective techniques
of NSGA II and Evolutionary Programming used to solve environmental and economic
dispatches. In [7,26], the economic dispatch of a power system included wind and solar
thermal energy. In [27], author considered regulatory, tariff, and economic mechanisms
in distributed generation, for photovoltaic systems connected to the grid. In [28], the no
free lunch (NFL) theorems for optimization were proposed. The NFL theorem states that a
single algorithm does not work equally well in all optimization problems.

The purpose of this manuscript consists of the optimization of the production of elec-
tricity in grid safety standards, in addition to proving the effectiveness of the Differential
Evolution (DE) metaheuristic allied to the shutdown of less efficient engines, obtaining
significant reductions in generation costs and emissions of polluting gases in the atmo-
sphere, maintaining the balance of the electrical grid after the insertion of photovoltaic
solar energy. The study compares four (4) metaheuristic techniques to find the best solution
to the CEED problem.

2. Problem Formulation

To streamline the multicriteria issue of CEED, two objective functions must be con-
sidered: one for oil consumption f 1(Pi) and one for environmental cost f 2(Pi) [29]. The
objective function coefficients are achieved by adjusting the techniques of the curves based
on the generator performance test [30,31].

2.1. Mathematical Model of Generation by Solar Power Plant (g1)

The model of solar power plant generation (SPP) is described in Equation (1) [8,32–34]:

g1
(

Pgsj
)
= Prated

(
1 +

(
Tre f − Tamb

)
∗ alpha

)
∗ Si

1000
(1)

where:

g1 = solar power plant
Pgsj = generated power by the solar plant
Prated = rated power;
Tref = reference temperature;
Tamb = room temperature;
alpha = temperature coefficient; and
Si = incident solar radiation.

With the contribution of the SPP stemming system, the added solar energy is described
in (2) [8,32–34]:

Ss = ∑m
j=1 F1

(
Pgsj

)
×Usj (2)

where Pgsj is the energy available at the jth SPP and Usj indicates the status of the jth SPP,
which is 1 (ON) or 0 (OFF). The cost of the SPP is given by (3) [8]:

Sc = ∑m
j=1 PUCostj × F1

(
Pgsj

)
×Usj (3)
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where PUCostj is the unit cost of jth SPP.

2.2. Mathematical Model of Cost of Thermal Plants (f1)

The principal ELD characteristic is to ascertain the optimum energy demand between
the generating units of the station, minimize the total operational cost, and satisfy one
cluster of restrictions of equality and inequality, which is one of the principal tasks of
energy system optimization. Due to environmental responsibility, ELD was devoted to
a multi-criterion optimization issue of CEED, aiming to reduce the emission of pollutant
gases in the atmosphere [35].

The equation for the fuel consumption of every unit is represented by the quadratic
function in Equation (4), considering the generator output power Pi, given as $/h, as in [4]:

fi(Pi) = ai + biPi + ciP2
i (4)

where, ai bi and ci represent the fuel consumption coefficients of each generating unit.
The problem of minimizing the total cost of a TPP is represented by Equation (5):

Min f1(Pi) = ∑N
i=1 fi(Pi) (5)

where N is the total number of generating units of the TPP and Pi is the output power of
each generating unit.

2.3. Mathematical Model of Emissions of Thermal Plants (f2)

The function of the total thermal station emissions formulated in Equation (6) relates
the emission to the power generated by every generator unit. This function represents the
emission of SO2 and NOx in kg/h, which can be expressed as [4,9,29,36]:

hi(Pi) = αi + βiPi + γiP2
i (6)

where αi βi and γi represent the emission coefficients of all generating units.
Equation (7) represents the total minimizations of the TPP problem.

Min f2(Pi) = ∑N
i=1 hi(Pi) (7)

where N is the total number of generators in the TPP and Pi is the energy output of
each generator.

2.4. Economical Load Dispatch Constrains
2.4.1. Equal Power Constraints

The Equation (8) is expressed as a parity constraint on the nominal power, given the
lower and upper bounds of each unit, following [37,38]:

∑n
i=1 Pi − PD − PL = 0 (8)

where Pi is the nominal power, PD is the power demand, PL is the transmission loss.
Therefore, the total generation should be similar to the power demand, plus the actual

loss in the transmission lines. According to Equation (9):

∑n
i=1 Pi = PD + PL (9)

The restriction on the total power generated in Equation (8) considers the total power
generated by the SPP, that is, Equation (10) [8].

PD + PL −∑n
i=1 Pi −∑m

j=1 Pgsj ×Usj = 0 (10)
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The PL dimensioning is equal to the sum of losses versus power, which have the same
active and reactive power constraints at each bar according to Equation (11) [25]:

PL = ∑n
i=1 Bi P2

i (11)

Transmittance losses are defined as an output generator function arising from the Kron
loss coefficients of Kron’s loss formula, Equation (12) [38,39]:

PL = ∑n
i=1 ∑m

j=1 Pj Bij Pj + ∑n
i=1 Boi Pj + Boo (12)

where Bij, Boi, and Boo are the coefficients of the system transmission loss, and n is the
generator number. The B coefficients can be accurately identified when the actual operating
conditions are close to the base case [38,39].

2.4.2. Generation Constraint

Equation (13) expresses the power of each generating unit by the upper and lower
limits, according to [31,40,41]:

Pmin.i ≤ Pi ≤ Pmax.i (13)

where Pi is the output power of each generating unit and Pmin.i and Pmax.i are the
minimum and maximum power of the generator.

Another constraint that has to be met in a mixed system with photovoltaics is to
maximize the utilization to 80% of SPP capacity installed, owing to the generator instability,
presented in Equation (14) [8]:

∑m
j=1 Pgsj ×Usj ≤ 0.8× SPP (14)

2.5. Optimization Problem

For this issue, the energy generation is calculated by analyzing the SPP capacity in-
stalled; maximum value is being utilized to 80% of the total generation, and then the SPP
energy generation is calculated, applying the function g1 (Pgsj) described in (1). The remain-
ing pendent demand is solved by minimizing the multi-criteria problem in Equation (15):

Min = [ f1(Pi), f2(Pi)] (15)

where f 1(Pi) and f 2(Pi) are the objective functions of the costs and emissions, respectively,
to be optimized.

2.6. Formulation of the Incremental Cost

The incremental cost of oil ($/MWh) is given by Equation (16) [42]:

ICi =
(
2·ai·Pgi + bi

)
(16)

where:

ICi = incremental fuel cost;
ai = actual incremental cost curve;
bi = is an approximate (linear) incremental cost curve;
Pgi = total power generation.

3. Optimization Technique

Despite using different techniques and methods to solve the CEED, new and innova-
tive algorithms are still being proposed for the solution. The main intrinsic motivation for
this is the theorem No Free Lunch (NFL) [43]. The NFL theorem states that a single algo-
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rithm does not work as accurately for all optimization problems. Therefore, it is justified to
search for new, more suitable algorithms and to refine existing algorithms.

To experiment with this theory and seek new results, we used the DA, DE, and ALO
techniques to compare the results of the three techniques to determine the one that can
obtain better solutions to the CEED problem.

� A new swarm intelligence optimization technique called the DA was proposed by [44].
This technique considers the proposal of binary and multi-objective versions. Dragon-
flies are small predators that hunt almost every small insect in nature. An interesting
fact about dragonflies is their unique and rare swarming behavior. Dragonflies group
together for two purposes: the first being hunting (static) and the second being migra-
tion (dynamic swarm). The hunting is in small groups. Dynamic swarms form large
groups and travel long distances [44–47].

� To point out three primitive principles of swarm behavior [44,47]:

# Separation is about preventing static collisions of individuals with other indi-
viduals in the neighborhood.

# The alignment indicates the similar speed of the individuals with that of other
individuals in the neighborhood.

# Cohesion refers to the predisposition of individuals to move toward the center
of mass in the neighborhood.

For any swarm its survival is necessary, so all individuals must be attracted to its food
sources to avoid confrontation with external enemies.

Each of these behaviors is mathematically modeled as follows:
The separation is calculated as follows [44,47]:

Si = −∑N
j=1 X− Xj (17)

where X is the current individual, Xj is the position of the jth neighboring individual, and
N is the number of neighboring individuals.

The positioning is calculated by Equation (18):

Ai =
∑N

j=1 Vj

N
(18)

where Vj denotes the velocity of the jth neighboring individual.
Cohesion is calculated as follows:

Ci =
∑N

j=1 Xj

N
− X (19)

where X is the position of the current individual, N is the number of neighborhoods, and
Xj is the position of the jth neighbor individual.

Attraction to a food source is calculated as follows:

Fi = X+ − X (20)

where X is the location of the current individual and X+ is the position of the food source.
The Equation (21) shows the division to the outside of an enemy individual:

Ei = X− + X (21)

where X is the position of the current individual and X− shows the position of the enemy.
The dragonfly assumes a behavior based on five patterns. To update the positions of

the artificial dragonflies at a search location and simulate their displacements, two vectors
were considered: pitch (∆X) and position (X). The pitch vector is similar to the velocity
vector in PSO, and the DA algorithm is developed based on the structure of the PSO
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algorithm. The pitch vector shows the direction of displacements of dragonflies; however,
the introduced method can be extended to higher dimensions [44,46,47].

� For DE, [48,49] proposed a new encoded evolution algorithm using a fluctuating
point for global optimization and was nominated as DE algorithm. DE has four
main stages: initialization, mutation, crossover, and selection. Many optimization
guidelines should also be adjusted. These guidelines are bonded under the control
guidelines of the common name. There are only three guidelines for the real control
of the algorithm: the differential constant F (or mutation), crossover constant Cr,
and population length Np. The remaining guideline dimensions of issue D measure
optimization task difficulty, and generation maximum number (or iteration) Gen. This
can be suited as an interruption condition, and low and high limit restrictions are
variables that range a viable area [41,48,50].

The ith vector of current population G with size D can be defined by:

→
Xi,G = [X1,i,G, X2,i,G, X3,i,G; . . . ; XD,i,G],

{
i = 0, 1, . . . , Np− 1
j = 1, . . . , D

(22)

Initialization: The initialization of the DE uses Np D-dimensional real-valued parame-
ter vectors to perform random generation of candidate solutions.

Xj,i,0 = Xj,min + randij[0, 1]
(
Xj,max − Xj,min

)
(23)

where randij[0, 1] is a random number, 0 ≤ randij[0, 1] ≤ 1 which is multiplied by the
interval length,

(
Xj,max − Xj,min

)
ensures a distributed sampling of the parameter’s domain

interval
[
Xj,min, Xj,max

]
.

Different approaches with random uniformity are the most common, so they are used
to generate the initial population [50,51].

Mutation: Mutation: Differential mutation adds a random-scale vector subtraction
to a third vector. The vectors of the variable

→
V i,G, also called donors, are obtained by this

operation [50,51]:
→
V i,G =

→
Xri

1,G + F
(→

Xri
2,G −

→
Xri

3,G

)
(24)

where F > 0 is a real number that controls the growth rate of a population. Vectors
→
Xri

1,G,
→
Xri

2,G and
→
Xri

3,G from the current population the samples are randomly, and ri
1, ri

2, ri
3

Are integers, respectively, are chosen from the given interval {1, . . . , Np}. In classical DE,
small F-values are associated with the analysis, which is implied as a strategy if some of the
test solutions are in the area of the global minimum. On the other hand, large F-values are
associated with research, since new variable experimental solutions (donors) incorporate
larger differences from the original population (targets) [50,51].

Crossover: Increases the potential disparity of the population. In the case of the
crossover binomial, the vectors for evaluation Ui,G are produced according to [50,51]:

ui,j,G =

{
vj,i,G i f randi,j[0, 1] ≤ Cr or j = jrand

xj,i,G otherwise
(25)

According to [48], a probability of inheritance between successive generations can be
assumed either as a crossover mutation rate [50,51].
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Selection: Selection may be understood as a form of competition, in line with many
examples that are directly observable in nature. Many evolutionary optimization schemes,
such as DE or GAs, use some form of selection [50].

→
Xi,G+1 =


→
Ui,G i f f

(→
Ui,G

)
≤ f

(→
Xi,G

)
→
Xi,G i f f

(→
Ui,G

)
> f

(→
Xi,G

) (26)

For a selection operation, pairwise selection (elitist selection) is used in the algorithm.
The maximum number of generations Gmax is defined as a stopping criterion [50,51].

� Ant lion, the optimization technique of ant lion, is a stochastic research algorithm
based on a recently developed population propounded by [52] to solve problems of
restricted optimization engineering issues. ALO is inspired by the lifespan of ant lions
(doodlebugs), which belong to the family Myrmeleontidae and the order Neuroptera
(grid of insects with wings). This technique is a free algorithm of the grid and lacks a
baseline for adjustment. Because ALO is a population-based algorithm, the avoidance
of ideal places is inherently high. The ALO algorithm has a high probability of solving
ideal place closeness because of the random loops and roulette swivels. The pursuit
of space exploration in the ALO algorithm is guaranteed by random selection of ant
lions and random loops of ants all around it, and the pursuit of space exploration is
guaranteed by the adaptive shrinkage limits of ant lion traps [53]:

4 The ants random loop
4 Building traps
4 Ants entanglement with traps
4 Catching preys and
4 Traps restoration.

Adult and larval stages are both important stages of the ALO lifespan. Ant lions prey
on the larval and adult phases. The larval period was based on the ALO algorithm. It digs
the sand into a cone-shaped pit, following a circular path, and displaces the sand with its
jaw. After the trap is built, the larva waits for its prey. The trap size differs depending on
the maggots’ hungriness, ant lion, and moon size [53].

The ALO algorithm can also be optimized to issue an EELD [35,53]. This algorithm
is effectively applied to solve many categories of test functions (non-modal, multi-model,
and compounded). The ALO technique is converted to a fast-converted general resolution
owing to the use of the roulette selection method, which is also read with optimization
issues that remain discrete. With different application problems, the use of ALO technique
is valid in comparison with other algorithms such as PSO, DE and DA.

As the ants transit on the pursuit space randomly to find prey, a random loop is
selected to demonstrate the ant’s effort in Equation (27) [35,52,53]:

X(t) = [0, cumsum(2r(t1)− 1), cumsum(2r(t2)− 1), . . . , cumsum(2r(tn)− 1) ] (27)

where cumsum computes the accumulated total, n is the maximum number of iterations, t is
the current iteration, and r(tn) is the stochastic function described in Equation (28) [35,52,53]:

r(t) =
{

1 i f rand > 0.5
0 i f otherwise

(28)

To maintain the random walks of ants inside the search space, the positions of
their walks are normalized using the following min–max normalization described in
Equation (29):

Xt
i =

(
Xt

i − ai
)
×
(
dt

i − ct
i
)

bi − ai
+ ct

i (29)
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where ai and bi are the minimum and maximum of the ith variable of random itera-
tions, respectively, ct

i and dt
i indicate the minimum and maximum ith iteration in the tth

variable, respectively.
The mathematical expression of the trapping of ants in the ant lion pits is given by

Equations (30) and (31) as follows:

ct
m = Ant− liont

n − ct (30)

dt
m = Ant− liont

n − dt (31)

The fittest ant lions were selected using the roulette-wheel method. The sliding of ants
into pits is given by Equations (32) and (33) [35,52,53]:

ct =
ct

I
(32)

dt =
dt

I
(33)

where ct is the minimum of all variables at the tth iteration, and dt the vector including the
maximum of all variables at the tth iteration, and I is a ratio according to Equation (34):

I = 10w (t/S) (34)

where t is the current iteration, S is the maximum number of iterations, and w is a constant
given by Equation (35) [54]:

w =


2 i f t > 0.1 S
3 i f t > 0.5 S
4 i f t > 0.75 S
5 i f t > 0.9 S
6 i f t > 0.95 S

(35)

The ant lion captures the ant when it hits the rock bottom and consumes it. Sub-
sequently, the ant needs to update its position to capture the new prey. This process is
represented by Equation (36).

Antliont
j = Antt

i , i f f
(

Antt
i
)
> f

(
Antliont

j

)
(36)

On what Antliont
i indicates the position jth to the ant lion selected in the iteration,

Antt
i displays the ant position in the iteration, and t indicates the current iteration.
Elitism was used to preserve the best solutions in each procedure. The lion ant result

is treated as elite, where the technique is more apt. The elite should affect the ant at each
step (random movement). For this, each ant is assigned a breeder by the roulette wheel
and elite, which is given by Equation (37) [35]:

Antt
i =

Rt
A + Rt

B
2

(37)

where Rt
A is the random path around the ant lion selected by the roulette method in the

tth iteration, Rt
B is the random trajectory around the elitism of tth e Antt

i indicates the
positioning of the ith ant in the tth iteration.

4. Applied Procedures to Solve the CEED Problem

Actions used to solve the CEED problem:
The first step is the formation of an objective function of the CEED based on the

optimization of Equations (5) and (7); the second is a power integration system, considering
the IEEE-6 bus system; the third step is to apply the DA, DE, and ALO metaheuristic
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techniques to implement their usage guidelines; and the fourth is the progress of the
technique used to obtain results from the energy system.

The CEED impacts were managed as a simultaneous multi-objective optimization
problem. To solve this problem, the techniques must reduce the total cost of fuel consump-
tion and pollutant emissions from the generating units [35,55,56].

We used three meta-heuristic techniques to compare the results obtained and evaluate
which achieved the best result for the CEED problem. In the following example, details of
the implementation of the ALO are provided.

Optimization steps:

Step 1. The main agent of the ALO search, are characterized by the set of ants with random
values.

Step 2. The capacity value of each ant is evaluated using an objective function (Equation
(15)) for each iteration.

Step 3. The ants’ random paths through the search space are expected by the ant lion ant
traps.

Step 4. The position of the ants are evaluated in each iteration and the ones in the best
position are relocated to capture the others.

Step 5. The Lion ant is more agile, as it needs its position updated to catch the ant that
becomes fitter.

Step 6. An elite ant lion can affect the movement of the other ants, regardless of their
displacement.

Step 7. If a lion ant becomes better than the elite, then it is replaced by the new aptitude.
Step 8. Steps 2 to 7 are repeated until the final parameter is satisfied.
Step 9. The position and fitness coordinates of the elite ant lion are replicated as the best

inferences for the overall optimization.

Random trajectories of the ants using Equation (27). In addition to ants, it can be
assumed that ants are hidden somewhere in the search space; to save their positions and
aptitude values, the following matrices are used (38)–(41) [35,52]:

MAnt =


Ant1,1 Ant1,2 Ant1,3 . . . Ant1,d
Ant2,1 Ant2,2 Ant2,3 . . . Ant2,d

. . . . . . . . . . . .
Antn,1 . . . · · · . . . Antn,d


n×d

(38)

where MAnt is the matrix that stores each ant lion position, ALi,j is the value of the jth
dimension of the ith ant lion, n is the number of ant lions, and d is the number of variables.

To evaluate the generating units (ants), objective functions referred to in Equations (4)
and (5) are used in developing the optimization and matrix (38), to keep the value of the
characteristics of all generators:

MOA =


f ([Ant1,1, Ant1,2, · · · , Ant1,d])
f ([Ant2,1, Ant2,2, · · · , Ant2,d])

...
f ([Antn,1, Antn,2, · · · , Antn,d])

 (39)

where MOA is the matrix that maintains the fitness of each ant, Anti,j shows the value of the
jth dimension of the ith, n is the number of ants, and f is the objective function.

To optimize the cost and power generation, matrices (40) and (41) are used:

MAL =


AL1,1 AL1,2 AL1,3 . . . AL1,d
AL2,1 AL2,2 AL2,3 . . . AL2,d

. . . . . . . . . . . .
ALn,1 . . . · · · . . . ALn,d


n×d

(40)
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where MAL stores the position of each ant, ALi,j shows the ALO proportion value j, n is the
number of ants, and d is the number of variables (i.e., generators).

MOAL =


f ([AL1,1, AL1,2, · · · , AL1,d])
f ([AL2,1, AL2,2, · · · , AL2,d])

...
f ([ALn,1, ALn,2, · · · , ALn,d])

 (41)

where MOAL stores the properties of each ALO, ALi,j is the value of the jth dimension of
the jth ALO, n is the number of ants, and f is the objective function of the optimization.

The number of generations of the system involving the solution that will be optimized
shows the results for minimizing the costs and emissions of the contaminant gases, where
it meets the constraints of Equations (8)–(13).

Equation (15) was applied to assess the performance of the CEED, although optimal
costs and emissions were achieved. For inequality restrictions analogous to other tech-
niques, the solutions achieved for any iteration are off-limits, causing the algorithm to
continue until the maximum iteration and best results are obtained [57]. A flowchart of the
ALO method is shown in Figure 1.
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5. Case Study: IEEE 6-Units Test System and 13 Solar Plants

The proposed model satisfied 100% of the demand. For safety reasons, 80% or less
of the SPPs capacity will be used; owing to the instability in energy capitation by the SPP
generators, the rest of the demand will be met by TPP. In terms of the percentage of TPP to
be served, optimization techniques were applied to solve the CEED problem, considering a
test system with six units to meet some demand needs [8]. The selected TPP case study is
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composed of (six) generating units, which present fuel consumption coefficients (a, b, and
c) and minimum (Pmin) and maximum (Pmax) power limits, as listed in Table 1.

Table 1. Fuel cost coefficients for each thermoelectric plant generating unit. Source: [8,58].

Machine
No.

a
($/MW2h)

b
($/MW/h)

c
($/h)

Pmin
(MW)

Pmax
(MW)

1 0.15247 38.53973 756.79886 10 125

2 0.10587 46.15916 451.32513 10 150

3 0.02803 40.39655 1049.32513 40 250

4 0.03546 38.30553 1243.5311 35 210

5 0.02111 36.32782 1658.5696 130 325

6 0.01799 38.27041 1353.27041 125 315

Table 2 lists the emission coefficients of TPP (α, β, and γ) [58].

Table 2. Emission coefficients of the plants. Source: [8,58].

Machine
No.

α

(kg/MW2 h)
β

(kg/MW h)
γ

(kg/h)

1 0.00419 0.32767 13.85932

2 0.00419 0.32767 13.85932

3 0.00683 −0.54551 40.2669

4 0.00683 −0.54551 40.2669

5 0.00461 −0.51116 42.89553

6 0.00461 −0.51116 42.89553

Table 3 presents the power ratings and unit costs of the various SPPs, which are
estimated to be within the established range.

Table 3. Power ratings and rates per unit of SPP. Source: [8].

Plant Prated
(Mw)

Unit Rate
($/kw h)

1 20 0.22

2 25 0.23

3 25 0.23

4 30 0.24

5 30 0.24

6 35 0.25

7 35 0.26

8 40 0.27

9 40 0.27

10 40 0.28

11 40 0.28

12 40 0.28

13 40 0.28

Table 4 covers global solar radiation, exactly like the temperature profiles and Islam-
abad charge for 17 July 2012. The solar radiation aggregated data were generated using the



Energies 2022, 15, 3253 12 of 31

Geospatial Toolkit, the data related to the energy demand of the Islamabad region were
taken off IESCO, and the temperature profile was obtained from [8]. Data on 17 July 2012
were selected, arbitrarily, from the only data available on that day.

Table 4. Solar radiation, energy demand, and temperature for 17 July 2012. Source: [8].

Time Global Solar Radiation (W/m2) Power Demand (MW) Temp. (◦C)

01:00 0 965 30

02:00 0 1142 29

03:00 0 1177 28

04:00 0 1198 28

05:00 5.4 1153 28

06:00 101 1136 -

07:00 253.7 1138 29

08:00 541.2 1060 31

09:00 530.4 1155 33

10:00 793.9 1244 34

11:00 1078 1088 35

12:00 1125.6 1240 36

13:00 1013.5 1135 37

14:00 848.2 1318 37

15:00 726.7 1074 37

16:00 654 1190 38

17:00 392.9 1276 38

18:00 215.1 1154 37

19:00 385 1333 35

20:00 0 1322 34

21:00 0 1269 34

22:00 0 1139 33

23:00 0 1202 32

00:00 0 1291 -

6. Analysis and Discussion of Results

The results obtained from the three simulations were compared with those obtained
in [8]. The proposed model was developed in a computational environment using a
Core i7 machine, 8GB ram, win10 operating system with MATLAB R2015a software. The
control settings used in the simulation were C1 and C2 = 2, r1 and r2 were random numbers
between 0 and 1, and the maximum number of iterations was 1800, obtaining the best results
for 1500, with a fixed initial population of 500 individuals considering a significant increase
in computational cost for a larger number of individuals without major contributions to the
results. Table 5 presents the results obtained in the simulation at 10:00 am, which reached
the total energy demand of 1244 energy.
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Table 5. The simulation presents the results with solar energy for 1244 MW demand at 10:00 a.m.
Source: Authors.

The Simulation Presents
the Results for Solar

Power for 1244 MW at
10:00 A.M.

UG

Khan [8] PSO ALO DA DE

P1 (MW) 120.4479 40.17953733 58.78230624 75.3254182

P2 (MW) 92.2947 0 0 0

P3 (MW) 155.8062 186.2565862 224.4173503 175.175433

P4 (MW) 76.4153 166.5931178 181.9118006 172.529459

P5 (MW) 257.9089 320.8753342 288.6447747 279.292715

P6 (MW) 302.2846 265.7177937 220.5766397 272.121335

Total Thermal Power
(MW) 1005.1576 979.62 973.63 974.44

Solar Power share (MW) 238.825 269.644 269.644 269.644

Total Power (MW) 1243.9826 1249.27 1243.98 1244.09

Fuel cost ($/h) 52,626.00 49,337.05 49,126.17 49,027.83

Emission Reduction 19.20% 21.58% 21.69% 21.67%

When evaluating Table 5, it is noted that the demand of 1244 MW required for the
schedule is achieved by the three optimization techniques, and the algorithm intelligently
verifies the power of the six generators, shutting down with the less powerful ones. With
the application of this technique, we were able to meet the demand efficiently, guaranteeing
all the operating parameters of the system, and reducing fuel consumption and pollutants
in the atmosphere.

We verified that the generator turned off in the simulations was the P2 UG. Even so, the
energy generation did not suffer great variations, providing the stable energy generation
to the system, in addition to enabling its predictive maintenance. On the other hand, the
P1 UG generator presented lower power in the simulations, but in the DE technique, it
exhibited better performance. In the P3 UG generator, the power variations were more
notable in relation to the P1 UG generator when applied to the three techniques. The same
occurs for the other P4, P5, and P6 UG generators.

We obtained the average fuel cost of the techniques (ALO, DA, and DE) compared
to the Khan [8] technique, applied at 10:00 a.m. to meet the demand of 1244 MW, and
achieved a reduction of approximately 6.58% corresponding to $3462.32 in the cost of fuel
with the use of PV solar energy; it was possible to reduce pollutants in the atmosphere
(ALO 21.58%, DA 21.69%, and DE 21.67%). The average reduction in pollutants in the
atmosphere was approximately 21.64%.

Figures 2–5 show the results of the data obtained in Table 5, which represent the values
of power, emissions and fuel costs generated by the techniques (ALO, DA and DE) at 10:00
a.m. demand.
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Table 6 shows the results of the comparative simulation at 11:00 a.m., reaching a total
power demand of 1088 MW.
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Table 6. Results show the comparison with solar energy for demand of 1088 MW at 11:00 a.m.
Source: Authors.

UG Khan [8] PSO ALO DA DE

P1 (MW) 10.1062 79.3219763 41.52797 86.7820923

P2 (MW) 10 0 0 0

P3 (MW) 99.1 0 0 0

P4 (MW) 168.682 120.480886 157.301909 161.562873

P5 (MW) 235.8781 293.56174 262.569286 252.487176

P6 (MW) 246.7809 235.000594 269.032945 226.1967

Total Thermal Power (MW) 770.5472 728.37 730.43 727.03

Solar Power share (MW) 317.471 364.6572 364.6572 364.6572

Total Power (MW) 1088.0182 1093.02 1095.09 1091.69

Fuel cost ($/h) 39,426.00 36,891.78 36,537.91 36,774.07

Emission Reduction 29.18% 33.36% 33.30% 33.40%

When evaluating Table 6, it is noted that the demand of 1088 MW required for the hour
is achieved in the three optimization techniques, and the algorithm intelligently verifies
the power of the six generators by turning off the lowest power generators. With the
application of this technique, we were able to meet the demand efficiently, guaranteeing all
the operating parameters of the system and reducing fuel consumption and pollutants in
the atmosphere.

We verified that the generators turned off in the simulations were P2 and P3 UG;
even so, the energy generation did not suffer great variations, providing the stability of
the energy generation to the system, in addition to enabling predictive maintenance as
the generators are turned off. On the other hand, the P1 UG generator presented lower
power in the simulations, but in the DE technique, it exhibited better performance. In
the P4 UG generator, the power variations were more significant in relation to the P1 UG
generator when applied to the three techniques. The same occurred for the other P5 and P6
UG generators.

Obtaining the average fuel cost of the techniques (ALO, DA, and DE) compared to the
Khan [8] technique, applied at 11:00 a.m. to meet the demand of 1088 MW, we were able to
obtain a reduction of approximately 6.83%, which corresponds to $2691.41 in fuel cost with
the use of PV solar energy. With this optimization, it was possible to reduce pollutants in
the atmosphere (ALO 33.36%, DA 33.30%, and DE 33.40%) and the average reduction in
pollutants in the atmosphere was approximately 33.35%.

Figures 6–9 show the results of the data obtained in Table 6, which represent the fuel
cost values generated by the techniques (ALO, DA and DE) at 11:00 a.m. demand.
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Table 7. Results of comparison with solar energy for demand of 1240 MW at 12:00. Source: Authors.

UG Khan [8] PSO ALO DA DE

P1 (MW) 10.0000 60.5857502 56.0095473 64.3998993

P2 (MW) 10.2191 0 0 0

P3 (MW) 194.9316 172.74449 169.4236 155.009176

P4 (MW) 177.4014 135.063318 152.994586 151.431848

P5 (MW) 224.8683 256.93173 232.337102 246.627089

P6 (MW) 303.5647 238.005412 252.389297 243.248632

Total Thermal Power (MW) 920.9851 863.33 863.15 860.72

Solar Power share (MW) 319.1076 379.2137 379.2137 379.2137

Total Power (MW) 1240.0927 1242.54 1242.37 1239.983

Fuel cost ($/h) 46,762.00 43,635.43 43,690.57 43,393.47

Emission Reduction 25.73% 30.52% 30.52% 30.58%

When evaluating Table 7, it is noted that the demand of 1240 MW necessary for the
schedule is reached in the three optimization techniques, and the algorithm intelligently
verifies the power of the six generators by turning off the less powerful ones. With the
application of this technique, we were able to efficiently meet the demand, guaranteeing all
the operating parameters of the system and reducing the fuel consumption and pollutants
in the atmosphere.

We verified that the generator turned off in the simulations was the P2 UG. Even
so, the energy generation did not suffer great variations, providing the stability of the
energy generation to the system, in addition to allowing its predictive maintenance. On
the other hand, the P1 UG generator presented lower power in the simulations, but in the
DE technique, it exhibited better performance in relation to ALO and DA. In the P3 UG
generator, the power variations were more significant in relation to the P1 UG generator
when applied to the three techniques. The same was observed for the other P4, P5, and P6
UG generators.

Obtaining the average fuel cost of the techniques (ALO, DA, and DE), compared to
the Khan [8] technique, applied at 12:00 to meet the demand of 1240 MW, we obtained a
reduction of approximately 6.82%, which corresponds to $3188.84 in the cost of fuel, with
the use of PV solar energy, it was possible to reduce pollutants in the atmosphere (ALO
30.52%, DA 30.52%, and DE 30.58%), the reduction in the average number of pollutants in
the atmosphere was approximately 30.54%.

Figures 10–13 show the results of the data obtained in Table 7, which represent the
values of power, emissions and fuel costs generated by the techniques (ALO, DA and DE)
at 12:00 demand.
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Table 8 presents the comparative results of the simulation at 13:00, reaching a total
power demand of 1135 MW.
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Table 8. Results of comparison with solar energy for demand of 1135 MW at 13:00 p.m.
Source: Authors.

UG Khan [8] PSO ALO DA DE

P1 (MW) 10.8593 87.5136189 76.5424528 85.1259115

P2 (MW) 118.1312 0 0 0

P3 (MW) 147.9272 0 0 0

P4 (MW) 186.3632 153.984147 179.975248 176.742446

P5 (MW) 150.7713 290.415925 290.251821 276.349213

P6 (MW) 221.0182 268.600735 261.928024 262.053767

Total Thermal Power (MW) 835.0704 800.51 808.70 800.27

Solar Power share (MW) 300.0974 340.056 340.056 340.056

Total Power (MW) 1135.1678 1140.57 1148.75 1140.33

Fuel cost ($/h) 44,136.00 40,408.16 40,689.57 40,322.38

Emission Reduction 26.44% 29.81% 29.60% 29.82%

When evaluating Table 8, it was observed that the demand of 1135 MW necessary
for the schedule was reached in the three optimization techniques, and the algorithm
intelligently checked the power of the six generators by turning off the less powerful
ones. With the application of this technique, we were able to efficiently meet the demand,
guaranteeing all the operating parameters of the system and reducing the fuel consumption
and pollutants in the atmosphere.

We verified that the generators turned off in the simulations were P2 and P3 UG; even
so, the energy generation did not suffer great variations, providing the stability of the
energy generation to the system, in addition to enabling predictive maintenance. On the
other hand, the P1 UG generator presented lower power in the simulations; however, in the
ALO technique, it performed better than the other techniques. In the P4 UG generator, the
power variations were more significant in relation to the P1 UG generator when applied to
the three techniques. The same occurred for the other P5 and P6 UG generators.

Obtaining the average fuel cost of the techniques (ALO, DA and DE), compared to
the Khan [8] technique, applied at 13:00 to meet the demand of 1135 MW, we obtained a
reduction of approximately 8.30% that corresponds to $3662.63 in the cost of fuel, with the
use of photovoltaic solar energy, it was possible to reduce pollutants in the atmosphere
(ALO 29.81%, DA 29.60% and DE 29.82%), the average reduction in pollutants in the
atmosphere was approximately 29.75%.

Figures 14–17 show the results of the data obtained in Table 8, which represent the
fuel cost values generated by the techniques (ALO, DA and DE) at 13:00 p.m. demand.
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Table 9 presents the comparative results of the simulation at 14:00, reaching a total
demand of 1318 MW of power.

Table 9. Results of comparison with solar energy for demand of 1318 MW at 14:00 p.m.
SOURCE: Authors.

UG Khan [8] PSO ALO DA DE

P1 (MW) 65.2834 88.0029047 63.3546866 68.7950098

P2 (MW) 97.2893 78.8123312 74.9684444 60.8853804

P3 (MW) 250 171.876892 158.668584 172.298593

P4 (MW) 107.6407 153.785556 169.725347 169.738537

P5 (MW) 252.7949 235.599762 288.435287 289.768452

P6 (MW) 297.7576 312.66407 279.817291 275.863726

Total Thermal Power (MW) 1070.7659 1040.74 1034.97 1037.35

Solar Power share (MW) 247.1655 284.5935 284.5935 284.5935

Total Power (MW) 1317.9314 1325.34 1319.56 1321.94

Fuel cost ($/h) 55,082.00 53,803.31 52,959.36 52,691.30

Emission Reduction 18.75% 21.47% 21.57% 21.53%

When evaluating Table 9, it is noted that the demand of 1318 MW required for the
schedule was reached in the three optimization techniques, and the algorithm intelligently
checks the power of the six generators and is unable to turn off the generators owing to the
required demand. With the application of this technique, we were able to efficiently meet
the demand, guaranteeing all the operating parameters of the system and reducing the fuel
consumption and pollutants in the atmosphere.

We verified that the P1 and P2 UG generators presented lower power in the simula-
tions, but the ALO technique performed better than the other techniques. In the P3 UG
generator, the power variations were more significant in relation to the P1 and P2 UG
generators when applied to the three techniques. The same occurred for the other P4, P5,
and P6 UG generators.

Obtaining the average fuel cost of the techniques (ALO, DA and DE), compared to
the Khan [8] technique, applied at 14:00 to meet the demand of 1318 MW, we obtained
a reduction of about 3.51% that corresponds to $1930.38 in the cost of fuel, with the use
of PV solar energy, it was possible to reduce pollutants in the atmosphere (ALO 21.47%,
DA 21.57% and DE 21.53%), the average reduction in pollutants in the atmosphere was
approximately 21.52%.

Figures 18–21 show the results of the data obtained in Table 5, which represent the
values of power, emissions and fuel costs generated by the techniques (ALO, DA and DE)
at 14:00 p.m. demand.
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The Table 10 presents the comparative results of the simulation at 15:00, reaching a
total demand of 1074 MW of power.

From Table 10, it is observed that the demand of 1074 MW necessary for the schedule
is reached in the three optimization techniques, and the algorithm intelligently checks the
power of the six generators, regardless of whether it is possible to turn off the less powerful
ones. With the application of this technique, we were able to efficiently meet the demand,
guaranteeing all the operating parameters of the system and reducing the fuel consumption
and pollutants in the atmosphere.

We verified that the generator turned off in the simulations was the P2 UG. Even
so, the energy generation did not suffer great variations, providing the stability of the
energy generation to the system, in addition to allowing its predictive maintenance. On the
other hand, the P1 UG generator presented lower power in the simulations, but in the DA
technique, it showed better performance in relation to ALO and DE. In the P3 UG generator,
the power variations were more significant in relation to the P1 UG generator when applied
to the three techniques. The same occurred for the other P4, P5, and P6 UG generators.
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Table 10. Results of comparison with solar energy for demand of 1074 MW at 15:00 p.m.
Source: Authors.

UG Khan [8] PSO ALO DA DE

P1 (MW) 82.7064 72.2365132 83.3714766 68.5854703

P2 (MW) 60.696 0 0 0

P3 (MW) 249.2579 109.101221 152.882149 146.602609

P4 (MW) 96.2554 164.950939 125.772343 143.316844

P5 (MW) 182.7257 219.94956 231.070386 239.300268

P6 (MW) 190.6486 266.531475 248.983057 232.386728

Total Thermal Power (MW) 862.29 832.77 842.08 830.19

Solar Power share (MW) 211.7604 243.827 243.827 243.827

Total Power (MW) 1074.0504 1076.60 1085.91 1074.02

Fuel cost ($/h) 45,057.00 42,554.83 42,856.77 41,985.64

Emission Reduction 19.72% 22.65% 22.45% 22.70%

Obtaining the average fuel cost of the techniques (ALO, DA, and DE), compared to
the Khan [8] technique, applied at 15:00 to meet the demand of 1074 MW, we obtained a
reduction of approximately 5.75%, which corresponds to $2591.25 in the cost of fuel. With
the use of PV solar energy, it was possible to reduce pollutants in the atmosphere (ALO
22.65%, DA 22.45%, and DE 22.70%), the average reduction in pollutants in the atmosphere
was approximately 22.60%.

Figures 22–25 show the results of the data obtained in Table 5, which represent the
values of power, emissions and fuel costs generated by the techniques (ALO, DA and DE)
at 15:00 p.m. demand.
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It can be seen in the graphs of the Pareto Front figures (Cost× Emissions), for example,
Figure 25, that the curves are inversely proportional, therefore, a multi-objective problem
is configured.

Table 11 presents the simulated metaheuristic techniques from 10:00 a.m. to 15:00 p.m.
and the results achieved by each technique. We observed that the DE technique achieved
the best fuel cost reduction five times in the six simulations, DA obtained the second-best
result, ALO was in third place, and obtained better results only on PSO.

Table 11. Comparison of total cost. SOURCE: Authors.

Time Hours
PSO ALO DA DE

Fuel Cost ($/h) Fuel Cost ($/h) Reduction % Fuel Cost ($/h) Reduction % Fuel Cost ($/h) Reduction %

10:00 52,626.00 49,337.05 6.25 49,126.17 6.65 49,027.83 6.84

11:00 39,426.00 36,891.78 6.43 36,537.91 7.33 36,774.07 7.33

12:00 46,762.00 43,635.43 6.69 43,690.57 6.57 43,393.47 7.20

13:00 44,136.00 40,408.16 8.45 40,689.57 7.81 40,322.38 8.64

14:00 55,082.00 53,803.31 2.32 52,959.36 3.85 52,691.30 4.34

15:00 45,057.00 42,554.83 5.55 42,856.77 4.88 41,985.64 6.82

Total 283,089.00 266,630.56 5.81 265,860.34 6.09 264,194.69 6.67

The proposed algorithms maintained the generators at their optimal power to obtain
better efficiency at all times. The new proposal shows that among the techniques used, the
DE technique was the best, guaranteeing the reduction in fossil fuel use by 6.67%, corre-
sponding to $18,894.31, DA reduction by 6.09%, corresponding to $17,228.66, ALO obtained
the smallest reduction 5.81%, corresponding to $16,458.44, the results were compared with
the PSO technique.

During the simulations, the greatest reduction occurred at 13:00 p.m. with 8.64% and
the smallest reduction occurred at 14:00 p.m. with 4.34%.

Figure 26 shows the results of the data obtained in Table 11, in which the general
fuel cost obtained between 10:00 a.m. and 15:00 p.m., achieves the best performance (cost
reduction) with the DE technique.
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7. Conclusions

Aiming to reliably show alternatives to supply the generation of energy has been
one of the research objectives for several years. Thus, this work is a viable solution for
sustainable clean energy, responsible for solving the problem of optimization of CEED using
a hybrid system composed of TPP and photovoltaic generation. By choosing photovoltaic
plants to meet the energy demand, a cleaner production with less environmental impact
was achieved, contributing to a decrease in contaminants released into the atmosphere. The
new method intelligently checks the capacity of the generators in use and, depending on
the demand requested for the time, switches off the least efficient thermal generator. With
the application of these techniques, it is possible to meet the energy demand efficiently,
guarantee all the operating parameters of the system, reduce fuel costs, and reduce pollutant
emissions. Thus, the application of metaheuristics to optimize CEED proved to be efficient
and reliable with excellent results. The new proposal shows that among the techniques
used, DE was the method that presented the best results, guaranteeing a reduction in the
use of fossil fuel by 6.67%, corresponding to $18,894.31. The DA also obtained a reduction of
6.09% corresponding to $17,228.66, while ALO obtained 5.81% corresponding to $16,458.44.
These results were compared with the results of Khan simulations, which used PSO. The
results achieved using the ALO, DA, and DE techniques demonstrate the robustness of the
application of these algorithms in optimization problems.
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