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Abstract: This paper investigates an adaptive dynamic programming (ADP)-based energy manage-
ment control strategy for a series-parallel hybrid electric vehicle (HEV). This strategy can further
minimize the equivalent fuel consumption while satisfying the battery level constraints and vehicle
power demand. Dual heuristic dynamic programming (DHP) is one of the basic structures of ADP,
combining reinforcement learning, dynamic programming (DP) optimization principle, and neural
network approximation function, which has higher accuracy with a slightly more complex structure.
In this regard, the DHP energy management strategy (EMS) is designed by the backpropagation
neural network (BPNN) as an Action network and two Critic networks approximating the control
policy and the gradient of value function concerning the state variable. By comparing with the
existing results such as HDP-based and rule-based control strategies, the equivalent consumption
minimum strategy (ECMS), and reinforcement learning (RL)-based strategy, simulation results verify
the robustness of fuel economy and the adaptability of the power-split optimization of the proposed
EMS to different driving conditions.

Keywords: dual heuristic dynamic programming (DHP); hybrid electric vehicle (HEV);
backpropagation neural network (BPNN); energy management strategy (EMS)

1. Introduction

Environmental pollution and a shortage of petroleum resources are urgent problems
the world faces. It promotes reducing petroleum demand and exhaust emission to become
the top priority for the automobile industry. In recent two decades, automotive and
control scholars have made many achievements in energy-saving research on hybrid and
electric vehicles [1,2]. It has been demonstrated that the powertrain type, component
configuration, and energy management strategy (EMS) play a crucial role among numerous
indicators affecting the performance of hybrid and electric vehicles [3]. Accordingly, various
powertrain systems and topologies of hybrid electric vehicles (HEVs) are assessed [4,5].
The numerous solutions to the energy management control problem are investigated to
improve the fuel economy of HEVs [1,3,6].

According to the main framework of energy management control, the EMS for HEV
can be categorized into rule-based control strategy, optimization-based control strategy,
and learning-based control strategy.

The deterministic rule-based (RB) EMSs are the first control method applied to HEVs.
The rules are derived from heuristic and engineering knowledge to operate HEVs’ pow-
ertrains without prior knowledge of predefined driving cycles [7]. Although the control
structure is simple and easy to realize, it is not easy to fully play the role of HEV to reduce
fuel consumption under different driving conditions [8,9]. The fuzzy logic rule-based
control strategy is another type of RB EMS, which uses a fuzzy reasoning mechanism to re-
place the original deterministic logic rules. Similarly, the system action of the conventional
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fuzzy logic rule-based control strategy needs to be determined through the experience and
intuition of humans, so the control performance is also difficult to guarantee. Thereby, RB
energy management control strategies with optimized threshold parameters [8] or fuzzy
reasoning using an optimization algorithm [9] are developed to enhance adaptability to
driving conditions and improve fuel economy.

The optimization-based EMS realizes the power demand distribution through the
optimal solution of the dynamic optimal control problem with the physical constraint
conditions transformed from the energy management control problem of HEVs. Therefore,
when driving conditions are completely known, there is a global optimization strategy for
HEV energy management control; further, the optimal fuel economy can be obtained theo-
retically for the whole route. Two typical methods deriving the global optimization strategy
are dynamic programming (DP) [10,11] and Pontryagin minimum principle (PMP) [12,13].
The deterministic DP-based control strategy entirely depends on specific driving condi-
tions. Furthermore, it is time-consuming and has a heavy calculation burden. As a result,
the DP-based EMS is always used as a benchmark strategy for the designed EMS. Mean-
while, various measures are proposed to achieve the online implementation of DP-based
energy management, such as the stochastic dynamic programming (SDP) optimization
approach [14]. Similarly, it is also challenging to achieve the accurate PMP-based EMS
in an actual vehicle due to the heavy computational burden and the uncertainty of the
future vehicle driving cycle. In this regard, the equivalent minimum fuel consumption
strategy (ECMS) [15–17] emerges, which belongs to the category of real-time optimization.
When the equivalence factor (EF) balancing the electrical energy and the fuel energy in
the ECMS is linked to the optimal costate of PMP, ECMS is regarded as a realization of
PMP-based global optimization problem over the whole of the driving cycle. On the other
hand, model predictive control (MPC) is also an apt real-time optimization strategy for
handling the energy management control problem of HEVs [18]. There are two challenges
in MPC energy management design that need attention: accuracy of the prediction model
and real-time online optimization solution in the horizon time domain. For these purposes,
a variety of vehicle speed prediction models [19–21] and optimal solution methods [22–24]
are proposed and integrated into the MPC-based EMS frameworks.

The learning-based EMSs are derived from machine learning algorithms that have
achieved remarkable progress in recent years. Learning-based control strategies can solve
the control problems of complex systems that are difficult to be solve with traditional
control methods. On this basis, learning-based control strategies such as artificial neural
networks (ANNs) and reinforcement learning (RL) have been proposed for control design
in the EMSs of HEVs. For example, an intelligent power controller for power-split of HEV
is proposed in [25], which is composed of three neural networks (NNs). The NN-based
controller, trained offline, needs to use a large amount of data and cannot be applied
online under random driving conditions. RL can solve this problem. For example, two
EMSs based on RL, namely Q-learning and Dyna, are proposed in [26]. An RL-enabled
predictive control strategy with a velocity predictor is proposed in [27] for a parallel HEV.
However, these RL algorithms also have problems with the extensive computation and long
time consumption when solving complex energy management problems. In this regard,
several deep Q-learning (DQL)-based EMSs are developed [28–30], where the NN is used
to approximate the Q value, resulting in reduced fuel consumption and training duration.
Although these DQL-based methods are continuous in state space, the control action space
still needs discretization. Consequently, EMSs are proposed based on Deep Deterministic
Policy Gradient (DDPG) with continuous action space tasks [31,32].

From the research on the EMS design, it can be found that the DP algorithm is the most
effective method in terms of the global optimality of the solution. However, DP’s strict
requirements for future information and computational burden limit its practical real-time
application. Fortunately, modern adaptive/approximative dynamic programming (ADP)
emerges, which is DP, RL, and NN techniques all in one, resulting in ADP effectively solving
the dimension disaster problem of DP. Meanwhile, the ADP algorithm has a similar idea to
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RL, but its structure is more straightforward than RL [33,34]. ADP has relevant applications
in the energy management problems of new energy vehicles, such as for the electric vehicle
(EV) commercial parking lots [35] and for EV charging stations [36]. Moreover, the heuristic
dynamic programming (HDP), a typical control structure of the ADP, has been applied
to online EMS of HEVs [37–39]. Dual heuristic dynamic programming (DHP), another
typical control structure of the ADP, has substantial benefits in performance over HDP and
develops more and more advantages as the number of state variables grows, which has
been verified in early simulations studies [33].

Motivated by this, this paper proposes a DHP-based real-time EMS for a series-parallel
HEV, to further minimize the equivalent fuel consumption while satisfying the battery
level constraints and vehicle power demand. DHP approximates the derivative of the
performance index function concerning the state variable in the dynamic programming
equation. Compared with the HDP directly approximating the performance indicator
itself, and the RL estimating the value function, the DHP can obtain a value function
that is closer to the optimal value. The backpropagation neural network (BPNN) acts as
the action and critic functions. Cost-to-go is utilized for training the action network. A
dual heuristic adaptive critic design is used to update the weights of the critic network in
real-time. Compared with the existing methods, this paper mainly has two contributions.
Firstly, a DHP-based control strategy is proposed for HEVs, which uses the high precision
of the DHP to update the network weights in real-time according to the current driving
information to obtain the optimal control and reduce the energy consumption without
prior knowledge. Next, the network structure of the action network is adjusted. The added
hidden layer nodes make the grid fit the control variables more accurately and make the
rate of network weights convergence faster.

The rest of the paper is organized as follows. Section 2 presents the model of HEV
and the energy management problem. Section 3 designs a real-time DHP-based energy
management control strategy. Section 4 verifies the effectiveness and advantage of the
proposed EMS of HEVs by the simulation comparisons with other existing EMSs. The final
section is conclusions.

2. HEV Model and Problem Description

A series-parallel HEV with a planetary gear set is taken as the research object to com-
plete the design of the EMS for HEVs. The configuration of the HEV system is illustrated
in Figure 1, which is adapted from ref. [40]. The powertrain architecture mainly consists
of a planetary gear set, an internal combustion engine (ICE), a motor, a generator, and a
battery pack. The generator connects to the sun gear, the engine connects to the carrier gear,
and the motor connects to the ring gear. The basic specifications for this HEV are listed in
Table 1, as in ref. [14].

Figure 1. Powertrain configuration of HEV.
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Table 1. Physical parameters of HEV in simulation.

Parameter [Symbol] Specification Unit

Gross vehicle weight [M] 1460 [kg]
Tire radius [Rtire] 0.2982 [m]
Frontal area [A] 3.8 [m2]
air density [ρ] 1.293 [kg/m3]
drag coefficient [Cd] 0.33 [-]
coefficient of rolling resistance [µr] 0.015 [-]
transmission efficiency of differential gear [η f ] 0.97 [-]
Max power 51 [kW ]
Motor max power 50 [kW]
Generator max power 30 [kW]
Final differential gear ratio 4.113 [-]
Sun gear teeth number [Rs] 30 [-]
Ring gear teeth number [Rr] 78 [-]
Max charge capacity [Qbatt] 6.5 [Ah]

2.1. Powertrain Model

Serial–parallel HEVs distribute power using planetary gears. According to the me-
chanical connections between the gears, there are the following relations:{

(Rr + Rs)ωc = Rrωr + Rsωs
Tr =

Rr
Rs+Rr

Tc, Ts =
Rs

Rs+Rr
Tc

(1)

where R, ω and T denote the radius, speed and torque of the gears, respectively. s, c, and r
in the subscript represent the sun gear, carrier gear, and ring gear, respectively.

The dynamic with respect to the rotational speeds of generator, engine and motor can
be obtained from Newton’s laws:

Jgω̇g = Ts + Tg
Jeω̇e = Te − Tc

Jmω̇m = Tm + Tr − Ttrac
g f

(2)

where J denotes the inertia. g, e, and m in the subscript represent generator, engine, and
motor, respectively. Ttrac denotes the torque on the axle of the differential gear, and g f
denotes the final gear ratio.

Assuming that the connecting shafts are rigid, the following speed relationships hold:

ωc = ωe, ωr = ωm, ωs = ωg, ωm =
g f

Rtire
v (3)

The dynamics of the vehicle velocity is modeled as:

Mv̇ =
η f Ttrac − Tbr

Rtire
−Mg(µr cos θ + sin θ)− 1

2
ρACdv2 (4)

where M and g denote the vehicle mass and the gravity acceleration, respectively. Tbr is
the friction brake torque. η f is the transmission efficiency of differential gear; µr is the
coefficient of rolling resistance; ρ is air density; A is frontal area of vehicle; Cd is drag
coefficient; and θ is road angle. Rtire is the tire radius. v is the vehicle velocity.

Fuel consumption is one term of the cost function, which is measured by the fuel mass
flow rate ṁ f and is a function about engine torque and engine speed:

ṁ f = BSFC(ωe, Te) · Te ·ωe · 10−3 · ∆t/3600 (5)
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where ∆t is sample time. BSFC is brake specific fuel consumption, which can usually
be described by a mapping of engine torque and engine speed. For example, the BSFC
diagram of a gasoline engine is shown in Figure 2 [14].

Figure 2. BSFC map of a gasoline engine.

2.2. Battery Model

In the driving process, the battery state of charge (SOC) of the non-plug-in HEV needs
to maintain near the initial value, and the final value is equal to its initial value. Capturing
energy from braking charges the battery, and the electricity converted from the excess
engine power also charges the battery. Like fuel consumption, electricity consumption is
calculated by the instantaneous rate of change in the battery’s internal energy:

Pelec = Uoc · Ibatt = −Uoc ·Qbatt · ṠOC (6)

where Uoc, Ibatt and Qbatt are battery open circuit voltage, current and maximum charge
capacity, respectively. The instantaneous change rate of SOC can be expressed as:

˙SOC =
−Uoc −

√
U2

oc − 4RbPbatt
2QbattRb

(7)

where Rb is battery resistance, Pbatt is battery power. Both Uoc and Rb can be fitted as
functions of SOC. The following relationship can be found:

Pbatt = ηkm
m Tmωm + η

kg
g Tgωg (8)

where ηm and ηg denote the efficiency of motor and generator, respectively, and km, kg can
be given by:

ki = −1, dischraging; or 1, charging, i = m, g (9)

2.3. Energy Management Optimization Problem

Energy management optimization control for the HEV is to ensure the minimization of
the energy consumption during the whole journey while normal drivability of the vehicle.
The energy consumption of HEV mainly includes fuel consumption and electric energy
consumption, so the optimization goal is to minimize the equivalent fuel consumption.
Accordingly, the optimization problem is formulated as follows.
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To find the optimal control policy u∗(t) such that:

J∗(t) = min
u

{
J(t) =

tend−1

∑
i=t

γi−t ·Q(x(i), u(i), i)

}
, t ∈ [t0, tend − 1] (10)

subject to the dynamic constraint condition SOC(t + 1) = SOC(t) + ∆t · −Uoc−
√

U2
oc−4Rb(η

km
m Tmωm+η

kg
g Tgωg)

2QbattRb

v(t + 1) =
∆t(η f Ttrac−Tbr)

M·Rtire
− g(µr cos θ + sin θ) · ∆t− 1

2M ρACdv2 · ∆t + v(t)
(11)

and the physical constraint conditions

SOCmin ≤ SOC ≤ SOCmax
ωe_ min ≤ ωe ≤ ωe_ max
ωm_ min ≤ ωm ≤ ωm_ max
ωg_ min ≤ ωg ≤ ωg_ max
Te_ min(ωe) ≤ Te ≤ Te_ max(ωe)
Tm_ min(ωm) ≤ Tm ≤ Tm_ max(ωm)
Tg_ min(ωg) ≤ Tg ≤ Tg_ max(ωg)

(12)

where 0 < γ ≤ 1 is the discount factor, λ is the weight factor, tend is the total driving time.
The state variable x = [v SOC]T and the control input u = [Tm ωg]T . The instantaneous
energy consumption Q is described as:

Q(t) = BSFC · Te ·ωe · ∆t× 10−3/3600 + λ · Pelec · ∆t · 3.6× 10−3 (13)

with

Pelec =
U2

oc−Uoc
√

U2
oc−4RbPbatt(ωg ,Tm ,v)

2Rb
,

Pbatt(ωg, Tm, v)=ηkm
m Tm ·

g f
Rtire

v+η
kg
g

[
Pdem−Tm ·

g f
Rtire

v−Te(
Rs

Rr+Rs
ωg+

Rr
Rr+Rs

g f
Rtire

v)
]
.

(14)

As a consequence, the optimal control u∗(t) is determined by solving the minimum of
J(t).

u∗(t) = arg limu(t){J(t) = ∑tend−1
i=t γi−t ·Q(i)}

= arg limu(t){J(t) = Q(t) + γ · J∗(t + 1)}
= arg limu(t){J(t) = Q(t) + γ ·Q(t + 1) + γ2 · J∗(t + 2)}
= . . .
= {u∗(t), . . . , u∗(tend − 1)}

(15)

According to Bellman’s equation, it can be known that if J∗(t+ 1) in the above equation
is known at time t, the value of u∗(t) can be calculated by the DP method. J∗(t + 1)
represents the minimum energy consumption from the time t + 1 to the final driving
time tend of the vehicle. However, to obtain J∗(t + 1), it is necessary to know the driving
information of the time t + 1 to the final driving time tend in advance. DP is difficult to
achieve energy management control under unknown driving conditions. In addition, DP
utilizes the backward iterative algorithm to obtain the optimal solution, which requires a
large amount of calculation and takes a long time.

ADP is developed based on DP, and its idea is consistent with the Actor–Critic frame-
work in RL. The NN is used to replace the action model and critic functions. The critic
network outputs the approximate value Ĵ(t + 1) of J∗(t + 1) through inputting state vari-
ables, and the action network outputs the approximate value û(t) of u∗(t). In this process
of obtaining J∗(t + 1), the ADP method updates the network weight by calculating the
error value and optimizes the parameters of the nonlinear function continuously to render
Ĵ(t + 1) gradually to approach J∗(t + 1). Based on this, the output û(t) of the action net-



Energies 2022, 15, 3235 7 of 19

work can be seen as u∗(t), which is just the optimal solution in the DP. This control strategy
does not require the driving information in advance and allows energy management of the
HEV to be online and in real-time. Therefore, this paper designs a real-time EMS of HEV
using the DHP method, detailed in the next section.

3. Design of DHP-Based Real-Time EMS

The diagram structure of the designed DHP-based real-time energy management
control system of the HEV is shown in Figure 3.

Figure 3. Structure of DHP-based real-time energy management control system of HEV.

The DHP-based real-time EMS is comprised of the speed prediction for obtaining
the power demand of the vehicle and the DHP algorithm for the power distribution. The
speed prediction model is established by the BPNN offline trained by history traffic data. A
PID-type driver model obtains the power demand (traction torque of the vehicle wheel).
The DHP algorithm structure includes an action network (AN), a dynamic model, and two
critic networks, CN1 and CN2. AN describes the mapping between the state x(t) and the
approximate û(t), CN1 describes the mapping between the state x(t) and the derivative of

performance indicator J to state x, ∂ Ĵ(t)
∂x(t) , and CN2 similarly describes the mapping between

the state x(t + 1) and ∂ Ĵ(t+1)
∂x(t+1) . The dynamic model represents the HEV model by function

relation, which calculates the state value x(t + 1) at the next moment by inputting the
approximate value û(t) of the control value.

In the DHP algorithm structure, the error between ∂ Ĵ(t)
∂x(t) and ∂Q(t)

∂x(t) +
∂γ Ĵ(t+1)
∂x(t+1) is used to

train CNs parameters. This process is executed in a cycle when the HEV is running, and

after training the network continuously, ∂ Ĵ(t)
∂x(t) =

∂Q(t)
∂x(t) +

∂γ Ĵ(t+1)
∂x(t+1) is obtained. At this time,

the output û(t) of AN can be regarded as the optimal control value u∗(t), and the output
∂ Ĵ(t)
∂x(t) of CN1 can be regarded as the optimal co-state ∂J∗(t)

∂x(t) . Where Ĵ(t) can be regarded
as the optimal cost function J∗(t). It is worth noting that CN1 and CN2 update weight
parameters synchronously, and the two networks are the same. In this control process, the
idea and process of this strategy of constantly adjusting network parameters of AN and
CN is similar to the RL strategy.

BPNN possesses strong nonlinear fitting and self-learning abilities. Based on this
characteristic, BPNN is selected to construct the prediction model, AN, and CN. The
detailed design of the speed prediction model, AN, and CN will be introduced below.

3.1. Speed Prediction Model

The speed prediction model adopts the BPNN structure [41] shown in Figure 4.
The objective function of the network can be expressed as
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Y = F(X)
X = [vt−∆H , . . . , vt−1, vt]
Y = [vt+1, vt+2, . . . , vt+∆P]

(16)

where F represents the objective function of neural network training, ∆P and ∆H are the
predict horizon and input horizon, respectively.

Figure 4. Speed prediction model structure.

Many historical vehicle speeds were used to train the BPNN offline, and then the
trained network was used to predict the HEV speed online. When the BPNN model is used
to predict the speed online, the current speed and the speed of the several previous instants,
namely the historical speed sequence, are used as inputs into the speed prediction model to
obtain the speed of the prediction sequence. The training set of the speed prediction model
is from the actual commuting speed data collected on conventional routes in urban traffic,
which is provided by JSAE-SICE benchmark problem 2, see [42].

In the application of speed prediction in this paper, only the speed at the next instant
needs to predict, so the output sets as vt+1.

3.2. Design of Critic Network

Figure 5a shows the BPNN structure of CN. Where the input layer has two nodes of
two-state values of HEV, the hidden layer number of the network is set as one with five

nodes, and the output layer has one node of the output value ∂ Ĵ(t)
∂x(t) . The transfer functions

of the hidden and output layers are the tansig and purelin functions, respectively. Thus,
the nonlinear function of CN can be described as:

c1(t) = x(t)×Wc1(t)
c2(t) = 1−e−c1(t)

1+e−c1(t)

∂ Ĵ(t)
∂x(t) = c2(t)×Wc2(t)

(17)

where x(t) = [v, SOC], c1 and c2 are the inputs and outputs of hidden layer nodes. Wc1
and Wc2 represent the weight matrices from the input layer to the hidden layer and from
the hidden layer to the output layer, respectively, with the structure as follows:

Wc1 =

[
W11(t) W12(t) W13(t) W14(t) W15(t)
W21(t) W22(t) W23(t) W24(t) W25(t)

]
(18)

WT
c2 =

[
W11(t) W21(t) W31(t) W41(t) W51(t)
W12(t) W22(t) W32(t) W42(t) W52(t)

]
(19)
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The purpose of training CN is to keep the actual value ∂Q(t)
∂x(t) +

∂γ Ĵ(t+1)
∂x(t+1) approaching

the target value ∂ Ĵ(t)
∂x(t) . Therefore, the error function of CN can be defined as the difference

between the target value and the actual value, i.e.,

ec(t) =
∂ Ĵ(t)
∂x(t)

− ∂Q(t)
∂x(t)

− γ · ∂J∗(t + 1)
∂x(t + 1)

(20)

To make the value of the error function converge to 0, let:

Ec(t) =
1
2

e2
c (t) ≤ εc (21)

where εc is a default error value very close to 0, Ec is used to train network weights. In
order to achieve this goal, we chose the gradient descent algorithm to train Wc1 and Wc2. If

let J̇(t) = ∂ Ĵ(t)
∂x(t) , the update of Wc1 and Wc2 are calculated as follows:

∆Wc1(t) = ηc · [− ∂Ec(t)
∂Wc1(t)

]
∂Ec(t)

∂Wc1(t)
= ∂Ec(t)

∂ J̇(t) ·
∂ J̇(t)
∂c2(t)

· ∂c2(t)
∂c1(t)

· ∂c1(t)
∂Wc1(t)

Wc1(t + 1) = Wc1(t) + ∆Wc1(t)

(22)


∆Wc2(t) = ηc · [− ∂Ec(t)

∂Wc2(t)
]

∂Ec(t)
∂Wc2(t)

= ∂Ec(t)
∂ J̇(t) ·

∂ J̇(t)
∂Wc2(t)

Wc2(t + 1) = Wc2(t) + ∆Wc2(t)

(23)

where 0 < ηc ≤ 1 is the learning factor.

Figure 5. The BPNN structures of CN and AN. (a) CN. (b) AN.

3.3. Design of Actor Network

Figure 5b shows the structure of AN. In the same way, we use BPNN to design AN.
The hidden layer number of AN is one in which the input layer has two nodes of the
two-state of HEV, the hidden layer has ten nodes, and the output layer has two nodes of
the control values û(t). Experiments show that the network has the best effect when the
number of hidden layer nodes is 10. The transfer functions of the hidden layer and output
layer are consistent with CN. Thus, the nonlinear function of AN can be described as:

a1(t) = x(t)×Wa1(t)
a2(t) = 1−e−a1(t)

1+e−a1(t)

û(t) = a2(t)×Wa2(t)
(24)
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where û(t) = [Tm, ωg], a1 and a2 are the inputs and outputs of hidden layer nodes. Wa1
and Wa2 represent the weight matrices from input layer to hidden layer and from hidden
layer to output layer, respectively.

According to the principle of optimality, the optimal control should satisfy the neces-
sary condition of first-order differential, i.e.,

∂J∗(t)
∂u(t)

=
∂Q(t)
∂u(t)

+
∂γ · J∗(t + 1)

∂u(t)
(25)

so, the optimal control can be obtained:

u∗(t) = arg lim
u(t)

{∣∣∣∣∂J∗(t)
∂u(t)

− ∂Q(t)
∂u(t)

− ∂γ · J∗(t + 1)
∂x(t + 1)

· ∂x(t + 1)
∂u(t)

∣∣∣∣} (26)

where ∂γ·J∗(t+1)
∂x(t+1) is the optimal co-state, which can be obtained directly from the output of

CN2, and ∂x(t+1)
∂u(t) can be obtained from the input–output relation of the dynamic model.

In this paper, we adopt the optimization method to find the optimal control value. In

the process of network update iteratively, i is set as the number of iterations. For every ∂ Ĵ(i)
∂x(i)

and ∂ Ĵ(i+1)
∂x(i+1) of CN at a certain time, search for u∗(i) until getting the optimal control at that

time. Therefore, the update process for Wa1 and Wa2 are as follows:

Ea(t) =
1
2
[u∗(t)− û(t)]2 ≤ εa (27)

{
∆Wa1(t) = ηa ·

[
− ∂Ea(t)

∂Wa1(t)

]
Wa1(t + 1) = Wa1(t) + ∆Wa1(t)

(28)

{
∆Wa2(t) = ηa ·

[
− ∂Ea(t)

∂Wa2(t)

]
Wa2(t + 1) = Wa2(t) + ∆Wa2(t)

(29)

where 0 < ηa ≤ 1 is the learning factor. εa is a predetermined error value very close to 0.

3.4. DHP-Based Real-Time EMS

The specific implementation process of the DHP-based EMS algorithm framework in
Figure 3 is as follows:

(1) Initialize HEV parameters and initialize AN and CNs parameters.
(2) Input the next time speed v(t + 1) predicted by the speed prediction model and

the current time speed v(t) into the PID controller, and calculate the demand torque Ttrac(t)
at the current moment;

(3) According to the current state x(t) = [v(t), SOC(t)] of HEV, CN1 calculates the

co-state ∂ Ĵ(t)
∂x(t) by (17), and AN calculates the control û(t) = [Tm(t), ωg(t)] by (24);

(4) According to the control policy obtained in the previous step, the dynamic model
calculates the state x(t + 1) = [v(t + 1), SOC(t + 1)] at the next moment through (11), and
calculates the instantaneous energy consumption Q(t) by (13).

(5) According to the state x(t + 1) at the next moment, CN2 calculates ∂ Ĵ(t+1)
∂x(t+1) by (17),

then calculates Ec(t) and u∗(t) by (21) and (26), and calculates Ea(t) by (27).
(6) Determine whether Ec(t) is less than or equal to εc, and whether Ea(t) is less than

or equal to εa. When any of the conditions cannot be met, the parameters of AN and CN
should be updated. Formulas (22) and (23) are used to update weights Wc1 and Wc2 of CN,
and Formulas (28) and (29) are used to update weights Wa1 and Wa2 of AN. Then step (3)
to step (6) are repeated until both conditions are met, when the next step is carried out.



Energies 2022, 15, 3235 11 of 19

(7) Provide the optimal control calculated in the current moment to the HEV, then go
back to step (2) and continue to calculate the control policy for the next moment until the
HEV completes driving.

The detailed algorithm flow of the DHP-based EMS is illustrated in Algorithm 1.
Below is the description of the DHP algorithm.

Algorithm 1: Online learning algorithm of HEV with DHP.
Parameters initialization

State variable: SOC, v; Discount factor: γ;
Weights in CN: Wc1, Wc2; Weights in AN: Wa1, Wa2;
Learning factor of CN and AN: ηc, ηa; error value: εc, εa;

for i = 1 : tend
Speed prediction and demand torque determination

Getting the current speed v(i) from HEV;
Running the speed prediction model to abtain v(i + 1);
Using PID controller to get Ttrac(i);

Estimating û(i) and ∂ Ĵ(i)
∂x(i)

CN1: ∂ Ĵ(i)
∂x(i) = f (SOC(i), v(i), Wc1(i), Wc2(i));

AN: û(i) = f (SOC(i), v(i), Wa1(i), Wa2(i));
û(i) = [Tm(i), ωg(i)];

Calculating x(i + 1) and Q(i)
x(i + 1) = x(i) + ∆x(i);
Q(i) = (BSFC(i) · Te(i) ·ωe(i)/3600 + λ · Pelec(i) · 3.6)× 10−3;

Calculating Ec(i) and Ea(i)

CN2: ∂ Ĵ(i+1)
∂x(i+1) = f (SOC(i + 1), v(i + 1), Wc1(i), Wc2(i));

Ec(i) = 1
2 [

∂ Ĵ(i)
∂x(i) −

∂Q(i)
∂x(i) − γ · ∂J∗(i+1)

∂x(i+1) ]
2;

u∗(i) = arg limu(i){|
∂J∗(i)
∂u(i) −

∂Q(i)
∂u(i) −

∂γ·J∗(i+1)
∂x(i+1) ·

∂x(i+1)
∂u(i) |};

Ea(i) = 1
2 [u
∗(i)− û(i)]2;

Optimal control judgement
while Ec(i) > εc and Ea(i) > εa

Weights update
Wc1(i) = Wc1(i) + ∆Wc1(i); Wc2(i) = Wc2(i) + ∆Wc2(i);
Wa1(i) = Wa1(i) + ∆Wa1(i); Wa2(i) = Wa2(i) + ∆Wa2(i);

Estimating û(i) and ∂ Ĵ(i)
∂x(i)

CN1: ∂ Ĵ(i)
∂x(i) = f (SOC(i), v(i), Wc1(i), Wc2(i));

AN: û(i) = f (SOC(i), v(i), Wa1(i), Wa2(i));
û(i) = [Tm(i), ωg(i)];

Calculating x(i + 1) and Q(i)
x(i + 1) = x(i) + ∆x(i);
Q(i) = (BSFC(i) · Te(i) ·ωe(i)/3600 + λ · Pelec(i) · 3.6)× 10−3;

Calculating Ec(i) and Ea(i)

CN2: ∂ Ĵ(i+1)
∂x(i+1) = f (SOC(i + 1), v(i + 1), Wc1(i), Wc2(i));

Ec(i) = 1
2 [

∂ Ĵ(i)
∂x(i) −

∂Q(i)
∂x(i) − γ · ∂J∗(i+1)

∂x(i+1) ]
2;

u∗(i) = arg limu(i){|
∂J∗(i)
∂u(i) −

∂Q(i)
∂u(i) −

∂γ·J∗(i+1)
∂x(i+1) ·

∂x(i+1)
∂u(i) |};

Ea(i) = 1
2 [u
∗(i)− û(i)]2;

end while
u∗(i) = û(i) u∗(i)→ HEV

end for



Energies 2022, 15, 3235 12 of 19

4. Simulation Verification and Results Discussion

Firstly, the simulation demonstrates the effectiveness and advantages of the BPNN
model in the DHP algorithm structure.

For the AN and CNs, the initial network weights are randomly set values, the learning
rates are 0.01, the discount factor is 0.95, and the error value is 0.001. The number of
network iterations is 2000. The initial value of SOC is 0.5.

Figure 6 shows the convergence curves of Ec and Ea. In the process of continuous
networks iteration and constant weights update, the value of Ec approaches zero infinitely,
and the value of Ea approaches a constant. These show the effectiveness of network training.
Figure 7 shows the convergence curve of Ea in different hidden layer nodes of AN. It can
be seen from the curve that as the number of nodes in the hidden layer increases, the
convergence speed of Ea accelerates, and the number of iterations when Ea approaches a
constant value also decreases. However, the increase in nodes in the hidden layer will lead
to added training time, so the training time should also be considered when considering
the convergence effect.

Figure 6. The convergence curves of Ec and Ea.

Figure 7. The convergence curve of Ea in different hidden layer nodes of AN.

Table 2 shows the number of iterations and training time required by the different
number of hidden layer nodes, which means that when the number of hidden layer nodes of
AN is 10, the training time and the convergence effect are appropriate. By adjusting network
parameters, the training speed is faster. The results show that DHP has a higher algorithm
accuracy than the HDP, and the increase in computational load does not significantly
prolong the training time.

Table 3 shows the weights of the final training of AN and CN, that is, the weight
symbols and their corresponding matrix sequences.
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Table 2. The number of iterations and training time of different hidden layer nodes.

Hidden Layer Nodes Iterations Training Time (s)

5 2800 13,725
10 2000 12,680
12 1800 14,500

Table 3. The weight of the CN and AN.

Wc1(2× 5) 3.819 4.204 4.274 −5.009 −4.597
8.426 8.100 8.331 −8.080 −4.597

WT
c2(5× 1) 0.234 1.582 0.471 −1.693 0.520

Wa1(2× 10) 0.168 0.881 −0.245 0.039 −0.387 −0.158 0.640 0.133 0.164 0.114
0.975 0.358 −0.050 0.555 0.115 0.257 0.205 0.368 0.628 0.544

WT
a2(10× 2)

−0.384 0.004 0.486 0.250 −0.084 0.541 0.448 0.085 −0.035 0.037
0.287 0.141 0.645 0.820 0.886 0.776 0.147 0.718 0.476 0.332

Next, for an actual driving cycle, simulation comparisons with the HDP-based EMS
and the RB-based EMS will be given to verify the effectiveness of the DHP-based real-
time EMS for the fuel economy under the constraints of driving power demand and
SOC. The simulation results of the speed tracking curve, the SOC fluctuation curve, and
the equivalent fuel consumption of the three EMSs are shown in Figure 8. Meanwhile,
Figure 9–11 show the torque and speed curves of the engine, motor, and generator for these
three strategies, respectively.

Figure 8. Simulation results of DHP-based EMS, HDP-based EMS and RB-based EMS.

For clarity of comparison, the comparison results of the three EMSs are listed in Table 4.
From Table 4, the simulation results show that with the difference in SOC final value of the
three strategies being small, the equivalent fuel consumption of the DHP-based EMS is the
least, which significantly improves the fuel economy.
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Table 4. Comparisons among DHP-based EMS, HDP-based EMS and RB-based EMS.

Algorithm Final SOC Equival. Fuel Consump. (g) Reduction (%)

RB 0.452 557.8 −
HDP 0.479 514.9 7.69
DHP 0.462 492.9 11.63

Figure 9. Torque and speed of the engine in the three strategies.

Figure 10. Torque and speed of the motor in the three strategies.
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Figure 11. Torque and speed of the generator in the three strategies.

The adaptability of the learning-based EMS to different driving conditions is then
verified. In order to verify the adaptability of the DHP strategy, the DHP-based EMS
is compared with other learning-based EMS in one different driving condition. Here,
an energy management strategy based on a double deep Q-Network proposed in [43] is
compared, in which the deep neural network is combined with Q-learning in reinforcement
learning, having specific adaptability to complex and changeable working conditions. The
simulation comparison result of the DHP-based EMS, the HDP-based EMS, and the DDQN-
based EMS is shown in Figure 12. The comparisons of the three energy management
strategies are also listed in Table 5.

Figure 12. Simulation results of DHP-based EMS, HDP-based EMS and DDQN-based EMS.
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Table 5. Comparison of DHP-based EMS, HDP-based EMS and DDQN-based EMS.

Algorithm Final SOC Equival. Fuel Consump. (g) Reduction (%)

DDQN 0.359 574.1 −
HDP 0.391 552.6 3.74
DHP 0.395 519.1 9.58

It can be seen from Figure 12 that the DHP-based EMS makes HEV achieve higher fuel
economy under different driving conditions than the others. Specifically, the DHP-based
EMS reduces the equivalent fuel consumption by 9.58% compared with the DDQN strategy,
and by 6.06% compared with the HDP strategy. Moreover, in DHP-based EMS, the output
of CN is co-state, which uses the performance index itself to approximate the optimal
control, resulting in the network being able to estimate the solution closer to the optimal
value using the co-state training network. When the trained DHP-based EMS is applied in
different driving conditions, the network weights in the DHP algorithm will be slightly
adjusted according to different driving conditions. The simulation results verify that the
proposed DHP-based EMS can continuously learn based on the current driving information
and has better adaptability to changeable driving conditions.

Finally, to further verify the adaptability of the proposed EMS to various driving
conditions, the above three learning-based EMSs (DDQN, HDP, and DHP ) are simulated
under the New European Driving Cycle (NEDC). Figure 13 shows the simulation results.
Table 6 lists the comparison results of the three strategies. They show that the EMS proposed
in this paper has low equivalent fuel consumption when the final SOC values of the three
strategies are almost the same. It further indicates that the EMS proposed in this paper has
wide applicability.

Figure 13. Simulation results of the three learning-based EMSs in NEDC driving cycle.

Table 6. Comparisons among the three learning-based EMSs in NEDC driving cycle.

Algorithm Final SOC Equival. Fuel Consump. (g) Reduction (%)

DDQN 0.574 515.0 −
HDP 0.552 488.3 5.18
DHP 0.551 480.5 6.70
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5. Conclusions

This paper designed a DHP-based real-time EMS for HEVs. The EMS aims to achieve
maximum energy saving for HEV even without prior driving information. The actor–critic
thought in DHP effectively solves the problem of "dimensional disaster" of the traditional
optimization algorithm DP. Without knowing all driving information in advance, the
DHP can learn and adjust network parameters in real-time to optimize strategies. The
proposed EMS was verified by simulation under various driving conditions, including
actual and NEDC driving cycles. By analyzing the simulation results, the output torque of
the proposed DHP-based EMS can effectively make the HEV track the desired speed, and
the speed tracking accuracy can reach more than 95%. Compared with the HDP-based EMS,
the accuracy of the DHP algorithm is indeed higher. On the premise of ensuring real-time
performance, the DHP-based EMS can further reduce the equivalent fuel consumption of
HEV compared with the two existing learning-based EMSs. For the actual driving cycle,
the DHP-based EMS reduces the equivalent fuel consumption by 9.58% compared with
the DDQN strategy and by 6.06% compared with the HDP strategy. In the NEDC driving
cycle, the DHP-based EMS reduces the equivalent fuel consumption by 6.70% compared
with the DDQN strategy, and by 1.60% compared with the HDP strategy. The results verify
the effectiveness, fuel economy, and adaptability under different driving conditions of
DHP-based EMS.

In addition, the states in EMS proposed in this paper are HEV speed v and SOC.
A relatively single selection of state variables is not conducive to fitting the relationship
between input and output of the network, and more iterations are needed to make the
parameters converge. In future studies, we will design EMS by increasing the state input
in the network so that the network can learn more quickly and make corresponding
decisions, aiming to further improve the energy consumption optimization performance of
the proposed online EMS.
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