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Abstract: In grid-connected photovoltaic (PV) systems, a transformer is needed to achieve the
galvanic isolation and voltage ratio transformations. Nevertheless, these traditional configurations of
transformers increase the weight, size, and cost of the inverter while decreasing the efficiency and
power density. The transformerless topologies have become a good solution. However, the problem
is that commode-mode voltage and leakage current can occur via the stray capacitors between the PV
array and the ground of the inverter. Various transformerless inverters have been introduced with
different techniques, such as reducing the common-mode voltage or eliminating the leakage current.
Furthermore, to introduce the development of transformerless PV inverters, especially in three-phase
two-level inverter systems, this paper provides a comprehensive review of various common-mode
voltage reduction three-phase two-level inverters.

Keywords: common-mode voltage; transformerless topology; three-phase two-level inverter; leakage
current; review

1. Introduction

Nowadays, renewable energy sources play a key role in supporting the power system
to adapt the ever-increasing load demand. Among the renewable energy sources, the
PV source is considered as one of the most effective solutions due to its relatively small
size, clean energy, noiseless operation, and simple installation [1–4]. To connect the PV
array with a utility grid, grid-connected inverters are widely used for the PV systems
and are divided into the transformer-based and transformerless topologies [4–9]. The use
of a high-frequency transformer on the DC side or a low-frequency, bulky transformer
in the AC side can be employed to ensure the safety issue with the galvanic isolation
between the output and input sides [10–12]. Nevertheless, transformer-based topologies
are heavy, high-cost, and high-loss. The efficiency of the transformerless inverter can
improve by up to 2%. Therefore, transformerless topologies have been developed in both
academic and industrial fields [13–18]. Voltage source inverters (VSIs), especially three-
phase two-level transformerless topologies, are the most common solution to convert the
DC voltage to AC voltage in any power system, with their merits of being low-cost, easy
to implement, and mature technology. However, the disadvantage of transformerless
topologies is the connection of the PV array to the grid without galvanic isolation. So,
international agencies have regulated some broadly approved standards for PV inverters,
which should be considered to avoid safety concerns. The main reason for these safety
concerns is the presence of large stray capacitance (CPV) between the PV panel and the
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ground of the grid. As highlighted in Figure 1, a direct ground–current path may form
between the grid and the PV panel. Due to the presence of large stray capacitance between
the PV panel and grid grounds, the common-mode voltage (CMV) can appear, and the
leakage current is originated from CMV fluctuations. Then, the leakage current flows
through the ground and PV array, which leads to increased radiated electromagnetic
emissions, higher current harmonics, and losses and low reliability of the transformerless,
grid-connected PV transformerless inverter topologies [19–21]. Considering these issues,
the leakage current should be carefully managed. The leakage current must be less than
the VDE standard of 300 mA to prevent the unfavorable effects in VDE 0126-1-1. The
leakage current can be suppressed by reducing the amplitude and frequency of the CMV
or breaking the PV array from the grid on the DC side of the inverter system. In recent
years, many approaches have been made to overcome the CMV and leakage current in
transformerless PV inverters [21–38].
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Figure 1. Typical three-phase transformerless VSI configuration using an L-filter.

The SVM control method is generally implemented to control the traditional three-
phase two-level H6 VSI. Figure 2 shows the circuit and SVM diagram of the traditional three-
phase two-level H6 VSI. It can be seen that eight possible combinations are synthesized of
six active and two zero voltage vectors, as depicted in Table 1. Moreover, the CMV can be
defined as the average of the voltages between the three-phase voltages, A-N, B-N, and
C-N, and (1) and the CMV in each state are calculated in Table 1.

VCM = VGN =
VAN + VBN + VCN

3
(1)

There are several review papers reported in the literature which cover the topology
modifications and PWM methods for CMV reduction in three-phase VSIs [27,37–40]. In
the review study [27], the CMV in an electric drive fed by a conventional three-phase
two-level inverter is described and a review of CMV reduction methods is presented. The
PWM methods for CMV reduction in three-phase two-level transformerless inverters are
discussed in [37–40] to demonstrate the effectiveness of the compared solutions. Generally,
these review papers only focused on the traditional three-phase two-level transformerless
inverters with a buck-type topology. Moreover, the prior-art solutions for traditional
VSIs are not suitable for the impedance-source-based inverters system. Hence, the review
solutions for CMV reduction in the impedance-source-based in VSIs are presented in [41].
However, not many different comparisons have been conducted in this review paper.
Investigating the latest research in both traditional VSIs and impedance-source-based VSIs,
the review and classification of three-phase two-level transformerless inverters have been
studied in this paper to present a clear picture of the investigation of the three-phase
two-level transformerless PV inverters for CMV reduction. For each category of three-
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phase two-level transformerless inverters, several general inverter topologies of them are
illustrated, and each inverter has been examined from different perspectives, such as the
number of components, modulation index operating range, CMV reduction, boosting
voltage capability, etc. The rest of this paper is organized as follows. Section 2 presents the
classification of three-phase two-level transformerless topologies. A broad classification and
discussion of different traditional three-phase two-level transformerless inverter topologies
are given in Section 3. Section 4 provides the structure of major impedance-source-networks-
based topologies with the comparison between them based on the merits and demerits.
Finally, Section 5 gives the concluding remarks.
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Figure 2. Traditional three-phase two-level voltage-source H6 inverter: (a) H6 inverter topology;
(b) space vector modulation (SVM) diagram.

Table 1. Common-mode voltage of traditional H6 topology.

Switching State Bridge States CMV Value

M0 000 0
M1 100 VPN/3
M2 110 2VPN/3
M3 010 VPN/3
M4 011 2VPN/3
M5 001 VPN/3
M6 101 2VPN/3
M7 111 VPN
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2. Classification of Three-Phase Two-Level Transformerless Topologies for
CMV Reduction

Compared with CSIs, the VSIs will be more dominant in the PV-grid-connected
inverter systems because of their advantages of easy control, cost-effectiveness, and being a
mature technology [42–52]. However, the traditional three-phase two-level voltage-source
H6 inverter cannot provide the boost capability. Thus, an additional boost from a DC–DC
converter or new topologies with added extra components can be used to boost the low
input DC voltage to high DC-link voltage [53–57]. Moreover, a deadtime should be inserted
in the H-bridge switches to avoid the short-circuiting of the DC-link bus. This leads to
an increase in the THD value at the AC output voltage [58,59]. These days, single-stage,
impedance-source inverter topologies [60–70] have been introduced and developed with
buck-boost ability and improve reliability. In a transformerless PV inverter, the common
mode voltage will be produced while the inverter is being worked and results in the
high-leakage current on the capacitor CPV [71,72]. In order to suppress the leakage current,
the common mode voltage should be reduced or kept constant. To reduce the CMV for
the traditional three-phase two-level H6 VSIs, both the PWM control methods [30–38]
and system topology reconfiguration [42–57] are introduced. In addition, the solutions
for the CMV reduction of the impedance-source inverter topologies were also developed.
Moreover, by considering the number of active switches in the impedance-source network,
these inverters can be classified into passive types [71–79] and active types in [80–83]. As a
result, the transformerless three-phase two-level VSIs with CMV reduction can be classified
into the traditional VSI group and impedance-source-based group. The overview of the
several existed topologies is summarized and presented in Figure 3. The comprehensive
comparison and discussion will be presented in the following sections.
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Figure 3. Classification of three-phase, two-level inverter topologies.

3. Traditional Voltage Source Topologies
3.1. Buck-Type Topologies

From the CMV values listed in Table 1, the CMV of the traditional three-phase two-
level H6 VSI can be reduced to one high CMV level by only applying six active states.
Various PWM technique modifications for CMV reduction have been presented. This
section will briefly present some SVM methods, such as the traditional modulation-based
CMV reduction methods. In the active zero-state SVM method introduced in [30,31], the
zero states can be replaced by two opposite active states. The near-state SVM method is
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implemented with three adjoining states [32]. The traditional three-phase two-level H6 VSI
with these SVM methods can effectively decreases the CMV amplitude to 33% of DC-link
voltage. The active zero-state PWM and near-state PWM methods, and the remote-state
SVM method in [33], can offer the constant CMV by using only the three active states in the
odd active or even vectors. Moreover, the combination of other states can be applied to
reduce the amplitude value of CMV, introduced in [34–36]. However, this solution limits
modulation index range and output voltage quality, which reduces the output quality of
the inverter. The overview of these control methods is also discussed in [37–41].

Moreover, the inverter structure can be changed and introduced by modifying some
components for the CMV reduction, as shown in Figure 4. For example, the H7 topology
was introduced in [42,43] to limit the CMV of VPN/3. An extra switch was added to
positive DC input voltage to disconnect the inverter side and PV source during one zero
vector when the inverter operated with the discontinuous SVM method. In addition, to
eliminate two CMV levels in two zero vectors, a H8 topology with two additional switches
was proposed in [44,45]. Two additional switches were controlled to float the inverter in
zero states; the variation of CMV is VPN/3. In [46], H8 topology with a voltage-clamping
network was proposed. The CMV did not change with the zero vectors by turning off
two additional switches. Thus, the CMV can vary from VPN/3 to 2VPN/3. In addition, an
improved H8 topology was also proposed in [47]. In the improved H8 topology, the CMV
during zero states is kept constant at 2VPN/5, while it varies from VPN/3 to 2VPN/3 in the
active states. In [48,49], the H10 topologies and corresponding modulation scheme with
omitting zero vectors were introduced to keep the constant CMV. Moreover, a constant
CMV can be given by adding a zero-voltage-state rectifier module to the H6 inverter [50].
In [51], the modulation strategy for a three-phase four-leg PV inverter was discussed to
achieve the constant CMV. Therefore, the leakage current can be eliminated remarkably.
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Figure 4. CMV reduction topologies. (a) H7 topology [42,43], (b–d) H8 topologies [44–47], (e,f) H10
topology [48,49], (g) ZVR topology [50], and (h) four-leg topology [51].

3.2. Boost-Type Topologies

Unlike the previous solutions, many three-phase two-level inverters are shown in
Figure 5. They are based on a combination of different types of boost modules, and each
has its unique characteristics. In [53], the H6 topology with a switched-capacitor voltage
doubler and the novel SVM methods were proposed to limit the variation of CMV and offer
the boosting ability, where the DC-link voltage of the inverter is always two times the input
voltage. However, the topology in [53] produces bipolar output line-to-line voltage, and
the linear modulation range is also limited. In addition, the proposed triple voltage boost
inverter in [54] uses a voltage multiplier network to give the triple boosting voltage and
keep the constant CMV. In [55,56], the three-phase H6 based-switched-capacitor inverters
were presented to reduce the variation of CMV with one-third of DC-link voltage and also
provided the boosting voltage. In the case of the introduced inverter in [55], the DC-link
of the inverter can be one or two times of the input voltage depending on the state of
the switched-capacitor circuit. On the contrary, the inverter in [56] is always given two
times the input voltage. Like conventional four-leg topology, the four-leg inverter with
adding boosting module in [57] can also achieve the constant CMV, and the DC-link of the
proposed inverter is always two times the input voltage.
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Figure 5. CMV reduction topologies with boosting capability. (a) Switched-capacitor voltage-doubler
inverter [53], (b) triple-voltage boost inverter [54], (c,d) switched-capacitor-based inverters [55,56],
(e) boost inverter with four-leg [57].

Table 2 presents the comparison of both buck-type and boost-type traditional three-
phase two-level transformerless inverter topologies in terms of component count, mod-
ulation index range, boosting capability, and variation of CMV. Figure 6 highlights the
comparison of the detailed component count with the number of switches, diodes, capaci-
tors, and inductors. It can be seen that the boost-type topologies require more components
when compared with other buck-type topologies. In terms of modulation index operating
range, the majority of inverters can operate in the modulation index in full range. It is
clear that some of the proposed new structures reviewed in this study are provided by
the boosting voltage and very low or constant CMV. However, to overcome some of the
limitations, other components should be added, which, in most cases, will increase the size
and weight of the inverter package. It can be seen that all the mentioned inverters have
their own advantages and disadvantages, as presented in Table 2. Thus, it is difficult to
evaluate which inverter is more effective than the other. Nevertheless, there are several
key points that should be kept in mind while choosing an inverter for grid-connected
three-phase two-level transformerless PV applications.
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Table 2. Comparison of different CMV reduction traditional VSIs topologies.

Topology
Component

Count Modulation
Index

Boost
Factor CMV

Characteristic

S D C L Advantage Disadvantage

Figure 4a
[42] 7 0 0 7 0 to 1 1 VPN/3

− Minimum components
− Full range of

modulation index

− Low CMV
− No boosting capability

Figure 4b
[45] 8 0 0 0 0 to 1 1 VPN/3

− Simple structure
− Full range of

modulation index

− Low CMV
− No boosting capability

Figure 4c
[46] 8 2 3 0 0 to 1 1 VPN/3 − Full range of

modulation index

− Low CMV
− No boosting capability
− Requires more

components

Figure 4d
[47] 8 0 0 0 0 to 1 1 VPN/3

− Simple structure
− Full range of

modulation index

− Low CMV
− No boosting capability

Figure 4e
[48] 10 0 2 0 0 to 1 1 0

− Constant CMV
− Full range of

modulation index

− Requires ten switches
− No boosting capability

Figure 4f
[49] 10 0 0 0 0 to 1 1 0

− Constant CMV
− Full range of

modulation index

− Requires ten switches
− No boosting capability

Figure 4g
[50] 9 12 2 0 0 to 1 1 0 − Constant CMV

− No boosting capability
− High number of

components
− Limits modulation

index

Figure 4h
[51] 8 0 1 1 0.66 to 1 1 0 − Simple structure

− Constant CMV

− No boosting capability
− Limits modulation

index

Figure 5a
with DSVM

[53]
8 2 2 0 0 to 1 2 VPN/3

− Double of input
voltage

− Full range of
modulation index

− Requires more
components

− Low CMV

Figure 5a
with

NSSVM
[53]

8 2 2 0 0.66 to 1 2 VPN/6
− Double of input

voltage
− Very low CMV

− Requires more
components

− Limits modulation
index

Figure 5a
with

RSSVM [53]
8 2 2 0 0 to 0.57 2 0

− Double of input
voltage

− Constant CMV

− Requires more
components

− Limits modulation
index

Figure 5b
[54] 10 4 3 0 0 to 1 3 0

− Triple of input voltage
− Constant CMV
− Full range of

modulation index

− High number of
components

Figure 5c
[55] 8 1 1 0 0 to 1 1 or 2 VPN/3

− Double of input
voltage

− Full range of
modulation index

− Requires more
components

− Low CMV
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Table 2. Cont.

Topology
Component

Count Modulation
Index

Boost
Factor CMV

Characteristic

S D C L Advantage Disadvantage

Figure 5d
[56] 9 1 1 1 0 to 1 2 VPN/3

− Double of input
voltage

− Full range of
modulation index

− Requires more
components

− Low CMV

Figure 5e
[57] 8 1 2 2 0 to 1 2 0

− Double of input
voltage

− Constant CMV
− Full range of

modulation index

− Requires more
components

S, D, L, and C are the number of switches, diodes, inductors, and capacitors, respectively.
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4. Impedance-Source-Networks-Based Topologies
4.1. Passive-Type Topologies

Figure 7 presents the general structure of an impedance-source network three-phase,
two-level VSI with possible switching devices depending on application requirements.
The basic impedance-source network can be established as a combination of inductors,
capacitors, diodes, and switches to improve the performance of the circuit. In the control
method of the impedance-source-networks-based inverter topologies, the shoot-through
states are used to create shoot-through immunity and reduce the deadtime in H-bridge
legs. On the contrary with the traditional VSI topologies, the shoot-through states insertion
causes very high peak-to-peak CMV in the impedance-source-networks-based inverter
topologies [71–83]. To reduce the CMV of the impedance-source-networks-based inverter
topologies, various topologies and modulation techniques will be reviewed in this section.
In the shoot-through states, during which each switching cycle is added to the H-bridge,
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none of the CMV reduction SVM control methods are ideal for impedance-source inverter
topologies. In [71], an NSSVM strategy was proposed for a three-phase Z-source inverter,
as shown in Figure 8a. In this work, the diode in the positive terminal is reversed-bias
while the shoot-through states are implemented. Then, the input voltage source and an
inverter are isolated. Similar to the NSSVM in the traditional H6 VSI, the magnitude
CMV of three-phase Z-source inverters can be decreased to VPN/3. Nevertheless, the
modulation index operating range is narrow and followed the conventional NSSVM; in this
case, it is operated within 0.66 and 1. In order to provide the constant CMV in the Z-source
inverter topology, the Z-source inverter with four-leg was found and presented in [72,73], as
shown in Figure 8b. By switching the fourth leg, the CMV variation is significantly limited.
Nevertheless, this method will result in a high cost of the three-phase system. In the same
way, the three-phase Z-source inverter was proposed in [74,75], with an additional diode
in the negative terminal of the input voltage source, as shown in Figure 8c. An additional
diode has a function to seperate the inverter and the PV array during shoot-through states.
In this case, the CMV is kept constant by using odd vectors. The modulation index is
operated up to 0.57.
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Figure 7. General structure of impedance-source-networks-based three-phase transformerless VSI.

Moreover, to improve the input current profile, the quasi-Z-source inverter and mod-
ified quasi-Z-source inverter based on SVM were proposed in [76–79]. In the case of
references [76–78], by adding an inductor in the negative terminal of the PV panel, only
three odd or even vectors were implemented to keep the constant CMV. However, similar to
the RSSVM in the traditional H6 VSI, the linear modulation range is limited to a modulation
index of 0.57 in these methods. In addition, a notch filter is considered in [79] to add to
the inverter system as an output filter. The CMV waveform is reduced when compared
with the conventional SVM method. However, the leakage current can be eliminated in
this case.
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Figure 8. Cont.



Energies 2022, 15, 3106 11 of 18

Energies 2022, 15, x FOR PEER REVIEW 10 of 18 
 

 

variation is significantly limited. Nevertheless, this method will result in a high cost of the 

three-phase system. In the same way, the three-phase Z-source inverter was proposed in 

[74,75], with an additional diode in the negative terminal of the input voltage source, as 

shown in Figure 8c. An additional diode has a function to seperate the inverter and the 

PV array during shoot-through states. In this case, the CMV is kept constant by using odd 

vectors. The modulation index is operated up to 0.57. 

 

Figure 7. General structure of impedance-source-networks-based three-phase transformerless VSI. 

 
(a) (b) 

 
(c) (d) 

Figure 8. Passive impedance-source topologies for CMV reduction. (a) ZSI [71], (b) four-leg ZSI 

[72,73], (c) modified-ZSI [74,75], (d) qZSI [76,77]. 

Moreover, to improve the input current profile, the quasi-Z-source inverter and mod-

ified quasi-Z-source inverter based on SVM were proposed in [76–79]. In the case of ref-

erences [76–78], by adding an inductor in the negative terminal of the PV panel, only three 

odd or even vectors were implemented to keep the constant CMV. However, similar to 

the RSSVM in the traditional H6 VSI, the linear modulation range is limited to a modula-

tion index of 0.57 in these methods. In addition, a notch filter is considered in [79] to add 

to the inverter system as an output filter. The CMV waveform is reduced when compared 

with the conventional SVM method. However, the leakage current can be eliminated in 

this case. 

Lf Grid
Three-phase 

Inverter

P

N

Impedance Source 

Network

 

 Vi

S1

S2

S3

S4

S5

S6

A

To  

Grid

S7

S8

B

C Vi

S1

S2

S3

S4

S5

S6

A
B

C

To  Grid

C1

D L1

L2

C2

 Vi

C1

D1 L1

L2

C2

D2

 Vi

S1

S2

S3

S4

S5

S6

A
B

C

To  Grid

C1

D1 L1

L2

C2

D2

 

 Vi

S1

S2

S3

S4

S5

S6

A
B

C

To  Grid

D1

L1

C2

L2

C1

 

 

L3

Figure 8. Passive impedance-source topologies for CMV reduction. (a) ZSI [71], (b) four-leg
ZSI [72,73], (c) modified-ZSI [74,75], (d) qZSI [76,77].

4.2. Active-Type Topologies

There are close similarities in the topologies of the passive and active impedance-
source inverters which show that with the high reliability with shoot-through immunity,
the deadtime issues can be avoided. However, the size and weight of inverter systems in
passive impedance-source inverters are still large because of using inductor and capacitor
elements in the Z-source network [63–70]. In recent years, in order to decrease the size
and weight of the impedance-source inverter system, research on active impedance-source
inverter has been paying attention to fewer numbers of passive elements. However, the
disadvantage of these inverters is required to use more numbers of switch and gate drivers.
With the shoot-through states insertion, the CMV problem of these two types is quite similar.
For instance, the modified quasi-switched boost inverter with an additional inductor was
proposed in [80] and shown in Figure 9a. In this solution, an inductor is inserted between
the negative input and Z-network. That provides to reduce one level of the CMV waveform.
In addition, the novel AZSVM was modified with one more shoot-through vector to reduce
the variation in CMV to VPN/3, and the modulation index can operate up to 1. In the same
way, the modified active quasi-Z-source inverter in Figure 9b was proposed to achieve the
CMV of VPN/3. In this solution, the zero vectors are not implemented with the NSSVM
method. Nevertheless, the modulation index of this SVM method is limited, within [0.66, 1].
Moreover, the magnitude of CMV in these solutions is not very low and only equal to
VPN/3. In order to reduce the high CMV levels of the shoot-through vectors and provide
smaller magnitude CMV voltage, the new impedance-source inverter with two switched-
boost networks has been introduced in [82] and depicted in Figure 9c. In this solution,
two additional switches in the Z-network are controlled to reduce the magnitude of CMV
to VPN/6 and improve the boost factor. However, a large number of components were
used in the Z-network. Similar to the AZSVM in the method in [80], the modulation index
operating of this inverter can be full range, from 0 to 1. Moreover, another method to
suppress the leakage current is directly connecting the neutral of the grid to the negative
input of the PV panel. The CMV will be zero and also immune to any high-frequency
components. As a result, there is no leakage current in the inverter system. To provide
the boosting voltage and achieve the common-ground between PV panel and the grid, the
common-ground quasi-Z-source inverter is reported in [83], as shown in Figure 9d.
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Figure 9. Active impedance-source topologies for CMV reduction. (a) MqSBI [80], (b) modified-
AqZSI [81], (c) ISI [82], (d) and common-ground AqZSI [83].

The comparison of both passive and active three-phase, two-level transformerless
impedance-source-networks-based inverters, in terms of component count, input current
profile, modulation index range, boost factor, and variation of CMV, has been given in
Table 3.

Table 3. Comparison of different CMV reduction impedance-source-networks-based topologies.

Topology
Component

Count Modulation
Index

Boost
Factor CMV

Characteristic

S D C L Advantage Disadvantage

Figure 8a
[71] 6 1 2 2 0.66 to 1 1/(1 − 2D) VPN/3

− Low number of
components and
not require
additional switch

− Discontinuous input
current

− Limits modulation
index

− Not high voltage gain
− Low CMV

Figure 8b
[73] 8 2 3 3 0 to 1 1/(1 − 2D) 0

− Full range of
modulation index

− Constant CMV

− High number of
components

− Discontinuous input
current

− Not high voltage gain

Figure 8c
[74] 6 2 2 2 0 to 0.57 1/(1 − 2D) 0

− Low number of
components and
not require
additional switch

− Constant CMV

− Discontinuous input
current

− Limits modulation
index

− Not high gain
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Table 3. Cont.

Topology
Component

Count Modulation
Index

Boost
Factor CMV

Characteristic

S D C L Advantage Disadvantage

Figure 8d
[76] 6 1 2 3 0 to 0.57 1/(1 − 2D) 0

− Low number of
components and
not require
additional switch

− Continuous input
current

− Constant CMV

− Limits modulation
index

− Not high voltage gain

Figure 9a
[80] 8 1 1 2 0 to 1 1/(1 − 2D) VPN/3

− Low number of
components

− Continuous input
current

− Full range of
modulation index

− Require additional
switch

− Not high voltage gain
− Low CMV

Figure 9b
[81] 8 2 2 2 0 to 1 2/(1 − 3D) VPN/6

− Continuous input
current

− Full range of
modulation index

− High voltage gain

− High number of
components and
require additional
switch

− Low CMV

Figure 9c
[82] 7 2 2 3 0.66 to 1 1/(1 − 3D +

D2) VPN/3

− Continuous input
current

− Full range of
modulation index

− High voltage gain
− Very low CMV

− High number of
components and
require additional
switch

Figure 9d
[83] 9 2 3 2 0 to 1 1/(1 − 2D) 0

− Continuous input
current

− Full range of
modulation index

− Constant CMV

− High number of
components and
require additional
switch

− Not high voltage gain

S, D, L, and C are the number of switches, diodes, inductors, and capacitors, respectively.

Figure 10 depicts the comparison of the component count in detail. It can be ob-
served that the active-type impedance-source topologies and four-leg ZSI require more
components than other passive-type impedance-source topologies. The boost factor is also
presented in Figure 11. The active-type impedance-source inverters in [81,82] can offer a
higher boost voltage ability than the other inverters. From the CMV comparison in Table 3,
which achieved the constant CMV, the majority of inverter topologies cannot utilize the
full range of the modulation index, and the zero vectors have not been implemented in
the SVM method. In addition, the number of components should be large. To solve the
high CMV level caused by the shoot-through vectors, various solutions, such as recon-
figuring by adding a component or modified SVM methods, are introduced. However,
these topologies require a large number of components to provide the boosting voltage,
and very low or constant CMV. The advantages and disadvantages of the different CMV
reduction impedance-source-networks-based topologies are also highlighted in Table 3.
It is also difficult to determine which solution is better than the other. Nevertheless, if
compared with the traditional inverter, the impedance-source inverters can give a higher
voltage gain and provide the shoot-through immunity. These inverters can be considered
with competitive solutions in PV applications.
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5. Conclusions

To present the investigation of the three-phase two-level transformerless PV inverters
for CMV reduction, the major three-phase two-level transformerless topologies have been
surveyed based on conversion functionality. In detail, these topologies were classified into
two different categories: traditional VSIs and impedance-source-based VSIs. For a general
comparison, the features of both traditional buck-type and boost-type three-phase two-level
transformerless topologies for CMV reduction were summarized. In addition, to have a
further overview of common-mode voltage reduction in three-phase two-level inverters
single-stage impedance-source-based inverters are also discussed in this paper. Different
topologies were examined, in terms of the number of devices, modulation index operating
range, boost factor, and CMV reduction. This survey and classification will help researchers
to comprehend all these three-phase two-level transformerless photovoltaic inverters for
CMV reduction and to identify their pros and cons. From this point, it can be observed
that the transformerless photovoltaic inverters have been a certain mature technology
and successfully employed in the distributed photovoltaic grid-connected systems. A
comprehensive review of control and modulation techniques for CMV reduction of three-
phase two-level transformerless PV inverters will be presented in future research.
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Abbreviations

PV Photovoltaic
DC Direct current
AC Alternating current
VSIs Voltage source inverters
CSIs Current source inverters
CMV Common-mode voltage
SVM Space vector modulation
PWM Pulse width modulation
THD Total harmonic distortion
ZSI Z-source inverter
DSVM Discontinuous space vector modulation
NSSVM Near-state space vector modulation
AZSVM Active zero-state space vector modulation
RSSVM Remote-state space vector modulation
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