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Abstract: In the present study, an Enhanced SSA (ESSA) has been proposed where the parameter
of the SSA technique, which balances the exploration and exploitation phases, has been modified.
Additionally, the variable scaling factor is engaged to regulate the salp’s position during the search
procedure to minimize the random movement of salps. To demonstrate the effectiveness of the
enhanced SSA (ESSA), a set of multimodal test functions are engaged. The statistical outcomes
demonstrate that ESSA profits from local optima evasion and quick convergence speed, which aids the
proposed ESSA algorithm to outclass the standard SSA and other recent algorithms. The fair analysis
displays that ESSA delivers very promising results and outclass current methods. Next, frequency
control of power systems is executed by designing a Combined Fuzzy PID (CFPID) controller with
the projected ESSA method. Next, a Partially Distributed CFPID (PD-CFPID) controller is designed
for a distributed power system (DPS). It is shown that the ESSA method outclasses the SSA method
in engineering problems. It is also noted that the ESSA-based PD-CFPID scheme has become more
operative in monitoring the frequency than similar structured centralized fuzzy PID (CFPID) as well
as PID controller. Finally, the outcomes of the PD-CFPID controller are equated with CFPID and PID
for various uncertain situations to validate the benefit of the proposed control approach.

Keywords: salp swarm algorithm (SSA); frequency control; partially decentralized combined fuzzy
PID; distributed power system

1. Introduction

With the growing count of irregular renewable and distributed energies in the presence
of random load changes, today’s power systems are vulnerable to frequency variations [1,2].
Therefore, a suitable controller is required for frequency regulation. The distributed con-
trol approach has multiple distributed controllers for each controllable energy source
located within the distributed power system (DPS) [3]. However, the distributed control
approach requires one-to-one communication between each controllable source. Com-
plete control requirements such as matching collective load and generation or optimum
generation combination are not usually achievable with a distributed control scheme.
Hence, if system optimization is the objective, a centralized control scheme is generally
favored [4]. In a centralized control scheme, all control requirements are handled by a cen-
tral computer [5]. While centralized approaches frequently suffer if there is a single failure,
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decentralized schemes are usually associated with difficult practical implementations and
costly communication requirements. Considering the shortcomings of both centralized
and decentralized control schemes, this paper proposes to use a partially decentralized
controller for the frequency regulation of DPS. The proposed partially decentralized control
scheme, which compared with the decentralized control can take the coupling information
into account, thus enhancing the system performance without making the design process
too complicated.

The controller design is again a tough job and numerous methods have been suggested
by researchers in this regard. The salp swarm algorithm (SSA) is a recently proposed process
encouraged by the swarming conduct of the salps [6]. The advantage of the SSA method
over some similar methods such as the firefly algorithm (FA), bat algorithm (BA), state of
matter search (SMS), flower pollination algorithm (FPA), particle swarm optimization (PSO),
gravitational search algorithm (GSA), and genetic algorithm (GA) has been testified [6].
The SSA algorithm keeps the best results found so far, therefore SSA is unaffected even
if the entire populations worsen. In SSA, salps move gradually towards the leading salp,
which prevents stagnating in local minima. The parameter c1 is reduced adaptively during
iterations, so the algorithm initially explores and then exploits the search area. The above
characteristics enable SSA to outperform other algorithms. However, the original SSA
method hurts from early convergence, therefore making it inappropriate for multimodal
function optimization problems such as controller design problems. In the SSA method,
the convergence parameter (c1) is changed gradually in the early phases of iterations and
rapidly in the closing phases, which lowers the exploration competence of the process.
In the projected enhanced SSA (ESSA) method, the algorithm is altered to conquer the
limitations of the SSA method. Additionally, in the SSA, the location of the supporter salp
is calculated from its previous location and surrounded by the salp’s location. The equation
for finding the location of follower salp is also altered by means of varied scaling factors to
avoid the random movement of salps.

Different heuristic-based optimization methods have been used to determine the
values of controller parameters for frequency control approaches as shown in Table 1.
The table explains the technique, controller type, test system, and the limitations of the
frequency control approach used for various test systems.

Table 1. Comparative analysis of various frequency control approaches in different test systems.

Ref. No. Optimization Technique and Controller Test System Remarks

[7]
Quasi oppositional Jaya (QOJAYA)
tuned two-degree of freedom (2DOF)
PID controller

Two area power systems
consist of the thermal and
hydropower plants including
the nonlinearities.

QOJAYA may not be effective for the systems
containing several peaks and trapped in local
minima due to its single oppositional-based
approach. 2DOF PID controller may not be effective
in presence of nonlinearity and uncertainties.

[8] Sine logistic map based chaotic sine
cosine algorithm tuned PID

Islanded microgrid with PV,
wind, Fuel Cell, BESS, FESS, DEG,
and MT

Time delay and uncertain cases are not considered.
The PID controller may not offer effectual control
for nonlinear, uncertain systems and in presence
of time delay and unstable transfer functions.
Centralized PID controller performance may
degrade in in presence of nonlinearity
and uncertainties.

[9] Intelligent model predictive control
Microgrid with PV, wind, Fuel
Cell, BESS, FESS, DEG, and MT
with electric vehicle

Time delay and uncertain cases are not considered.
Model predictive control approaches have
difficulties with the operation, high maintenance
cost, and lack of flexibility resulting in fragile
controllers that are not profitable.

[10]
2DOF-tilted integral derivative with
filter tuned by bat and harmony
search algorithm

Two-area wind-hydro-diesel units
with SMES and FACTS devices

Time delay and uncertain cases are not considered.
In the 2DOF PID controller, the tuning for the
disturbance and the set-point response are not
often compatible. Centralized 2DOF-TID
performance may degrade in presence of
nonlinearity and uncertainties.
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Table 1. Cont.

Ref. No. Optimization Technique and Controller Test System Remarks

[11]
Proportional-derivative with filter
cascaded-proportional-integral tuned
by the coyote optimization algorithm

Two-area power system with
photovoltaic (PV) and wind farm
and gas turbine interconnection

The effectiveness of the optimization technique has
not been tested in benchmark test functions. Time
delay is not considered. Variants of PID controllers
are suitable for linear systems and incompatible for
nonlinear systems.

[12] Chaotic atom search optimization based
fractional-order PID controller

Multi-area hybrid power system
consisting of thermal, hydro, gas,
solar-thermal, wind, and aqua
electrolyzer-fuel cell

Sever uncertainties such as unavailability of
some sources and communication delays are not
considered. Decentralized FO PID controllers
have difficult practical implementations and
costly communication requirements.

[13] Sailfish optimizer (SFO) optimized fuzzy
tilt integral derivative controller

Microgrid containing DEG, PV,
FC, AE, BESS, FESS, and FESS

In SHO, the combination may create prey extra
prominent to predators and may amplify
intra-specific rivalry. Additionally, those in the
preferred central locations may have inferior
feeding rates. A centralized control scheme may
cause a problem in case of a single failure.

[14] Mayfly optimization-based fuzzy
PD-(1 + I) controller

Interconnected microgrid
containing Solar–thermal, Wind,
Micro-hydro turbine, Biodiesel,
and Biogas generators.

In the MO method, if the present locations were
away from the best locations, slower convergence
may occur. A centralized Fuzzy PD-(1 + I) control
scheme is inferior to a decentralized scheme and
may cause a problem in case of a single failure.

[15] Direct synthesis (DS) method based
fractional order PID controller

Reheat thermal, hydropower, and
non-reheat thermal IEEE 39-bus
New England IEEE 39-bus test
system along with variable
communication delay.

The direct synthesis (DS) approach depends on the
process model. The overshoots and undershoots in
transient response may be high and fine-tuning may
be required. The study is limited to conventional
generating units. PID controllers are not suitable for
nonlinear and uncertain systems.

[16] Atom search optimization-based
FOPID controller

Two area hybrid power systems
containing PEV, WTPG, STPG,
and thermal units consider
nonlinearities.

In ASO, a small variation in velocities causes
inferior exploitation in the later stages of the
algorithm. FOPID controllers are not suitable
for nonlinear and uncertain systems.

[17] Grey wolf optimization (GWO) based
FOPID controller

A hybrid power system
containing PEV, WTG, PV,
and DEG with Energy
storage elements.

The GWO method calculates the wolves’ positions
by the mean locations, ignoring the wolf ladder,
which may lead GWO to local convergence. FOPID
controllers are not suitable for nonlinear and
uncertain systems.

[18] Ant lion optimizer (ALO) based
FOPID controller

Two area systems containing
conventional and renewables

The arbitrary walking method in ALO results in a
large run time. FOPID controllers are not suitable
for nonlinear and uncertain systems.

[19] Particle swarm optimization-based Fuzzy
PI controller

Thermal generator with
BESS including the effect
of demand response

PSO has poor exploration capability with a
large execution time for complex systems.
Decentralized FO PID controllers have
difficult practical implementations and costly
communication requirements.

[20]
Archimedes optimization algorithm
tuned integral derivative-tilted
(ID-T) controller,

Two area systems containing
conventional and
renewables units.

AOA is not resistant to the unequal exploration
and exploitation stages leading to local optimum.
A system with a centralized ID-T controller will
collapse in case of a single failure.

[21] Marine predators algorithm (MPA) tuned
PID controller

Two-area system containing
conventional and renewable
energy sources (wind, PV, and
STPP) and energy storing units
(SMES and BES)

The disadvantages of the MPA are failure to create
a diverse early population, local minima avoidance,
and poor exploration. PID controllers are not
suitable for nonlinear and uncertain systems.

[22] Adaptive-neuro-fuzzy inference system
(ANFIS) based controller

Single area and two-area
hydropower plants.

ANFIS applications in problems with large inputs
are computationally expensive. ANFIS controller is
complex and requires the expert user to handle.

[23] Artificial bee colony (ABC) based PID
fuzzy logic controller

Fourteen generations Australian
test system with wind and
battery integration.

ABC suffers from improper exploitation in solving
complicated problems. The controller is not
adaptive to handle uncertainties.
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The chief contributions of the study are:

i. To develop an enhanced SSA (ESSA) process and authenticate its effectiveness over
original SSA and other similar algorithms [24–33] using 16 multimodal test functions
of different dimensions.

ii. To design a combined fuzzy PID (CFPID) for frequency control in two area systems
and compare its performance with similar approaches reported in the literature.

iii. To design a partially decentralized combined fuzzy PID (PD-CFPID) controller for
frequency regulation of a hybrid power system containing PV, DEG, WTG, with
energy storage elements such as FESS, AE, FC, BES, and EV considering the inherent
nonlinearities and communication delays.

iv. To assess the efficacy of ESSA based PD-CFPID under the following uncertain scenarios:

Scenario A: PWTG, PPV, and PD are augmented by 200%;
Scenario B: PWTG and PPV are unavailable but the PD is augmented by 200%;
Scenario C: EV power and load demand pattern are augmented by 100% and

200%, respectively;
Scenario D: PWTG and PPV are decreased by 50% but PEV and PD are augmented by

100% and 200%, respectively;
Scenario E: The time delay is enhanced to 400 ms.

2. Overview of Enhanced Salp Swarm Algorithm (ESSA)

The main inspiration of the salp swarm method is the spilling over the behavior of
the principal swarms on the earth [6]. The whole inhabitants of salp are separated into
leader and followers’ groups. The best location of the salp order is taken by the leader and
guides the remaining swarms. The remaining salps trail the leader. The location of the salp
is categorized by an n-dimensional search area. The food resource T is the aim for the salp
in the pursuit search.

The position of the leader is given by Equation (1) as

x1
j =

{
Tj + c1((ubj − lbj)c2 + lbj) c3 ≥ 0.5

Tj − c1((ubj − lbj)c2 + lbj) c3 ≤ 0.5
(1)

where x1
j and Tj represent the locations of the leader and food source in the j-th dimension.

The leader changes its place concerning the food resource only. The bounds of j-th dimen-
sion are specified by lbj, ubj. The parameter c2 and c3 are arbitrary values in [0, 1]. The
coefficient c1 equilibriums the exploration and exploitation stages of the SSA method.

It is represented as

c1 = K1 exp

[
−
(

4ic

IM

)2
]

(2)

where ic and IM signifies the current and the maximum iterations and K1 is a constant
which is set as 2 in SSA.

The location of the remaining salps is restructured by

xi
j =

1
2

at2 + v0t (3)

Equation (3) corresponds to Newton’s law of motion where i ≥ 2, t signifies time,
v0 which means the original speed. These are calculated as: a =

v f inal
v0

and v0 = x−x0
t .

Considering v0 = 0 that variance amid iterations is equal to 1, then Equation (3) is altered as,

xi
j =

(xi
j + xi−1

j )

2
i ≥ 2 (4)

where xi
j signifies the position of the i-th follower in j-th dimension.



Energies 2022, 15, 3210 5 of 22

In the proposed ESSA procedure, two SSA parameters were altered for better symme-
try between the exploration and exploitation stages. A balance between the two enhances
the process. The occasion of the leader is a vital aspect of the SSA process which is even-
tually guided by parameters c1. The value of K1 is taken as 2 in the SSA process which
administrates the movement of the leader salp associated to T. An large K1 may cause
salp stirring outside the food source location. In ESSA process K1 is varied to make the
spreading of searched arguments near the best than the initial argument. In SSA, c1 changes
gradually linearly iterations and quickly in later stages. If c1 is set higher values in the latter
stages, it will make the method produce a greater aberration of the leader’s location. These
glitches are also quashed in ESSA with the adapted value of K1 by randomly changing to a
lesser c1 value in the final phases as:

K1 =

{
2(1− ic/IM) i f randm < 0.5

2 i f randm ≥ 0.5

}
(5)

The position of the follower salp in the original SSA is expressed as:

xi
j =

1
/

2
(

xi
j + xi−1

j

)
i ≥ 2 (6)

where xi
j and xi−1

j are the positions of i-th and (i − 1)-th salps in j-th dimension. In the
early stages, the finest probable search agent is unidentified in the search area. Therefore,
the procedure of updating in huge steps firstly will result in stirring salps missing the best
locations. Thus, the usage of scaling factors (SF) in ESSA regulates the advancement of
search agents during the search procedure. The new equation is formulated as:

xi
j = SF ·

[
1
/

2
(

xi
j + xi−1

j

)]
i ≥ 2 (7)

where SF is varied linearly from 0.1 to 1 as expressed in Equation (8):

SF = 1/(10− 9
ic

IM
) (8)

The inclusion of SF adjusts the drive of saps in the early stages of the method, thus
augmenting the search competence of the algorithm. In the advanced phases, as improved
solutions are found, salps move in the direction of them at progressively increased speed.

3. Performance Study of ESSA Technique

In this study, the engineering application is a controller design problem. Tuning
the controller parameter is a highly nonlinear and complex multimodal optimization
problem as many settings of the controller could yield satisfactory performance. As the
application area of the present study is the controller design problem, i.e., multimodal
optimization problem, therefore benchmark multimodal test functions are used to evaluate
the performance of the proposed ESSA technique.

The proposed ESSA is verified on some multimodal functions [34,35] and given in
Table 2. Multi-modal functions (mmf ) 1 to 6 are of 10 dimensions and 7 to 16 are of
different fixed dimensions. To authenticate the efficacy of the suggested ESSA algorithm
it is equated with SSA as well as with WCMFO [24], ABC [25], GA [26], CamWOA [27],
PSO [28], GSA [29], PSOGSA [30], WCA [31], MFO algorithm [32] and DA [33] as given
in [24,27]. The no. of function estimations is set as 100,000 for all approaches for an unbiased
assessment. In ESSA, 1000 iterations with 100 no. of search agents are considered. The
parameters of all the techniques are taken from reference [24,27]. The statical outcomes
found in 30 runs are assembled. For the appropriate selection of SF, several equations are
tried and evaluated. It is realized that for the many functions best outcomes are found
when SF is found by Equation (8) as related to others.
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Table 2. Multimodal functions.

Function Name Expression Range Dim. Opt.

Generalized Schwefel mm f1(y) =
n
∑

i=1
−yisin

(√
|yi |
)

[−500, 500] 10 −2094.9145

Generalized Rastrigin mm f2(y) =
n
∑

i=1

[
y2

i − 10coscos (2πyi) + 10
]

[−5.12, 5.12] 10 0

Ackley
mm f3(y) = −20expexp

(
−0.2

√
1
n

n
∑

i=1
y2

i

)
−exp

(
1
n

n
∑

i=1
cos(2πyi)

)
+ 20

[−32, 32] 10 0

Generalized Griewank mm f4(y) = 1
4000

n
∑

i=1
y2

i −
n
∏
j=1

cos
(

yi√
i

)
+ 1 [−600, 600] 10 0

Generalized Penalized
Function 1

mm f5(y) = π
n {10sinsin (πxi)

+
n−1
∑

i=1

(
y−i 1

)2[1 + 10sin2(πxi+1)
]}

+(xn − 1)2 +
n
∑

i=1
u(yi , 10, 100, 4

)
xi = 1 + yi+1

4
u(yi , a, k.m) =

{
k(yi − a)myi > a 0− a < yi
< a k(−yi − a)myi < a

[−50, 50] 10 0

Generalized Penalized
Function 2

mm f6(y) = 0.1
{

sin2 +
n
∑

i=1
(yi − 1)2[1 + sin2(3πyi + 1)

]
+(yn − 1)2[1 + sin2(2πyn)

] }
+

n
∑

i=1
u(yi , 5, 100.4)

[−50, 50] 10 0

Shekel’s Foxholes mm f7(y) =

(
1

500 +
25
∑

j=1

1
j+∑2

i=1(yi−aij)
2

)−1

[−65.536, −65.536] 2 1

Kowalik mm f8(y) =
11
∑

i=1

[
ai −

y1(b2
i +biy2)

b2
i +biy3+y4

]2
[−5, 5] 4 0.0003

Six-Hump Camel-Back mm f9(y) = 4y2
1 − 2.1y4

1 = 1
3 y6

1 + y1y2 − 4y2
2 + 4y4

2 [−5, 5] 2 −1.0316

Branin mm f10(y) =
(

y2 − 5.1
4y2 y2

1 +
5
π y1 − 6

)2
+ 10

(
1− 1

8π

)
cos(y1) + 10

[−5, 10]
[0, 15] 2 0.398

Goldstein–Price

mm f11(y) = [1 + (y1 + y2 + 1)2(19− 14y1 + 3y2
1 − 14y2

+6y1y2 + 3y2
2
)
]

×[30 + (2y1 − 3y2)
2 ×

(
18− 32y1 + 12y2

1
+48y2 − 36y1y2 + 27y2

2
)
]

[−2, 2] 2 3

Hartman’s 1 mm f12(y) = −
4
∑

i=1
ciexp

(
−

3
∑

j=1
aij
(
yj − pij

)2

)
[0, 1] 3 −3.86

Hartman’s 2 mm f13(y) = −
4
∑

i=1
ciexp

(
−

6
∑

j=1
aij
(
yj − pij

)2

)
[0, 1] 6 −3.32

Shekel’s 1 mm f14(y) = −
5
∑

i=1
[(Y− ai)(Y− ai)

T + ci ]
−1

[0, 10] 4 −10.1532

Shekel’s 2 mm f15(y) = −
7
∑

i=1
[(Y− ai)(Y− ai)

T + ci ]
−1

[0, 10] 4 −10.4028

Shekel’s 3 mm f16(y) = −
10
∑

i=1
[(Y− ai)(Y− ai)

T + ci ]
−1

[0, 10] 4 −10.5363

The statistical result of ESSA and SSA obtained along with the outcomes of the other
10 methods available in reference [24,27] are presented in Tables 3 and 4 for 10 dimensions
and fixed dimensions mmfs’, respectively. It can be noticed from Tables 3 and 4 that
suggested ESSA outperforms original SSA in 15 out of 16 mmfs’ (except mm f6(y)). It can
also be realized from Table 3 that ESSA outperforms all other 11 techniques in the majority
of functions (in 3 out of 6 mmfs’). For fixed dimension multimodal functions, the proposed
ESSA provides an optimum of equally best results in 9 out of 10 mmfs’ as evident from
Table 4.
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Table 3. Statistical results for 10 dimension functions.

Function
ESSA SSA GA PSO

Av. St.Dev Av. St.Dev Av. St.Dev Av. St.Dev

mmf 1y −2796.049 3349.21 −2930.15 3099.72 −3692.39 182.42 −2742.78 274.7175

mmf 2y 0 0 11.8731 3.7767 3.8E−4 3.2E−4 1.757 1.1592

mmf 3y 8.88E−16 0 0.2089 0.4824 8.88E−16 1.0E−31 8.88E−16 1.00E−31

mmf 4y 3.29E−14 1.897E−14 0.268906 0.14071 5.6E−2 3E−2 0.1244 8.04E−2

mmf 5y 3.501E−16 2.437E−16 0.09329 0.16637 5.73E−05 1.4E−4 4.71E−32 1.67E−47

mmf 6y 1.829E−15 1.456E−15 1.831E−3 4.164E−3 6.21E−05 1.1E−4 1.34E−32 5.56E−48

Function
DA WCA GSA MFO

Av. St.Dev Av. St.Dev Av. St.Dev Av. St.Dev

mmf 1y −3213.66 431.748 −3422.55 304.572 −1694.53 190.6721 −3329.13 288.317

mmf 2y 11.561 10.177 20.993 10.524 1.392 1.214 12.8372 7.352

mmf 3y 3.14E−05 1.7E−04 2.42E−15 1.79E−15 1.28E−10 6.71E−11 8.88E−16 1.00E−31

mmf 4y 0.3846 0.3826 0.1502 9.44E−2 1.67E−2 2.79E−2 1.78E−01 8.43E−02

mmf 5y 0.5296 0.6912 1.036E−2 5.67E−2 7.95E−21 3.23E−21 3.11E−02 9.487E2

mmf 6y 0.5292 0.7173 7.3E−4 2.7E−3 5.67E−20 1.88E−20 1.10E−3 3.33E−3

Function
CS PSOGSA ABC WCMFO

Av. St.Dev Av. St.Dev Av. St.Dev Av. St.Dev

mmf 1y −3712.01 167.4447 −3271.6 278.08 −3922.73 88.61857 −3729.7 96.325

mmf 2y 6.574 1.367 23.281 12.968 3.677 1.0365 2.089 1.508

mmf 3y 1.24E−15 1.08E−15 4.94E−12 2.26E−12 1.21E−06 9.37E−07 8.88E−16 1.00E−31

mmf 4y 3.96E−02 8.8E−3 0.2004 0.1141 0.281 0.1086 9.91E−02 5.31E−2

mmf 5y 9.77E−05 1.3E−4 0.2491 0.581 1.9E−3 1.3E−3 2.00E−29 6.44E−29

mm f6(y) 1.31E−09 1.39E−09 3.11E−21 1.06E−21 8.3E−3 5.1E−3 4.49E−22 2.06E−21

Table 4. Statistical results for fixed dimensional functions.

Function
ESSA SSA GA PSO

Av. St.Dev Av. St.Dev Av. St.Dev Av. St.Dev

mmf 7y 0.998 0 0.998 0 0.998 8.83E−14 1.56 0.959

mmf 8y 3.421E−4 1.678E−4 8.863E−4 3.397E−4 8.4E−4 2.9E−4 7E−4 3.2E−4

mmf 9y −1.0316 0 −1.0316 0 −1.03 5.02E−10 −1.03 3

mmf 10y 3.98E−1 8E−17 3.98E−1 4.0E−16 3.98E−1 4.73E−7 3.98E−1 1.13E−16

mmf 11y 3 4.054E−14 3 4.3E−14 3 1.21E−8 3 4.52E−16

mmf 12y −3.86 2.14E−15 −3.86 5E−15 −3.86 2.203E−3 −3.86 2.7E−15

mmf 13y −3.2504 3.017E−2 −3.25 6.001E−3 −3.32 2.170E−2 −3.26 6.04E−2

mmf 14y −10.1532 5E−14 −9.7342 1.6244 −10.2 0.00048 −9.31 1.9255

mmf 15y −10.4029 2.14E−11 −10.2271 0.9629 −9.93 1.822 −9.52 2.00228

mmf 16y −10.5364 4E−15 −10.5364 4E−15 −9.61 2.405 −10 1.6357
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Table 4. Cont.

Function
DA WCA GSA MFO

Av. St.Dev Av. St.Dev Av. St.Dev Av. St.Dev

mmf 7y 1.1 0.303 0.998 3.39E−16 3.4 2.578637 1.03 0.181483

mmf 8y 1.34E−3 5.11E−4 3.69E−4 2.32E−4 1.8E−3 4.9E−4 8.37E−4 2.54E−4

mmf 9y −1.03 2.55E−11 −1.03 0 −1.03 0 −1.03 0

mmf 10y 3.98E−1 7.6E−13 3.98E−1 3.79E−16 3.98E−1 1.13E−16 3.98E−1 1.13E−16

mmf 11y 3 1.38E−6 3 1.79E−14 3 4.02E−15 3 1.95E−15

mmf 12y −3.86 1.587E−03 −3.86 2.71E−15 −3.86 2.71E−15 −3.86 2.71E−15

mmf 13y −3.25 6.72E−02 −3.26 6.04E−2 −3.32 1.36E−15 −3.22 4.5066E−2

mmf 14y −9.81 1.28 −8.31 2.718 −7.45 3.381188 −7.56 3.323037

mmf 15y −10.4 0.192 −9.52 2.002 −10.4 0 −9.35 2.423664

mmf 16y −10.3 1.06 −9.82 2.235 −10.5 9.03E−15 −10.3 1.39948

Function
CS PSOGSA ABC WCMFO

Av. St.Dev Av. St.Dev Av. St.Dev Av. St.Dev

mmf 7y 0.998 3.39E−16 1.06 0.252 0.998 1.02E−13 0.998 5.36E−16

mmf 8y 3E−4 4.23E−9 3.79E−3 7.5E−3 7E−4 1.3E−4 3.0E−4 1.07E−15

mmf 9y −1.03 0 −1.03 0 −1.03 7.36E−11 −1.03 0

mmf 10y 3.98E−1 1.13E−16 3.98E−1 1.13E−16 3.98E−1 5.68E−09 3.98E−1 1.13E−16

mmf 11y 3 4.52E−16 3 4.52E−16 3 8.64E−05 3 9.57E−15

mmf 12y −3.86 2.71E−15 −3.86 2.71E−15 −3.86 7.89E−11 −3.86 2.71E−15

mmf 13y −3.32 1.26E−13 −3.26 6.032E−2 −3.32 4.82E−06 −3.25 6.027E−2

mmf 14y −10.2 1.81E−15 −5.9 3.421068 −10.1 6.784E−3 −8.89 2.361515

mmf 15y −10.4 6.18E−14 −5.76 3.454976 −10.4 2.886E−3 −10.4 1.59E−12

mm f16(y) −10.5 2.15E−12 −6.99 3.890193 −10.5 4.074E−3 −10.5 4.09E−14

Convergence figures for ESSA and SSA are related in Figure 1 for some mmfs’ from
which it can be noticed that the convergence feature of ESSA is improved. This is because
of modifying the value K1 by randomly changing to a lower value C1 during the latter
stages of iteration and the use of SF to restrict the drive of saps in the initial periods of the
search process. It is worthwhile to mention here that for mmf 1, typical ESSA converges near
to the best value of −2094.9145. Similarly, for mmf 3 and mmf 14 even though both ESSA and
SSA converge to the same value, ESSA converges faster compared to SSA.
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Figure 1. Convergence curves with SSA and ESSA for some mmfs.

4. Proposed Frequency Control Approach

The proposed ESSA method is applied tried for frequency regulation of hybrid power
system (HPS) as shown in Figure 2. It contains PV, WTG FC, DEG, AE, BESS, FESS,
and electric vehicles, etc. [4,36–39]. The performance of HPS in the presence of wind
and solar generation is extremely erratic and therefore the power balance is a complex
task. Hence this problem can be resolved by appropriate management among stability
and controllability. In this study, a partially decentralized controller is engaged, which
makes it a modest control and requires less maintenance as well as dealing with fewer
controllable parameters. Limiters are involved in each component to match fluctuations
in the electromechanical features of the specific subsystem. In addition, time delays
associated with input/output to the controller (10 ms) are considered. In Figure 2, the
control participation factors (CPF) of controllable sources such as DEG, FESS, BESS, and
EV are represented by corresponding CPFs.
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Figure 2. Studied Hybrid power system.

4.1. Modelling of Parts
4.1.1. Wind Turbine Generator (WTG)

The WTG power output is assumed as [5]:

PWP =
1
2

ρARCPV3
W (9)

The transfer function (TF) of WTG is

GWTGN (s) =
KWTG

1 + sTWTG
=

∆PWTG
∆PWP

(10)

where N = 1, 2, 3.

4.1.2. Photovoltaic Cell (PV)

PV power output is assumed as [5]

PPV = η · S · φ[1− 0.005(Ta + 25)] (11)

where η is the conversion efficiency of PV cells and taken as 10%, S is the area of PV array
taken as 4084 m2 and φ is the solar irradiation in kW/m2. A PV TF is assumed as [5]

GPV(s) =
KPV

1 + sTPV
=

∆PPV
∆φ

(12)
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4.1.3. Aqua Electrolyzer

Aqua electrolyzer receives a majority of the total power from renewable sources. The
AETF is stated as [5]

GAE(s) =
KAE

1 + sTAE
=

∆PAE
U2

(13)

4.1.4. Fuel Cell

The TF of FC is assumed as

GFCN (s) =
KFC

1 + sTFC
=

∆PFC
∆PAE

(14)

where N = 1, 2.

4.1.5. Diesel Engine Generator (DEG)

The TF of DEG is assumed as

GDEG(s) =
KDEG

1 + sTDEG
=

∆PDEG
∆U

(15)

4.1.6. FESS and BESS

The TF of FESS and BESS are [5]

GFESS(s) =
KFESS

1 + sTFESS
=

∆PFESS
∆U

(16)

GBESS(s) =
KBESS

1 + sTBESS
=

∆PBESS
∆U

(17)

4.1.7. Limiter and Saturation

The energy storage devices are included in the control loop and are regulated by the
controller. They have constraints that permit the devices to operate in the nonlinear region.
These limitations avert the mechanical shudder because of sudden frequency variations.
The constraints are given by∣∣∣∣ •

PFESS < 0.09
∣∣∣∣ , ∣∣∣∣ •

PBESS < 0.09
∣∣∣∣ , ∣∣∣∣ •

PDEG < 0.01
∣∣∣∣ , ∣∣∣∣ •PEV < 0.01

∣∣∣∣ , |PFESS < 0.9|,

|PBESS < 0.2| , |PEV < 0.8| and 0 ≤ PDEG ≤ 0.45

4.1.8. Electric Vehicle

The figure presentation modeling of EV for frequency control is demonstrated in
Figure 3 [40]. The LFC signal ∆U is supplied to the EV for discharging/charging. Parame-
ters ±BkW signify the battery capacity. The existing battery energy is signified by E that
is kept inside the restrictions Emax and Emin presumed as 90% and 60%. K1 and K2 are
found as K1 = E− Emax, K2 = E− Emin. The stored energy part in Figure 3 computes the
remaining stored energy [40].

4.1.9. Power System

The input and the output to the power system are the difference in power (∆P) and
(∆f ) and is given as:

G(s) =
∆ f
∆P

=
1

D + sM
(18)

Here D characterizes the damping parameter and M means inertia value.
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An integral square error (ISE) criterion is taken as an objective function as: 

Figure 3. EV Modelling.

4.2. Combined Fuzzy PID Structure

The fuzzy logic control (FLC) based PID controller can be designed by tuning scaling
factors and PID parameters [41–45]. In the present work, a combined fuzzy PID (CFPID)
is projected as revealed in Figure 4 [45]. To ensure that the controller is adaptive, the
input signal is accepted by fuzzy and also straight to the PID as revealed in Figure 5. The
membership functions are allocated linguistic PoBg (Positive Big), PoSm (Positive Small),
Ze (Zero), NeSm (Negative Small), and NeBg (Negative Big) for inputs/output variables as
shown in Table 5. A Mamdani fuzzy inference engine is used in the present study.
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Table 5. Fuzzy rule foundation for CFPID.

ede NeBg NeSm Ze PoSm PoBg

NeBg NeBg NeBg NeSm NeSm Ze

NeSm NeBg NS NeSm PoSm PoSm

Ze NeSm NeSm Ze PoSm PoSm

PoSm NeSm Ze PoSm PoSm PoBg

PoBg Ze PoSm PoSm PoBg PoBg

An integral square error (ISE) criterion is taken as an objective function as:

J =
T∫

0

[
(∆ f )2 + (∆U)2/kn

]
· dt (19)

To ensure that both terms in Equation (19) participate in the search technique, kn is
allocated 5.

5. Results and Discussions
5.1. Performance Examination of Proposed Frequency Control Approach

The effectiveness of the recommended ESSA tuned CFPID structure for frequency
control is examined in two widely employed 2-area power systems [46–52]. The first test
system is a non-reheat system and the second test system is a reheat system. For a fair
comparison with published frequency control approaches, the same load disturbance (10%
SLP for the first test system and 1% SLP for the second test system) and objective function
(ITAE) are considered. In addition, two similar CFPID controllers are assumed in each area.
The ESSA optimized CFPID controller parameters are provided in Table 6. The results of
the proposed controller are related to traditional as well as numerous new optimization
techniques, for example, Ziegler Nichols (ZN) [46], GA [46], BFOA [46], PSO [47], hybrid
BFOA-PSO [47], NSGA-II based PI [48], NSGA-II optimized PIDF [48], hybrid PSO-PS
optimized fuzzy PI [43] as well as mMSA Fuzzy PD-PI [37] for the first test system and
shown in Table 7 and Figure 6 for the first test system.

Table 6. Optimized parameters for two test systems.

1st test system K1 = 1.9847, K2 = 0.5802, KP1 = 1.7138, KI1 = 1.9742,
KD1 = 0.2796, KP2 = 1.4912, KI2 = 1.9966, KD2 = 0.2249

2nd test system K1 = 1.9847, K2 = 1.9867, KP1 = 1.9959, KI1 = 1.9742,
KD1 = 0.002, KP2 = 1.9965, KI2 = 1.9966, KD2 = 0.0999

Table 7. Performance with different controllers for 1st test system.

Method/Controller ITAE
Settling Time (Ts) S Undershoot (Us)-ve

∆f1 ∆f2 ∆Ptie ∆f1 ∆f2 ∆Ptie

GA: PI [46] 2.7475 10.3 10.3 9.3 0.23 0.19 0.07

BFOA: PI [46] 1.8379 7.1 5.5 6.35 0.27 0.23 0.08

hBFOA-PSO-PI [47] 1.1865 6.6 6.2 5.73 0.24 0.21 0.071

NSGA-II: PIDF [48] 0.387 4.86 3.03 4.34 0.103 0.052 0.023

hPSO-PS-Fuzzy PI [43] 0.1438 5.25 4.07 4.01 0.07 0.035 0.012

mMSA: Fuzzy PD-PI [37] 0.1783 2.71 4.29 3.95 0.052 0.038 0.011

Proposed ESSA based CFPID 0.0262 1.21 1.05 1.02 0.0483 0.0167 0.0058
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It is obvious from Table 7 and Figure 6 that the least ITAE value and best system
response are attained with an ESSA-based CFPID controller compared to other approaches
usually used in solar electricity control [49]. For the second test system, the results are
compared FA [50], SOSA [51], ABC [52] tuned PID and SGWO tuned AFPID [39]. The
outcomes are gathered in Table 8 and Figure 7. The minimum ITAE value and best system
response are attained with ESSA-based CFPID controller compared to other approaches
as evident from Table 8 and Figure 7. This justifies the usefulness of the proposed CFPID
controller structure.
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5.2. Frequency Control of DPGS by PD-CFPID

In the next step, DPS is considered and the controllers are optimized by the ESSA
technique. The load demand (PD) pattern is revealed in Figure 8a. The renewable out-
puts are characterized by Equations (17)–(19) and adopted from [5,36–39] as presented in
Figure 8b,c. Table 8 provides the ESSA optimized PID, CFPID, and PD-CFPID controller
parameters. For comparison, the results of MFO, PSO, GA, DA, GSA, and SSA optimized
PID and J values are also specified in Table 9 from which it can be seen that, with the same
PID controller, a minimum objective function value of 782.75 × 10−2 is obtained with the
proposed ESSA technique. Hence, it is established that in the controller design problem, the
proposed ESSA outperforms MFO, PSO, GA, DA, GSA, and SSA techniques. The CFPID
controller optimized by ESSA reduces the J value to 781.99 × 10−2. This validates the
dominance of the CFPID over the PID. It can also be understood from Table 9 that the
suggested PD-CFPID controller significantly reduces the J value to 368.31 × 10−2.

Table 9. Optimized values.

Technique Optimized Parameters J Value (×10−2)

PID

KP KI KD

MFO 0.5919 0.3137 1.1244 789.15

PSO 0.6370 0.3719 1.3587 789.05

GA 0.6016 0.3106 1.0199 788.89

DA 0.6716 0.3685 1.2448 788.97

GSA 0.6484 0.3550 1.5325 787.62

SSA 0.7106 0.2211 1.0787 783.20

ESSA 0.7172 0.2489 1.0371 782.75

CFPID

ESSA: CFPID
K1 = 1.3967, K2 = 1.5397

KP1 = 1.5495, KI1 = 1.5744, KD1 = 0.8160
KP2= 0.2288, KI2 = 0.7581, KD2 = 1.3056

781.99

ESSA: PD-CFPID

K1= 1.4319, K2 = 0.8438
KP1 = 1.5183, KI1 = 1.9570, KD1 = 1.9764
KP2 = 0.1992, KI2 = 0.6637, KD2 = 1.9570
CPF-FESS = 1.9564; CPF-BESS = 1.7787
CPF-DEG = 1.9987; CPF-EV = 1.7965

368.31

To assess the controller’s effectiveness, the following cases are taken.

Case 1: Normal operation:

Here, solar and wind generation and load outlines as specified in Figure 8 are pre-
sumed. The dynamic response with ESSA-based PID, CFPID, and PD-CFPID is presented
in Figure 9. It is clear from Figure 9a that the performance with PD-CFPID is slightly
better than PID and CFPID. The power outputs with the proposed PD-CFPID controller
are shown in Figure 9b,c. In the time range t = 50 to 100 s it can be seen from Figure 8a
that PD is 0.6 pu. The PWTG is around 0.4 p.u., PPV is 0.2 pu which is clear from Figure 8b,c.
Aqua electrolyzer takes 0.24 p.u. from the generation of renewable sources used by a fuel
cell and the fuel cell gives a power that is equal to 0.0001 pu. DEG also becomes coupled
to DPS at t = 50 s and supplies a power equal to 0.007 p.u. which is revealed in Figure 9b.
The whole generation is obtained by totaling the power generation from the renewable
sources less the aqua electrolyzer power, and by adding the power from DEG the fuel cell
becomes 0.367 p.u. This is 0.23 p.u. less than PD so BESS, FESS, and electric vehicles (EV)
deliver less power to meet PD. PFESS = 0.0075 p.u., PBESS = 0.0022 p.u., PPEV = 0.23 p.u.
which are exhibited in Figure 9b,c. When the power is released by the storage devices and
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power discharged by Pev is added to the generated power, the supply power becomes
0.6 p.u., which is the same as PD. Hence, the power balance is maintained and the system
is frequently stable.
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Case 2: Uncertain Cases

The renewable sources are associated with uncertainty and so is the case with load
demand and EV. Keeping in view of some realistic variation/uncertainties, different cases
are considered. To prove the supremacy of suggested PD-CFPID over CFPID and PID, the
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responses with PD-CFPID are compared with CFPID and PID under various uncertain
conditions as:

Scenario A: PWTG, PPV, and PD are augmented by 200%;
Scenario B: PWTG and PPV are unavailable but the PD is augmented by 200%;
Scenario C: EV power and load demand pattern are augmented by 100% and 200%,

respectively;
Scenario B: PWTG and PPV are decreased by 50% but PEV and PD are augmented by

100% and 200%, respectively;
Scenario E: The time delay is enhanced to 400 ms.
The responses for the above situations are presented in Figure 10a–e. It can be compre-

hended from Figure 10a that, for scenario A, when solar, wind powers, and load demand
patterns are increased by 200%, the system is unstable with the PID. System stability is
preserved with both CFPID and PD-CFPID. However, the response degrades with CFPID
under scenario A whereas the response remains unaffected with the proposed PD-CFPID
controller. For scenario B, when PWTG and PPV are unavailable but the PD is augmented
by 200%, the system is unstable with PID. The response further degrades with the CFPID
controller in scenario B compared to the same for scenario A. with the proposed PD-CFPID
controller, the response remains more or less the same. For scenarios C, D, and E, the system
is unstable with both PID and CFPID controllers as evident from Figure 10c–e. However,
the system stability is retained with the suggested PD-CFPID controller and frequency
deviations lie inside the acceptable boundary.
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In the present study, only multimodal functions have been tested as the controller
design problem is a multimodal task. The usefulness of the proposed MSSA for unimodal
functions and other benchmark functions needs further investigation.
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6. Conclusions

In this paper, the enhanced salp swarm algorithm (ESSA) method was presented for
solving multimodal optimization and controller design. In the suggested ESSA method,
the convergence parameter is varied suitably for an improved equilibrium among the
exploration and exploitation stages of the technique. Additionally, variable scaling factors
are engaged to alter the salp’s position in the search procedure to minimize the random
movement of salps. The effectiveness of ESSA is confirmed in some multimodal test
functions. It is seen that for 10-dimensional multimodal functions (mmfs’), the ESSA
algorithm provides improved results more than SSA, GA, ABC, CamWOA, MFO, PSO,
GSA, WCA, PSOGSA, DA, and WCMFO in four out of six mmfs’. For fixed dimension
mmfs’, proposed ESSA provides optimum or equally best outcomes in nine out of ten mmfs’.
The projected control method is evaluated in two widely used systems. It is detected that
the J value is reduced by 81.78% and 76.57% related to the best-published results for the
two test systems, respectively.

The proposed ESSA method is then used to optimize a partially decentralized com-
bined fuzzy PID (PD-CFPID) controller for frequency control of DPS. It is perceived that
the ESSA-based PD-CFPID controller is better than PID and CFPID controllers and main-
tains frequency stability under various uncertain scenarios. The objective function value
with the PD-CFPID controller is reduced by 52.94% and 52.90% compared to PID and
CFPID controllers.

As a future direction, experimental verification of the present work can be performed
and the state of charge of EVs can be included in the system.
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