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Abstract: In this paper, a new hybrid TSA-PSO algorithm is proposed that combines tunicate swarm
algorithm (TSA) with the particle swarm optimization (PSO) technique for efficient maximum
power extraction from a photovoltaic (PV) system subjected to partial shading conditions (PSCs).
The performance of the proposed algorithm was enhanced by incorporating the PSO algorithm,
which improves the exploitation capability of TSA. The response of the proposed TSA-PSO-based
MPPT was investigated by performing a detailed comparative study with other recently published
MPPT algorithms, such as tunicate swarm algorithm (TSA), particle swarm optimization (PSO),
grey wolf optimization (GWO), flower pollination algorithm (FPA), and perturb and observe (P&O).
A quantitative and qualitative analysis was carried out based on three distinct partial shading
conditions. It was observed that the proposed TSA-PSO technique had remarkable success in locating
the maximum power point and had quick convergence at the global maximum power point. The
presented TSA-PSO MPPT algorithm achieved a PV tracking efficiency of 97.64%. Furthermore, two
nonparametric tests, Friedman ranking and Wilcoxon rank-sum, were also employed to validate the
effectiveness of the proposed TSA-PSO MPPT method.

Keywords: photovoltaic; partial shading conditions (PSCs); local maxima; maximum power point
tracking; tunicate swarm algorithm (TSA)

1. Introduction

A photovoltaic (PV) system offers the lowest cost, highest payback, and cleanest
source of power compared with any other energy option available in today’s market [1].
Integration of variable renewable energy into the power system may result in higher
integration expenses for both energy systems and customers [2]. However, dependency
on weather conditions and high construction costs are the current PV power system’s
significant issues [3]. PV systems are frequently harmed by dirt, dust, or shadowing from
nearby factors such as trees and buildings. Partially shaded circumstances can be caused
by shadows [4]. The impacts of real-world situations on the performance and efficiency of
solar panels were investigated in [5]. In another study, a long-term reliability assessment
approach was employed to study the implications of climate change on the structural level
of PV systems [6]. The production of electricity from a PV system is affected by temperature
and irradiance, and its P–V curve has a singular peak known as a maximum power point
(MPP) [7]. The maximum power point (MPP) varies as the solar irradiance changes, and it
should be found for each new condition by a special electronic controller called a maximum
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power point tracker (MPPT) [8,9]. The MPPT is a key element for the effective operation
of any PV-powered system. As a result, global maximum development has centered on
developing best-fit MPPT approaches for achieving optimal PV tracked power [10,11].
There are numerous MPPT methods available, including perturb and observe (P&O) [12],
hill climbing (HC) [13], incremental conductance (INC) [14], and others.

PV arrays are made up of modules [10], each of which is made up of a series of
parallel connections of solar cells. Because of clouding changes, shade from trees, tall
buildings, and neighboring objects, the PV array can obtain varying solar radiation on
each module. During partial shading conditions (PSCs), some modules hinder the flow
of energy from other normally irradiated solar panels; thus, much less power is provided
to consumers [15,16]. To avert this, bypass diodes are connected across the PV modules.
Under PSCs, the voltage across shaded modules is much lower than that across others. As
a result, the PV array has various peaks on the P–V curve [17]. The maximum recognized
peak among multiple peaks is known as the “global maximum power point” (GMPP), while
the other peaks are known as local maximum power points (LMPPs). These local and global
MPPs are affected by changes in solar insolation and PV array patterns. Traditional MPPT
algorithms are incapable of tracking the GMPP on several peaks on the P–V curve; they are
only best suited for tracking a single peak on the P–V curve [18]. The main disadvantages
of traditional methods are energy loss during steady-state and poor efficiency. This issue
can be solved by employing appropriate optimization methods under PSCs [19].

Previously developed MPPT (P&O, INC, etc.) methods were based explicitly on
deterministic approaches, functioning quite effectively in the conditions characterized by
homogeneous insolation [20]. However, deterministic approaches fail in PSCs since they
most frequently find local instead of global maximums [21]. More successful methods for
PSCs can be based on heuristic algorithms that imitate wildlife behavior [22]. Following
this methodology, bio-inspired swarm optimization algorithms have provided a real-
time solution to address the problem of MPPT under PSCs with rapid convergence, and
accurate confirmations of this optimal solution have been developed [23,24]. Among these
new methodologies, the particle swarm optimization (PSO) technique is significant as it
provides a substantial solution to find a global maximum with greater precision and rapid
convergence [25]. The main disadvantage of PSO methods is the occurrence of convergence
under huge iterations and swarm alteration with a high updating pace. In [26], the authors
proposed a modified version of PSO that has both deterministic and adaptive heuristic
entities. This modification improved the intrinsic randomness in the classic PSO algorithm,
providing an increased velocity of global maximum finding. However, a comparison
with advanced MPPT techniques was missing in this research work. In another research
investigation [11], the authors employed the ant colony optimization (ACO) technique
to track the GMPP under PSCs. This research paper, however, lacked an experimental
discussion on the MPPT controller under various operating climates.

In [12], Shi et al. anticipated an improved cuckoo search (ICS) optimization technique
and proved its efficiency over PSO, P&O, and the standard version of CS through a simu-
lation and experimental setup under PSCs. Nonetheless, in this study, a traditional buck
converter was used to design a PV emulator-based power schematic. Furthermore, MPPT
algorithms based on the latest methods were not covered in this work.

In another study [13], the authors utilized the bat algorithm (BA) for MPPT tracking un-
der four different patterns of PSCs and validated performance through their experimental
setup. Nonetheless, MPPT operation under various operating conditions was not explored
using recent algorithms. Other algorithms such as hybrid GSA-PSO [14], improved dif-
ferential evolutionary (IDE) [24], and flower pollination algorithm (FPA) [25] achieve the
global peak rapidly. Recently, various improvements of PSO such as OD-PSO [26] and
hybrid ELPSO-P&O [27] were anticipated for tracking the GMPP under several peaks on
the P–V curve.
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Retaining the previously mentioned limitations in mind, the primary goals of the
suggested hybrid tunicate swarm algorithm and particle swarm optimization (TSA-PSO)
technique were to have the shortest tracking and settling time, the highest efficiency, the
lowest cost, and the fewest oscillations and fluctuations. Our suggested TSA-PSO has the
following features to meet these requirements:

• The suggested TSA-PSO can be implemented for the PV system under different
weather conditions.

• The proposed TSA-PSO can address the issues related to previously implemented
metaheuristics techniques such as slow convergence, slow settling time, and abrupt
oscillation behavior. It also evades the local maxima. In addition, complex partial
shading is successfully addressed by the proposed TSA-PSO method.

• The effectiveness of the suggested technique was demonstrated experimentally under
various partial shading patterns; it was compared to the FPA, GWO, PSO, TSA, and
P&O algorithms, which were all executed in the same circuit circumstances and
evaluated under identical environments.

The rest of the paper is organized as follows: Section 2 discusses the PV characteristics
in terms of PSCs. Section 3 provides an outline of the proposed hybrid TSA-PSO algorithm
and the GMPPT assessment. Section 4 presents the experimental verification, results, and
discussion. Section 5 provides the conclusive remarks and future scope.

2. Recently Published Metaheuristics-Based GMPPT Algorithms
2.1. Particle Swarm Optimization (PSO)

Environmental researcher Russell C. Eberhart and social researcher James Kennedy
proposed and officially invented the particle swarm optimization (PSO) technique [28].
This approach has a lot to do with some of the social relationships, assumptions, and
behaviors that come from the mathematical modeling of the generalized socialist structure
of a bird flock that is looking for food. Figure 1 depicts a general representation of the
PSO technique.
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Figure 1. A representation of particle swarm optimization (PSO) model [29].

In this method, each possible solution is denoted as a particle with a random speed
and location in the search space. The search space is the set of all possible solutions to the
problem that needs to be solved. Each particle moves and positions itself in the best way
possible in the solution space. The mth particle in the PSO algorithm changes its speed and
location at every Tth step according to the mathematical formulation given below.

Vm
T+1 = W ∗ Vm

T + r1 ∗ C1 ∗
(

Pbest − Xm
T
)
+ r2 ∗ C2 ∗

(
Gbest − Xm

T
)

(1)
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Xm
T+1 = Xm

T + Vm
T+1 (2)

where Xm
T and Vm

T symbolize the position and velocity vectors of the mth particle in
the swarm, W signifies the inertia weight to sustain the stability between local and global
search capability, and C1 and C2 represent the acceleration constant and are predefined by
the user. r1 and r2 are random numbers generated in the range [0, 1]. Pbest is the personal
best location of the mth particle at time T, and Gbest is the global best location of the mth
particle within the swarm. A process flowchart of the PSO GMPPT algorithm is illustrated
in Figure 2.
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Figure 2. Flowchart of PSO GMPPT algorithm.

2.2. Flower Pollination Algorithm

Flower pollination algorithm (FPA) is a nature-inspired population-based algorithm
developed by Xin-She Yang in 2012 [30]. The algorithm mimics the pollination process
of flowers where the evolution of new offspring occurs through the transfer of pollen
grains from the male anther to the female stigma. In nature, there are two types of pol-
lination: abiotic and biotic pollination. Pollination is also categorized as self- or cross-
pollination. In FPA, biotic and cross-pollination are defined as global pollination and
abiotic and self-pollination are defined as local pollination. Figure 3 shows a pictorial
representation of FPA.

Energies 2022, 15, x FOR PEER REVIEW 5 of 21 
 

 

 

Figure 3. A representation of flower pollination algorithm (FPA) [31]. 

In global pollination, pollen grains are carried over longer distances through small 

flying insects, which are mathematically modeled as: 

��
��� = ��

� + � ∗ (��
� − �����) (3)

where ��
� is the pollen or the solution at the current generation t and ����� is the best 

solution among all the solutions in the current generation. L is the step size, which is de-

fined using Lévy flight distribution as: 

�~
�Ґ(�)sin (��/2)

�
∗

1

����
 (4)

where Ґ(�) is the standard gamma function and s is the step size for which the value is 

considered to be greater than zero. 

Local pollination is mathematically modeled as: 

��
��� = ��

� + ∈ (��
� − ��

� ) (5)

where ��
� and ��

�  refer to pollens from different flowers of the same plant and ∈ is ob-

tained through uniform distribution [0, 1]. Local and global pollination are carried out in 

FPA through switch probability, and its value lies in the range [0, 1]. Figure 4 shows a 

process flow diagram of the FPA GMPPT algorithm. 

 

Figure 4. Process flow diagram of FPA GMPPT algorithm. 

Figure 3. A representation of flower pollination algorithm (FPA) [31].



Energies 2022, 15, 3164 5 of 21

In global pollination, pollen grains are carried over longer distances through small
flying insects, which are mathematically modeled as:

xt+1
i = xt

i + L ∗
(
xt

i − gbest
)

(3)

where xt
i is the pollen or the solution at the current generation t and gbest is the best solution

among all the solutions in the current generation. L is the step size, which is defined using
Lévy flight distribution as:

L ∼ λҐ(λ) sin(πλ/2)
π

∗ 1
s1+λ

(4)

where Ґ(λ) is the standard gamma function and s is the step size for which the value is
considered to be greater than zero.

Local pollination is mathematically modeled as:

xt+1
i = xt

i+ ∈
(

xt
j − xt

k

)
(5)

where xt
j and xt

k refer to pollens from different flowers of the same plant and ∈ is obtained
through uniform distribution [0, 1]. Local and global pollination are carried out in FPA
through switch probability, and its value lies in the range [0, 1]. Figure 4 shows a process
flow diagram of the FPA GMPPT algorithm.

Energies 2022, 15, x FOR PEER REVIEW 5 of 21 
 

 

 

Figure 3. A representation of flower pollination algorithm (FPA) [31]. 

In global pollination, pollen grains are carried over longer distances through small 

flying insects, which are mathematically modeled as: 

��
��� = ��

� + � ∗ (��
� − �����) (3)

where ��
� is the pollen or the solution at the current generation t and ����� is the best 

solution among all the solutions in the current generation. L is the step size, which is de-

fined using Lévy flight distribution as: 

�~
�Ґ(�)sin (��/2)

�
∗

1

����
 (4)

where Ґ(�) is the standard gamma function and s is the step size for which the value is 

considered to be greater than zero. 

Local pollination is mathematically modeled as: 

��
��� = ��

� + ∈ (��
� − ��

� ) (5)

where ��
� and ��

�  refer to pollens from different flowers of the same plant and ∈ is ob-

tained through uniform distribution [0, 1]. Local and global pollination are carried out in 

FPA through switch probability, and its value lies in the range [0, 1]. Figure 4 shows a 

process flow diagram of the FPA GMPPT algorithm. 

 

Figure 4. Process flow diagram of FPA GMPPT algorithm. 
Figure 4. Process flow diagram of FPA GMPPT algorithm.

2.3. Grey Wolf Optimization

Grey wolf optimization (GWO) is a stochastic population-based swarm intelligence
algorithm proposed by Mirjalili in 2014 [32]. GWO is inspired by the social hierarchy
and hunting mechanism of grey wolves. These wolves are categorized based on their
dominance and hierarchy as alpha, beta, delta, and omega. Alpha is the leader of the group,
beta is subordinate to alpha, delta is the follower of alpha and beta, while omega is the
babysitter in the pack and has to follow all other three dominant wolves. Grey wolves
hunt in a group where they first track and chase the prey; then, they harass and encircle
the prey; finally, they attack the prey. Figure 5 illustrates a pictorial representation of the
GWO algorithm.
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The encircling and attacking behavior of grey wolves is mathematically modeled
based on the following equations:

Dα = |C1 ∗ Xα − X|, Dβ =
∣∣C2 ∗ Xβ − X

∣∣, Dδ = |C3 ∗ Xδ − X| (6)

X1 = Xα − A1 ∗ (Dα), X2 = Xβ − A2 ∗
(

Dβ

)
, X3 = Xδ − A3 ∗ (Dδ) (7)

X(t + 1) =
X1 + X2 + X3

3
(8)

where Xα, Xβ, and Xδ are the positions of alpha, beta, and delta grey wolves; X is the
position of prey; A1, A2, and A3 and C1, C2, and C3 are the coefficients of α, β, and δ
wolves; and t denotes the current iteration.

The coefficients A and C are expressed as:

A = 2 ∗ a ∗ r1 − a (9)

C = 2 ∗ r2 (10)

where r1 and r2 are random numbers in the range [0, 1] and a is a constant that is iter-
atively decreased from 2 to 0. Figure 6 presents a process flow diagram of the GWO
GMPPT algorithm.
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2.4. Tunicate Swarm Optimization

Kaur et al. [32] were the first to present the tunicate swarm algorithm in the year 2020.
The algorithm is inspired by the swarming behavior of tunicates. These are recognizable
from a few meters away, producing a pale, blue-green bioluminescent light that is powerful.
These are cylindrical in structure and only open at one end, growing to a size of a few
millimeters. However, each tunicate produces jet propulsion from its entrance by obtaining
water from the adjacent sea via atrial siphons. To fully comprehend the behavior of jet
propulsion using the computational model, the tunicate must meet three conditions: avoid
collisions between candidate solutions, move closer to the best solution’s location, and stay
as near as possible to the best solution. Figure 7 depicts a pictographic illustration of the
TSA algorithm. The behavior of tunicates can be modelled mathematically as:
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2.4.1. Prevent Collisions between Candidate Solutions

We can initialize the parameters
→
A (constant), gravity force (

→
G), water flow advection

in the deep ocean (
→
F ), social force

→
M, and the maximum number of iterations as:

→
A =

→
G
→
M

(11)

→
G = c2 + c3 −

→
F

→
F = 2 ∗ c1 (12)

M = bPmin + c1 ∗ Pmax − Pminc (13)

where c1, c2, and c3 are random numbers in the range [0, 1] and Pmin and Pmax are considered
as 1 and 4.

2.4.2. Step More toward the Location of the Best Solution

The search agents are moved in the direction of the finest neighbors after successfully
preventing a conflict with neighbors:

→
PD =

∣∣∣∣→FS− rand ∗
→
P p(x)

∣∣∣∣ (14)
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where
→

PD is the total distance between the search agent and food source, rand is a random

number in the range [0, 1], x indicates the current iteration,
→
FS indicates the position of the

food source, and
→
P p(x) is the position of the tunicates.

2.4.3. Stick Close to the Best Solution

The search agent can even establish its position as the leading search agent.

→
P p(x) =


→
FS +

→
A ∗

→
PD, i f rand ≥ 0.5

→
FS−

→
A ∗

→
PD, i f rand < 0.5

(15)

The position of all the tunicates is updated concerning the position of the first two
tunicates as follows:

→
P p(x + 1) =

→
P p(x) +

→
P p(x + 1)

2 + c1
(16)

where
→
P p(x + 1) represents the updated position of the tunicates. Figure 8 depicts the TSA

GMPPT algorithm’s process flow schematic.
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2.5. Perturb and Observe

Perturb and observe (P&O) is the most commonly used MPPT algorithm due to its
live tracking nature and ease of implementation. As the name implies, the P&O algorithm
performs perturbation and then observes its outcome to determine the next direction of
perturbation. This process is repeatedly carried out until the desired outcome is achieved.
As the MPPT algorithm is implemented with the help of DC/DC or DC/AC converters, the
MPP can be tracked with the help of three parameters, i.e., duty, voltage, and current [34].

The P&O MPPT algorithm measures the voltage and current of two subsequent
iterations to determine changes in voltage, current, and power. The change in power
is observed to determine whether the power has increased or decreased. Based on the
observation regarding a change in power, the duty cycle is incremented or decremented
to further improve or rectify the direction of tracking [35]. This process is repeatedly
carried out until the point of operation reaches the Mpp. The duty-based P&O algorithm is
given by (17).

D(k) = D(k − 1) ± ∆D (17)

It can be seen from (17) that a high tracking speed can be achieved if a large pertur-
bation step size (∆D) is taken. However, the use of a large step size also results in large
steady-state oscillations. On the other hand, the use of a small step size limits the steady-
state oscillations but also slows down the tracking process. Hence, there exists a trade-off
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between the tracking speed and steady-state power oscillations. Another major drawback
of the P&O algorithm is its inability to track the GMPP under partial shading conditions.
The P&O algorithm can get easily trapped in the local maxima if multiple power peaks are
present. A process flow diagram of the P&O algorithm is described in Figure 9.
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3. Proposed TSA-PSO-Based GMPPT Algorithm

The proposed TSA-PSO hybrid MPPT approach is a smart computational technique
that eliminates the uncertainty that can occur during homogeneous-to-nonhomogeneous
transformations and vice versa, i.e., during PSCs, TSA has good exploration capability
and the PSO algorithm has good exploitation capability; therefore, this hybrid approach
utilizes the best capabilities of both algorithms. In the proposed hybrid algorithm, TSA
first explores the search space to obtain initial solutions for the PSO algorithm; thereafter,
the PSO algorithm exploits the search space and obtains a global optimal solution. The
hybrid MPPT tracks the GMPPT by first initializing the TSA and then using PSO. As the
tunicates get closer to each other, the PSO MPPT begins at the position of the best tunicate
in the TSA process.

The anticipated TSA-PSO hybrid MPPT can be implemented in a PV system that works
under complex PSCs as illustrated in algorithm 1: TSA-PSO. The location of a tunicate in
the proposed MPPT algorithm refers to the duty ratio of the boost converter employed for
GMPPT implementation. This simplifies the controller and minimizes the computational
burden of adjusting the controller gain.

The greater the number of tunicates, the greater the MPP accuracy, but this results
in a significantly larger computational burden. As a result, the number of tunicates may
be reduced to three to lessen computational time. The workflow of the proposed hybrid
GMPPT method is shown in Figure 10. The proposed GMPPT Algorithm 1 is implemented
using the steps outlined below.
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Algorithm 1 TSA-PSO

Stage 1. Initialize the tunicates’ locations on stabilized locations with equal space to reside
between 10% and 90% of the duty ratio.
Stage 2. Initiate the converter and observe the output power “P” of the PV array at each tunicate
location. Ppv = Ipv ×Vpv
Stage 3. Make the adjustment for each duty as follows:

→
Dp(x + 1) =

→
Dp(x) +

→
Dp(x + 1)

2 + c1
(18)

where D is the current value of the duty, x is the number of iterations, and c1 represents
the coefficient.
Stage 4. Repeat Stages 3 and 4 until all the tunicates converge to the MPP.
Stage 5. Begin the PSO loop after retrieving the MPP to track the maximum power (GMPP).
Choose a small step size to mitigate oscillations in PV output power and to improve
tracking performance.
Stage 6. Repeat these stages until the stopping point is met.
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4. Experimental Setup

A small-scale experimental prototype, shown in Figure 11, was used to compare the
performance of the proposed algorithm with other state-of-the-art algorithms. Table 1
displays the values of tuning parameters for all algorithms. The proposed algorithm was
tested on a Sun-Earth Solar Power 255 W polycrystalline PV array (TPB125x125-36-P, 85 W),
which was programmed in an Ecosense PV emulator (IGE-PV4C400-001). The datasheet
of the PV module is given in Table 2. A current sensor (WCS2702) was used to measure
PV array current, while each module voltage of a potential divider was sensed. The MPPT
algorithms were implemented in a low-cost ATMEGA-32 microcontroller. A DC-DC boost
converter was designed for the implementation of the MPPT algorithms. A rheostat with a
range of 250 Ω was connected as a load to evaluate the performance of the MPPT algorithms.
Fluke 287 multimeters and a TDS2000C digital storage oscilloscope were used to store the
experimental data in csv format. The experimental power curves of the MPPT algorithms
were traced in a MATLAB/Simulink environment.
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Table 1. Parameters of algorithms.

Algorithms Parameters

FPA
Switching probability = 0.8

Lévy step size scaling factor = 0.01
λ = 1.5

GWO All parameters updated during iteration
TSA Pmin = 1, Pmax = 4
PSO C1 = [1, 2], C2 = [1, 2], w = [0.1, 1]
P&O ∆d = 0.001, dmax = 0.65, dmin = 0.32

Table 2. Electrical specifications of 85 W polysilicon PV module.

Parameters Value

Maximum power, Pmax (W) 85 W
Voltage MPP, VMP (V) 17.6 V
Current MPP, IMP (A) 4.83 A

Open-circuit voltage, Voc (V) 21.9 V
Short-circuit current MPP, ISC (A) 5.24 A

Temperature coefficient of Voc (%/◦C) −0.3
Temperature coefficient of Isc (%/◦C) 0.05

5. Experimental Results and Discussion
5.1. Problem Formulation

The presented maximum power retrieval can be expressed as an optimization chal-
lenge in the following way:

Maximize P (D) (19)

Subjected to Dmin ≤ D ≤ Dmax

where P (D) represents the output power of the PV module, D signifies the duty ratio of the
boost converter, Dmin is the lower bound of the duty ratio taken as 10%, and Dmax is the
upper bound of the duty ratio with a value of 90%.

Figure 12 depicts a 3S configuration with three modules attached in series. The P–V
curve of three different shading patterns with clearly distinct global power (GP) locations
for the 3S configuration is shown in Figure 13.
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Experiments were carried out for the 3S configuration (pattern-1, pattern-2, and
pattern-3) to confirm the efficacy of the suggested hybrid TSA-PSO MPPT for the 3S
configuration under rapidly changing insolation levels, as shown in Figure 12. For pattern-
1, the proposed hybrid TSA-PSO method converged to the GMPPT within 0.38 s; for
pattern-2, the convergence time reached 0.54 s; in the case of pattern-3, it also gave the low
convergence time of 0.40 s with low oscillations as compared with other MPPT techniques.

Pattern-1:

In this partial shading pattern, the algorithms were tested on a 250 W PV array under
relatively constant temperatures measured between T = 25 and 25.5 ◦C. At t = 0 s, the
GMPPT algorithms were activated in succession with an irradiance of G = 1000, 300, and
600 W/m2 on the first, second, and third PV modules, respectively. The experimental
waveforms of the GMPPT algorithms for this case study are shown in Figure 14.
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(e) TSA, and (f) P&O.

The observed response times of the GMPPT algorithms to reach steady-state conditions
around the GMPP are given in Table 3. It is evident from Figure 14 that the proposed hybrid
TSA-PSO GMPPT method outperformed other state-of-the-art GMPPT methods as this
fusion increased the exploitation ability of the conventional TSA, which resulted in fast
convergence. Due to the low exploration capability of the PSO algorithm, it came in second
with a tracking time of 0.94 s. On the other hand, the conventional TSA algorithm took
third place due to its poor exploitation ability. Although both GWO and FPA have similar
tracking times, large oscillations were observed with FPA compared to GWO because
of the improper trade-off between exploration and exploitation ability in FPA. Finally, a
low tracking time was observed during the execution of the P&O algorithm on account
of reduced power extraction from the PV array as the P&O algorithm got stuck in the
local maxima.
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Table 3. Performance analysis of the proposed TSA-PSO along with other metaheuristics algorithms
for PS pattern-1.

Technique
Rated
Power

(W)

Maximum
Extracted

Power (W)

Tracking
Time (s)

Number of
Iterations

Maximum
Efficiency

Extracted from PV
Panels (%)

TSA-PSO

104.50

103.36 0.38 12 97.44
FPA 102.00 1.60 23 85.85

GWO 102.63 1.57 15 90.63
TSA 102.50 1.09 20 93.52
PSO 102.73 0.94 17 93.38
P&O 84.58 0.81 10 77.07

Pattern-2:

In this partial shading pattern, the GMPPT algorithms were activated in succession
with an irradiance of G = 450, 750, and 650 W/m2 on the first, second, and third PV modules,
respectively. The experimental waveforms of the GMPPT algorithms for this case study
are depicted in Figure 15. The observed response times of the GMPPT algorithms to reach
steady-state conditions around the GMPP are provided in Table 4. In this case, the value of
global peak power was 123.88 W. The suggested TSA-PSO procedure was implemented in
a PV system, and the tracking time was 0.54 s to obtain a global peak in fifteen iterations,
with a maximum power of 122.88 W obtained by the proposed TSA-PSO algorithm; a
power vs. time waveform is shown in Figure 15. The PV power extracted by the GWO
algorithm was 122.73 W, as illustrated in Figure 15. Based on observation from GWO, the
tracking time was 0.80 s, but the number of iterations was more because of a large number
of tuning parameters. The maximum power obtained by the FPA algorithm was 121.30 W,
and the time taken to reach the global peak was 1.40 s along with 22 iterations. However,
there was a loss of power during tracking and steady-state oscillations were also observed.

Table 4. Performance analysis of the proposed TSA-PSO algorithm along with other metaheuristics
algorithms for PS pattern-2.

Technique Rated Power
(W)

Maximum
Extracted

Power (W)

Tracking
Time (s)

Number of
Iterations

Maximum
Efficiency
Extracted
from PV
Panels

TSA-PSO

123.88

122.88 0.54 15 98.20
FPA 121.30 1.40 22 94.34

GWO 122.73 0.80 18 81.80
TSA 120.68 0.68 16 92.13
PSO 121.45 0.95 23 93.36
P&O 115.95 0.81 12 81.80

The power obtained by the PSO algorithm was 121.45 W, and its tracking time was
0.95 s with 23 iterations. Because of the slow convergence, the tracking time and iterations
required to reach the global peak were longer. Based on the observations from TSA,
the maximum power extracted was 120.68 W with a tracking time of 0.68 s. Here, the
tracking time was low, but a large number of steady-state oscillations were also identified.
Furthermore, it was observed that P&O took a smaller number of iterations, i.e., 12, but
was not able to reach the GMPPT. The reason is that it was trapped in local maxima. When
comparing these five algorithms, TSA-PSO outperformed FPA, GWO, TSA, PSO, and P&O.
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Pattern-3:

In pattern-3, irradiances of each module were G = 1000, 600, and 600 W/m2 on the
first, second, and third PV modules, respectively. The P–V curve of shading pattern-
3 had two peaks where the second peak was the global peak while the leftmost peak
represented the local peak. Pattern-3 had a maximum power output of 157.95 W. Pattern-3
was subjected to the standard FPA algorithm, with a tracking time and GMPP value of
1.31 s and 156.67 W, respectively. Figure 16 depicts the waveforms of pattern-3 using the
standard FPA algorithm. It is clear from the power waveform that the number of iterations
was greater, and it also had steady-state oscillations similar to pattern-1 and pattern-2. The
PSO algorithm was applied to pattern-3, with a tracking time of 1.02 s to obtain the GMPP
with 15 iterations and a global peak power of 138.66 W. The tracking time and iterations
were less compared to those of FPA. However, the PSO algorithm was not able to achieve
the true value of the GMPP because of getting stuck in local maxima.
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The results of the TSA method took 1.19 s to locate a GP of 150.29 W; steady-state
oscillations were observed near the GMpp. The tracking time to reach global power using
GWO was 1.03 s, and the maximum power was 156.56 W with 18 iterations. While P&O
took 12 iterations, the tracking time was larger compared to all other algorithms because
of the small step size. Within 11 iterations, the proposed TSA-PSO method had a tracking
time of 0.40 s and a global peak power of 156.84 W. As a result, the TSA-PSO algorithm
had a faster tacking time and fewer iterations than the PSO, TSA, GWO, FPA, and P&O
algorithms; the corresponding results are shown in Table 5.

Table 5. Performance analysis of the proposed TSA-PSO algorithm along with other metaheuristics
algorithms for PS pattern-3.

Technique
Rated
Power

(W)

Maximum
Extracted

Power (W)
Tracking
Time (s)

Number of
Iterations

Maximum
Efficiency

Extracted from PV
Panels

TSA-PSO

157.95

156.84 0.40 11 97.36
FPA 156.67 1.31 24 89.39

GWO 156.56 1.03 18 96.37
TSA 150.29 1.19 20 87.52
PSO 138.66 1.02 15 95.14
P&O 155.35 1.64 12 94.20
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5.2. Robustness and Statistical Analysis

This section compares the effectiveness of the anticipated TSA-PSO algorithm with
other pre-existing MPPT techniques by utilizing quantitative assessments, i.e., mean, mini-
mum, maximum, and standard deviation of the retrieved power. The mean was used to
evaluate the exactness of the various MPPT algorithms, whereas the standard deviation
was used to decide the quantity of dispersion within the power data sets. To assess the
overall effectiveness of each MPPT algorithm, two nonparametric evaluations, the Wilcoxon
rank-sum and Friedman ranking tests, were executed.

To check the rank of the proposed algorithm, a nonparametric Friedman ranking test
was carried out. Figure 17 reveals the results of the Friedman ranking test, which also
illustrates that the TSA-PSO algorithm outperformed other algorithms in terms of tracking
the GMPPT under complex PSCs.
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Figure 17. Friedman ranking of all compared algorithms. 
Figure 17. Friedman ranking of all compared algorithms.

The Wilcoxon rank-sum assessment is a nonparametric measure that compares the
outcomes of two methods. The null hypothesis signifies that the ranks of the comparative
methods’ results are not noticeably distinct. The alternative hypothesis investigates whether
the comparative method results can be characterized by rank. Here, the Wilcoxon rank-
sum was calculated at a significance level of 5%. The sign “+” denotes that the TSA-PSO
algorithm outperformed the other algorithm remarkably, the sign “≈” implies that the
TSA-PSO algorithm was similar to the other algorithm, and the sign “−” reveals that the
TSA-PSO algorithm had poor performance compared with the other algorithm. Table 6
displays the statistical results obtained from testing all six algorithms under all three
shading patterns.
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Table 6. Statistical results using Wilcoxon rank-sum test.

Shading Patterns Algorithm Power (W)

Max Mean SD Rank-Sum

Pattern-1

TSA-PSO 103.36 77.07 14.07
FPA 102.00 87.73 15.77 (+)

GWO 102.63 90.63 16.73 (+)
TSA 102.50 93.52 14.69 (+)
PSO 102.73 93.38 18.17 (+)
P&O 84.58 97.44 15.13 (+)

Pattern-2

TSA-PSO 122.88 106.02 17.55
FPA 121.30 114.83 21.13 (+)

GWO 122.73 115.47 18.75 (+)
TSA 120.68 115.39 19.30 (+)
PSO 121.45 114.46 20.75 (+)
P&O 115.95 110.30 18.63 (+)

Pattern-3

TSA-PSO 156.84 124.47 23.89
FPA 156.67 144.75 32.58 (+)

GWO 156.56 148.35 23.99 (+)
TSA 150.29 137.28 27.62 (+)
PSO 138.66 125.35 24.30 (+)
P&O 155.35 129.63 26.23 (+)

5.3. Qualitative Analysis of the Proposed TSA-PSO Hybrid MPPT

To assess the competitiveness of the proposed hybrid fusion, a few unique criteria that
are required in any MPPT method were evaluated and provided in a radar chart, as shown
in Figure 18. Furthermore, this analysis is intended to technically assess the efficacy of any
bio-inspired technique for MPPT implementation. The following are the various criteria
taken into account for the analysis: (i) computational complexity, (ii) hardware complexity,
(iii) accuracy, (iv) energy loss, (iv) tracking velocity, and (v) convergence speed. The tradi-
tional radar chart interpretation can be understood as follows: the bio-inspired techniques
that occupy the majority of the space in the radar chart have higher recommendations
for MPPT potential application, and vice versa. Considering the aforementioned criteria,
TSA-PSO secured the first place. Meanwhile, TSA, GWO, FPA, P&O, and PSO secured the
second, third, fourth, fifth, and sixth places, respectively.
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6. Conclusions

This paper proposed a new hybrid TSA-PSO algorithm to accurately track the GMPP
of PV arrays under PSCs. The effectiveness of TSA-PSO on PV systems was observed
through analytical correlations and was validated for three distinct PSCs. The findings
illustrated that TSA-PSO can efficiently handle PS conditions and can accurately reach
the GMPP under various PS scenarios. When compared to P&O, the most substantial
decrease in oscillations was obtained at 93.5% in the steady-state condition by the TSA-
PSO algorithm. The tracking time was observed to be 10–20% lower as compared to the
PSO, TSA, GWO, FPA, and P&O algorithms. The increase in tracking speed and fewer
oscillations helped in increasing the average power by around 4–5%. As a result, the
proposed TSA-PSO-based MPPT controller successfully addressed the complications of
arbitrary oscillations and PSCs. The increased efficiency of the TSA-PSO MPPT algorithm
contributes to the techno-economic validity of solar PV systems.

In the near future, the authors plan to test the proposed TSA-PSO MPPT technique on
a grid-connected PV system to validate the performance of the proposed algorithm in a
real-world topology.
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ACO Ant Colony Optimization
BA Bat Algorithm
CS Cuckoo Search
FPA Flower Pollination Algorithm
GMPP Global Maximum Power Point
GP Global Power
GWO Grey Wolf Optimization
HC Hill Climbing
ICS Improved Cuckoo Search
INC Incremental Conductance
LMPP Local Maximum Power Points
MPP Maximum Power Point
MPPT Maximum Power Point Tracker
P&O Perturb and Observe
PSC Partial Shading Conditions
PSO Particle Swarm Optimization
PV Photovoltaic
TSA Tunicate Swarm Algorithm
TSA-PSO Tunicate Swarm Algorithm-Particle Swarm Optimization
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