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Abstract: This article involves forecasting daily electricity consumption in Thailand. Electricity
consumption data are provided by the Electricity Generating Authority of Thailand, the leading power
utility state enterprise under the Ministry of Energy. Five forecasting techniques, including multiple
linear regression, artificial neural network (ANN), support vector machine, hybrid models, and
ensemble models, are implemented. The article proposes a hyperparameter tuning technique, called
sequential grid search, which is based on the widely used grid search, for ANN and hybrid models.
Auxiliary variables and indicator variables that can improve the models’ forecasting performance are
included. From the computational experiment, the hybrid model of a multiple regression model to
forecast the expected daily consumption and ANNs from the sequential grid search to forecast the
error term, along with additional indicator variables for some national holidays, provides the best
mean absolution percentage error of 1.5664% on the test data set.

Keywords: daily electricity consumption; forecasting; artificial neural network; sequential grid
search; support vector machine; multiple linear regression; hybrid model; ensemble model

1. Introduction

Forecasting electricity consumption plays an important role in planning for electricity
generation capacity and required resources. Accurate electricity consumption forecasting
can reduce the risk of power outage and reduce excess electricity generation. Avoiding
power outage is essential for economic growth as the electricity is a main source of energy
for industries. The low excess electricity generation can save the generating cost and reduce
emissions in environment. Time intervals in electricity generation capacity planning vary
from a unit-load period (30-min interval), daily, monthly, and yearly consumption. For
power plant capacity, a long-term yearly forecast up to 20 years is performed. Intermediate-
term time interval forecasts, e.g., monthly, in the span of three to five years, is required for
fuel supply and maintenance planning. Short-term forecasts in unit-load, daily, and weekly
intervals are made for the efficient daily operation of the electricity power plants [1].

Traditionally, statistical models, such as multiple linear regression (MLR), triple expo-
nential smoothing (Holt–Winters) model, have been used to forecast electricity demand.
MLR in particular remains to be the basic model to forecast energy load in recent studies.
Vu et al. performed monthly electricity demand forecast in the state of New South Wales,
Australia [2]. The model contains average values of the following variables: cooling degree
days, heating degree days, rainfall, wind speed, sunshine hours, solar exposure, evapora-
tion, humidity percentage, maximum temperature, and minimum temperature, the total
number of clear days, cloudy, and rainy in a month, as well as electricity price, population
size, and gross state product (GSP). Amber et al. developed an MLR model to forecast
daily electricity consumption in two buildings of London South Bank University [3]. The
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model contains six input variables: ambient temperature, solar radiation, relative humidity,
wind speed, weekday index, and building type. Among them, temperature, weekday
index, and building type are significant. The model performance is measured using the
normalized root mean square error. The models can achieve 12–13% forecast errors for the
two buildings. Dudic et al. performed monthly and yearly electricity consumption fore-
casting for the German power market using MLR [4]. Independent variables are monthly
average temperature (measured in 10 different locations in Germany), an auxiliary variable
representing air conditioning usage that is computed as average temperature subtracting
17 degrees Celsius, Germany’s monthly industrial production based on Eurostat data,
number of days in a month, annual GDP, and an electricity efficiency variable.

In the last decade, machine learning models have emerged as effective forecasting
models for energy consumption [5]. ML models are widely used to forecast electricity
consumption in different applications as the models can deal with non-linear patterns in
the energy consumption data [6]. Yuan et al. developed an artificial neural network (ANN)
as a prediction model for the seasonal hourly electricity consumption for a university
campus in Japan [7]. The model contains the following key input variables: day of the
week, hour of the day, hourly dry-bulb temperature, hourly relative humidity, hourly
global irradiance, and previous hourly electricity consumption. The model achieves the
coefficient of determination (R2) of 96–99% for the training set and 95–99% for the test
set. Liu et al. forecasted the daily average load of Chinese cities using the historical
data of loads, relative humidity, daily average loads, and somatosensory temperature
as input variables [8]. The stacked denoising auto-encoder (SDAE) neural network is
developed and compared with the back propagation (BP) neural network. A support vector
machine (SVM), another widely used ML model, is implemented to predict five-minute-
ahead electricity consumption in the New South Wales region, Australia [9]. Chen et al.
developed a support vector regression (SVR) to calculate the electricity demand response
baseline of office buildings [10].

Moreover, hybrid models, which are combinations of statistical models and ML mod-
els, or combinations of various ML models, are reported to provide a more accurate forecast
than using only one machine learning technique. For energy consumption applications,
Gonzáles-Romera et al. proposed a hybrid approach that combines a Fourier series forecast
of periodic behavior and a neural network to forecast the trend for monthly electricity
consumption forecasting in Spain [11]. Fan et al. proposed a hybrid EMD-SVR-AR (em-
pirical mode decomposition, SVR, auto-regressive) model to forecast 30-min unit load of
New South Wales, Australia [12]. The proposed model is compared to other models, and
is found to outperform four other models, namely the original SVR, PSO-SVR (particle
swarm optimization, SVR) hybrid, PSO-BP (particle swarm optimization, back propagation
neural network), and AFCM (adaptive fuzzy combination model). Deb et al. provided a
comprehensive review on time series forecasting techniques for energy consumption of
buildings [13]. The models include ANN, ARIMA, SVM, case-based reasoning (CBR), fuzzy
time series model, Grey prediction model, moving average (MA) and exponential smooth-
ing (ES), K-nearest neighbor (KNN) model, and many hybrid models. In addition, Ma and
Zhai developed a hybrid WT-SA-FFANN (wavelet transform, simulated annealing, feed for-
ward ANN) model to predict one-day-ahead electricity consumption in Beijing, China [14].
The model uses 24-h electricity load, 24-h lagged and 168-hlagged loads, temperature,
humidity, hour of the day, day of the week, and an indicator variable indicating holiday
or weekends. Recently, Javed et al. presented a comprehensive analysis that compares
forecasting models for a real-time 15-min electricity load of the city of Lahore, Pakistan.
Results from computational experiment indicated that the best model among many ML
models tested is ANN whose weights are updated using the Levenberg–Marquardt (LM)
algorithm [15]. Bento et al. performed a 24-h-ahead, load forecasting using the well-known
New England case study. The proposed hybrid model combines a number of ARIMA fore-
casters with a deep feedforward neural network (DFNN). The DFNN component utilizes
forecast values from 15 ARIMA models as input data, along with six lagged values of load
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data, and some additional variables that indicates the hour of the day, weekday, holiday,
and season of the year. Computational study results indicate that the proposed DFNN
outperform other standard models, including the regression-support vector machine (R-
SVM) and neural network models in terms of the mean absolute percentage error (MAPE)
and the root mean square error (RMSE) [16]. Phyo and Jeenanunta developed a hybrid of
classification and regression tree (CART) and deep belief network (DBN) to forecast daily
load from previous day load and some indicator variables [17].

Besides the forecasting models, input variables significantly affect the accuracy of the
forecast. Input variables used for energy forecasting generally are divided into historical
data, weather-related variables, time, socioeconomic, and demographics variables [18].
Popular input variables are historical data of electricity consumption, ambient temperature,
and time index, such as month, weekday [19].

Different ML models have different set of hyperparameters. Another important factor
that is highly related to model performance in terms of forecasting accuracy is the model’s
hyperparameter tuning [20]. There are several approaches to tuning hyperparameters, such
as grid search (GS), random search, and Bayesian optimization. Zhang et al. employed
grid search to fine-tune SVM for short-term wind power prediction [21]. Menapace et al.
performed grid search as a hyperparameter tuning method of ANN for predicting hourly
drinking water demand [22]. Ribeiro et al. used grid search to tune hyperparameters of
the proposed extreme gradient boosting model, and other ML models to forecast one-hour,
12-h, and 24-h-ahead energy consumption past consumption data [23].

Mantovani et al. studied the effectiveness of random search in tuning SVM based on
70 different datasets [24]. Nguyen et al. developed a Bayesian optimization for the hyper-
parameter tuning of different ML models to predict surface roughness in a polycarbonate
manufacturing process [25]. Among them, GS is the simplest method as it evaluates a
model’s forecasting performance in all possible combinations of hyperparameter values. In
addition to model hyperparameters, another important aspect is the model architecture.
Some ML models’, such as the artificial neural network (ANN), architecture is referred
to the number of hidden layers and the number of neurons in each layer. For traditional
feed-forward ANN, it is common to have one hidden layer [26]. Regarding the number of
neurons (or hidden nodes), too many may cause the problem of overfitting, i.e., the model
performs well for the training data and performs poorly for the unseen test data, whereas
too few may result in underfitting. To set the number of hidden nodes, Sheela and Deepa
proposed a trial-and-error approach, which can be performed in a forward or backward
manner [27]. The forward approach begins with a small number of hidden nodes and
gradually increases the number of nodes until the model performance cannot be further
improved. On the other hand, the backward approach starts with a large number of nodes
and proceeds by reducing the number of hidden nodes until the optimal number of hidden
nodes is found.

This article involves forecasting short-term (daily) electricity consumption. Three
well-known individual forecasting models, including the multiple linear regression model,
and two ML models, namely, the ANN and support vector machine (SVM), are constructed.
To optimize the forecasting performance of ANN and SVM, their hyperparameters are
tuned using grid search. In particular, ANN, which has multiple hyperparameters as well
as the issue of model architecture to consider, is tuned using the sequential grid search
proposed in this article. In addition, hybrid models of MLR and ANN, and of MLR and
SVM, as well as ensemble models of various ANNs and SVMs, are implemented. The
objective is to find the most effective forecasting model for daily electricity consumption
data. Moreover, since the focus is on daily forecast, it is hypothesized that there are patterns
in the daily consumption data that are associated with particular days in a year that can help
to improve the model forecasting performance. These patterns are simply characterized
using binary variables that indicate specific days of the year, such as national holidays and
religion-related holidays.
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The proposed approach is applied to a real historical electricity consumption in Thai-
land. The country’s main resources for electricity generation are fossil fuels, natural gas,
diesel, lignite, oil, hydro, and renewable energy [28]. Electricity Generating Authority
of Thailand (EGAT), the state enterprise power utility under the Ministry of Energy, is
in charge of electricity generation, procurement, and transmission for the whole country.
In addition to the electricity generated by EGAT’s own power plants, there are privately
owned power plants of various sizes and types, including independent power producers,
small power producers, and very small and small power producers, that operate under
the power purchase agreements (PPA) with EGAT. For planning purposes, such as power
generation capacity, non-renewable and renewable resource procurement, and managing
PPA with private producers, EGAT has to forecast electricity consumption for the country.
Accurate demand forecast is, therefore, an important issue for EGAT.

Contributions of the paper are three-fold. First, the sequential grid search is proposed
for tuning ML models with multiple parameters. The benefit of sequential grid search is
that it can reduce the number of experimental runs over the traditional grid search. The
steps of sequential grid search are demonstrated through an extensive testing with ANN.
Second, the hybrid model of MLR and ANNs, whose hyperparameters are tuned using
the proposed sequential grid search, is firstly implemented for the application of daily
electricity consumption forecasting. The results indicate that the hybrid model outperforms
the individual forecasting models. Finally, an analysis to identify useful indicator variables
that can improve the accuracy of the models is provided.

2. Materials and Methods

This section contains brief descriptions of the forecasting models implemented in
this article, including MLR, ANN, SVM, hybrid models, and the proposed sequential grid
search for hyperparameter tuning. MLR is selected as it is an effective statistical model for
extracting the linear pattern in the data. For the machine learning models, ANN and SVM
are selected since they are effective and widely used for predicting numerical response
variables, and that the models’ characteristics are different. In addition, ANN is chosen
as it can extract non-linear patterns well, and its structure represents a common structure
for high-level machine learning methods, such as deep learning methods. However, a
disadvantage of ANN is the overfitting problem. Hence, SVM, which does not have the
overfitting problem, is chosen as another alternative to ANN. Nevertheless, a drawback of
SVM is that a kernel function must be appropriately selected when dealing with non-linear
data. To further improve the forecasting performance, the hybrid models between the MLR
and ML models (ANN or SVM) are developed to combine the ability of statistical and
ML methods in capturing both the linear and non-linear pattern in the data. Finally, the
proposed sequential grid search for a hyperparameter tuning method is described.

2.1. Multiple Linear Regression (MLR)

Multiple linear regression is a widely used statistical model that relates one dependent
variable to one or more independent variables. To construct an MLR model that best fits the
input data, an ordinary least-squares (OLS) technique is performed [29]. A general form of
an MLR model is given in Equation (1):

yi= β0+β1xi1+β2xi2+ . . . + βkxik + εi (1)

where i denotes data index, yi is the dependent variable, xik’s are k independent variables
(or predictor), β0, β1, . . . , βk are the model parameters, and ε is the residual (or error).

2.2. Artificial Neural Network (ANN)

ANN is a supervised machine learning that has the architecture and function mim-
icking behavior of neural network in human brain. The structure of ANN imitates the
human neural network by connecting artificial neurons together to form a network. This
idea was proposed by McCulloch and Pitts in 1943 [30]. ANN is a popular technique for
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classification and regression problems [31]. One of the most well-known ANN structures is
the feed-forward multilayer perceptron model (Figure 1) with the backpropagation algo-
rithm [32]. Typically, a feed-forward multilayer perceptron model has three types of layers
such as input layer, hidden layer, and output layer. The artificial neurons in the different
layers are joined with synaptic weights. These synaptic weights store the information of
the relationship between inputs and outputs.
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The input layer contains input nodes. Each input node represents the value from an
input feature. The information from the input layer is passed through the first hidden layer.
The hidden layers are the layers between the input and output layers. From Figure 1, there
is only one hidden layer, but in fact, there can be multiple hidden layers. In general, the
greater the number of hidden layers, the more complex relationship that can be stored in
the network. The hidden layer consists of hidden nodes receiving information from the
previous layer. Then, it aggregates information, transforms the aggregated information
with a transfer function, and sends its output, to the next layer. In the output layer, it
contains the output nodes that combine and transform the outputs from the last hidden
layer into the final outputs. The relationship between inputs (xi) and output (y) of the
single hidden layer feed-forward ANN is shown as in the below equation:

y = θ+
n

∑
j=1

w(2)
j g

(
βj +

m

∑
i=1

w(1)
ij xi

)
+ε (2)

where w(2)
j (j = 1, 2, . . . , n) and w(1)

ij (i = 1, 2, . . . , m; j = 1, 2, . . . , n) are the weights, θ, βj
are the terms of bias, ε is the white noise, the number of input nodes is m, the number of
hidden nodes is n, and the hidden layer transfer function g is the logistic function [33].

2.3. Support Vector Machine (SVM)

SVM is also a supervised machine learning that can deal with classification and
regression problems [34]. Vapnik originally developed SVM [35]. The advantages of SVM
are avoiding the overfitting problem as it is good to fit and generalize; performing well
for a long-term time series; and using a kernel function to effectively deal with non-linear
problems [13]. Theoretically, the objective of SVM is to find an optimal hyperplane which
linearly separates the observations into two classes by maximizing the margin. As shown in
Figure 2, the solid line is assumed to be the optimal hyperplane. The observations that are
nearest to the optimal hyperplane are called support vectors. The boundary is a hyperplane
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that, is parallel with the optimal hyperplane, and passes the support vectors of a class. The
distance between the boundaries is the margin.
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In the training process of SVM, the training data can be expressed as (x1, y1). . . (x n, yn),
where i denotes the number of observations in training data (n), yi denotes class of obser-
vation i (i.e., −1 or 1 class), xi denotes a set of values (real numbers) in D-dimension of
observation i. In Figure 2, the D-dimension is two. The observations are linearly separable
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by hyperplanes. To maximize the margin, SVM will solve the optimal value of w and b
from the primal optimization problem in Equation (3):

Minw,b,εi

{
‖w‖2

2 +C
n
∑

i=1
εi

}
,

Subject to yi
(
wT ·xi+b

)
≥ 1 − εi, ∀i ∈ [n], ∀yi ∈ {1, − 1},

and εi ≥ 0, ∀i ∈ [n]

(3)

where w denotes a weight vector perpendicular to the optimal hyperplane, b denotes the
bias, εi denotes the positive slack variable of observation i, and C is the constant, set by
the user.

For 0 < εi ≤ 1, the observation i falling within the margin on the correct side of
hyperplane is called the margin violation, e.g., the blue circle point in Figure 2. For εi > 1,
the observation i falling on the wrong side of the separating hyperplane is misclassified,
e.g., red circle points in Figure 2. For εi = 0, the observation i is on the correct classification,
e.g., yellow circle point in Figure 2. The slack variable can be estimated from Equation (4):

εi = max(0, 1 − yi(w
T ·xi +b)) (4)

The constant C defines the trade-off between margin maximization (regularization
term) and minimization the misclassified training examples (loss function term). The larger
value of C, the narrower margin that has the less misclassification. On the other hand, the
smaller value of C, the wider margin that causes the higher misclassification. The different
value of C affects the width of margin as shown in Figure 3. Furthermore, to deal with
problems where the observations are not linearly separable by the hyperplanes, a kernel
method is applied [37].
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2.4. Hybrid Models

Referring to the “no free lunch” (NFL theorem), there is no universal algorithm that
can perform the best in all circumstances [38]. Applying a hybrid model, a combination of
several models, to analyze the problem can reduce the risk of obtaining large prediction
errors compared to using only an individual model. The hybrid models can capture the
hidden pattern of complex data (e.g., electricity consumption) because they contain unique
strengths from multiple individual models.

A widely used hybrid model is linear and non-linear hybrid model [39]. In this
paper, Multiple Linear Regression (MLR) is used to capture the linear data behavior. ANN
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and SVM have the ability to capture non-linear data characteristics. The mathematical
relationship between the response variable (Yt) and its components can be computed below:

Yt= Lt+Nt (5)

where Lt and Nt denote linear and non-linear parts, respectively. In the first step of our
proposed hybrid model, the MLR model is used to predict the linear part, i.e., the expected
daily consumption. The residuals from the MLR model (εt) is expressed below:

εt = At − L̂t (6)

where L̂t and At denote the predicted and actual consumption value from MLR model in
time period t. Then, the residual (εt) from Equation (6) is the non-linear part remaining
after extracting the linear part. In the second step, ANN or SVM captures the non-linear
part in the residual (εt). The predicted non-linear part (N̂t) from ANN or SVM model is
described below:

N̂t= f (εt−1, εt−2, . . . , εt−n) (7)

where f denotes the function obtained by ANN or SVM. Next, the final prediction value of
our proposed hybrid model (Ŷt) can be computed as follows:

Ŷt= L̂t +N̂t (8)

2.5. Sequential Grid Search

Hyperparameter tuning is vital for ML model’s prediction performance. A change of
each hyperparameter can make a significant change in model’s accuracy [40]. Grid search is
the traditional and simple method for ML hyperparameter tuning [41]. GS completely tests
all combinations of hyperparameter values in specified subsets of the hyperparameters. A
subset of the hyperparameters can be specified by a lower bound (minimal value), an upper
bound (maximal value), and the number of steps [42]. All combinations of hyperparameters
are tested to tune ML model in the training process. One drawback is that GS usually
requires a large number of runs to properly tune the hyperparameters. In addition, if GS
provides a set of best-found hyperparameter values that are on the initial hyperparameter
search boundary, then there is a possibility that better hyperparameters are outside of the
initial boundary.

To overcome this issue, this article proposes a sequential grid search where search
boundaries are adjusted according to whether any of the best-found hyperparameters
from a grid search is on the search boundaries. If so, then the boundaries are sequentially
adjusted until the best-found values of all hyperparameters are inside the search boundaries.
The step of the sequential GS is as shown in Figure 4.

First, initialize the grid search iteration i = 1, specify an initial search boundary, and
perform an initial grid search. The initial boundary may be set as a relatively small grid by
using a large step size (ni). Then, if all best-found hyperparameter values are not on their
search boundaries, then the step size is reduced to make the grid finer, and the subsequent
grid search is repeated. However, if at least one of the best-found hyperparameter values
is on its boundary, then for each hyperparameter, the sequential grid search checks if the
best-found value is on the lower bound, upper bound, or inside the search boundary, so
that an adjustment to the boundary is made accordingly. After combining the adjusted
search boundaries, the grid search iteration number and the step size are updated to form a
new grid, and the next grid search is performed. The sequential grid search repeats until
all best-found hyperparameter values are inside the current search boundaries and the step
size is small enough. Note that the sequential GS is implemented for the ML model that
has multiple hyperparameters, i.e., ANN in this article.
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2.6. Forecasting Performance Measurement

Common performance measurements of forecast models are the mean absolute per-
centage error (MAPE), mean absolute error (MAE), and root mean square error (RMSE).
These performance measurements are widely used in electricity consumption forecast-
ing [43]. Their equations are expressed as:

MAPE =
1
n

n

∑
i=1

|yi − ŷi |
yi

(9)

MAE =
1
n

n

∑
i=1
|yi − ŷi | (10)

RMSE =

√
1
n

n

∑
i=1
|yi − ŷi | (11)

where yi is the actual daily electricity consumption in period i, ŷi is the forecast value of
daily electricity consumption in period i, and n is the total number of periods. In this article,
the MAPE is chosen as the main measure of performance since it is used by the industrial
user, who provides the data for this study.

Other evaluation metrics used in electricity consumption forecasting are relative
prediction error (RPE) [44] and concordance correlation coefficient (CCC) [45]. An RPE
higher than 20% indicates that model has poor prediction performance, while a 10–20%
of RPE is considered acceptable prediction, and an RPE lower than 10% suggests that
the model has satisfactory prediction [46]. A CCC higher than 0.90 indicates that the
actual and predicted values have a strong agreement, while 0.80–0.90, 0.65–0.80, and lower
than 0.65 of CCC, are considered substantial, moderate, and poor strength of agreement,
respectively [47]. RPE and CCC can be computed as follows:

RPE =
RMSE

y
(12)
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CCC = 1 −
(µ 1 − µ2)

2+(σ 1 − σ2

)2
+2(1 − p)σ1σ2

σ2
1+σ2

2+(µ 1 − µ2
)2 (13)

where y is the mean of the actual electricity consumption, p is the Pearson correlation coef-
ficient, µ1 is the mean actual electricity consumption, µ2 is the mean of the predicted daily
electricity consumption, σ1 is the standard deviation of the actual electricity consumption,
σ2 is the standard deviation of the predicted electricity consumption, σ2

1 is the variance
of the actual electricity consumption, and σ2

2 is the variance of the predicted electricity
consumption.

3. Computational Experiment
3.1. Data Partitioning

The historical data of daily electricity consumption from 2009 to 2018, a total of 3652
observations, are divided into three datasets: training, validation, and test. The data
partitioning is performed using chronological order of the data due to its time-series nature.
The training set contains observations from 2009 to 2016, while the 2017 data are for
validation purpose, and the 2018 data are the test set.

3.2. Input Attributes

The electricity consumption data are illustrated in Figure 5. The graph shows not only
an increasing trend, but also a seasonal (yearly) pattern. Hence, moving average (MA)
and seasonal index (SI) variables were created as input attributes. Moreover, electricity
consumption tends to increase from 2009 to 2015, and then become relatively more stable
from 2016 to 2018.
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Figure 5. Daily electricity consumption in Thailand 2009–2018.

Five moving average MA(L) variables, including MA(7), MA(30), MA(90), MA(120),
and MA(365), are created. MA(7) is a weekly moving average with a span of seven days.
Similarly, MA(30), MA(90), MA(120), and MA(365) are monthly, quarterly, seasonally
(Thailand has three seasons, each of which spans approximately four months), and yearly
moving averages, respectively. Seasonal index (SI) variables are estimated for each month
in each year. MA and SI are computed using Equations (14) and (15):

MA(L) =
yt−1+yt−2+ . . . + yt−L

L
(14)
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SIij =
∑t ∈ {i,j} yt

∑t ∈ {j} yt
(15)

where yt denotes the daily electricity consumption in day t ∈ {1, 2, . . . , 3652}, L is the length
of MA, i represents the month index from January to December, and j is the year index from
2009 to 2018. For example, SIJan,2009 is computed from the total electricity consumption in
January 2009, divided by the total electricity consumption in 2009.

To improve the forecast performance of the ML models, additional input attributes are
created. First, the lagged daily consumption variables are created with the lags of 1, 2, . . . ,
7, 30, 60, 90, and 365 days, e.g., a one-day lagged variable is yt−1. In other words, lagged
variables of one to seven days, a month, two months, a quarter, and one year are created.
Another created variable is a seven-day-ago peak of electricity consumption. This variable
is the maximum consumption within a day that occurred seven days ago.

In addition, some fundamental variables are used in the ML prediction models. These
variables include the previous day’s highest temperature reported by the Meteorological
Department of Thailand, and indicator variables representing national holiday, bridging
holiday, weekend, month of the year, and day of the week (Monday to Sunday). It should
be noted that the MLR model only includes the highest temperature variable, but without
other meteorological variables, e.g., rainfall, humidity, solar radiation, for two reasons.
First, it is due to the availability of the data that the industrial user has access to. Second,
because the forecast is made for the whole country, some meteorological variables that
are more local in terms of geography, such as rainfall, humidity, etc., are not included,
since there are hundreds of weather stations throughout Thailand. On the other hand, the
variable, i.e., temperature, that may well represent the weather condition of the whole
country is included. Based on the initial analysis of temperature data, the user only chooses
to include the average peak temperature since it may significantly affect the amount
of air conditioning usage. As a substitute to other meteorological variables, the model
contains indicator variables for different months, which, in a sense, represent different
meteorological data at different time of a year.

Regarding national holidays, there are two types of national holidays in Thailand.
One type is a national holiday that is specific to a date on the calendar, e.g., New Year’s
Day or Father’s Day, and the other type is a non-specific date that changes every year, e.g.,
Buddhist Lent Day or Chinese New Year. Moreover, a bridging holiday is an additional
holiday announced by the government, which usually is the day that bridges a weekend
with a national holiday.

3.3. MLR Model Result

First, the MLR model is fitted with all input variables as an initial model. The total
number of variables is 41, which are: the seven-day-ago peak of electricity consumption,
highest temperature of the previous day, 11 different lagged variables of past daily con-
sumption, five moving average variables, a seasonal index, 3 indicator variables for being a
national holiday, bridging holiday, or weekend, 12 indicator variables for months of the
year, and 7 indicator variables for days of the week. Then, we use a model fitting tech-
nique, called stepwise regression, to obtain the final MLR model. The stepwise regression
alternately adds important variables to the model and eliminates unimportant variables
from the model using two criteria: significance level for a variable to be included in the
model (α-to-enter) and a significance level for a variable to be eliminated from the model
(α-to-remove). The final MLR model that best fits with the training data is obtained from
the stepwise regression with α-to-enter and α-to-remove equal to 0.1. The final regression
model containing only 24 important variables is given in Equation (16) below:

ŷ = 8069 + 1.008x1+2048x2 +0.8455x3 − 0.2350x4+0.0538x5
− 0.0239x6 − 0.0378x7 +0.1589x8+0.1505x9 − 51069x10 − 34471x11
− 23059x12 − 8781x13 − 4137x14+2064x15+6142x16 − 2090x17

+2617x18 − 2677x19 − 9205x20+41297x21+6502x22 − 4711x23 − 38531x24 + ε

(16)



Energies 2022, 15, 3105 12 of 21

where ŷ is the forecast of daily electricity consumption, x1 is 7-day-ago peak of daily
electricity consumption, x2 is the previous day’s highest temperature, x3 to x8 are 1-day,
2-day, 3-day, 4-day, 5-day, and 365-day lagged consumption variables, x9 is MA(30), x10 is
seasonal index of the same month in the previous year, x11 to x24 are indicator variables
for national holiday, bridging holiday, weekend, February, March, May, June, August,
November, December, Monday, Tuesday, Friday, and Sunday, respectively. It can be seen
from the final model that that the important variables that can be used to effectively forecast
the daily consumption are (1) the 30-min peak of consumption from 7 days ago and the
highest temperature of the previous day, (2) the lagged daily consumption variables from
1, 2, 3, 4, and 5 days ago, as well as 365 days ago (same date of the previous year), (3) the
moving average of the previous 30-day, (4) seasonal index, (5) being a national holiday,
bridging holiday, or weekend, (6) 7 out of 12 months have significant different daily
consumptions than the other 5 months, and (6) being Tuesday (highest daily consumption
on average), Friday (lowest daily consumption among weekdays), and Sunday (lowest
daily consumption of the week).

The final MLR model is then used to forecast daily electricity consumption of the
validation set and test set. The analysis of variance of the MLR model and the MAPE for
each dataset are shown in Tables 1 and 2, respectively.

Table 1. Analysis of variance of MLR.

Source DF Adj SS Adj MS F-Value p-Value

Regression 24 6.73 × 1012 2.80 × 1011 1774.48 0.000
Error 2532 4.00 × 1011 1.57 × 108

Total 2556 7.13 × 1012

Note: DF denotes the degree of freedom of each source of variability, Adj SS is the adjusted sums of squares, and
Adj MS is adjusted mean squares.

Table 2. MAPE of MLR.

Dataset Train Validation Test

MAPE (%) 1.9234 2.1977 2.0225

3.4. Hyperparameter Tuning of ML Models Using Sequential Grid Search
3.4.1. Sequential Grid Search for Hyperparameter Tuning of ANN

An ANN model is initially constructed using the training dataset. The hyperparameter
(HP) values of ANN, including training cycles (TC), learning rate (LR), and momentum
rate (MR), are chosen based on the prediction performance of the validation dataset. After
tuning the HPs, the ANN model is then evaluated with the unseen data of the test set.
In addition, the architecture of the ANN is also varied from 1 to 15 hidden nodes in one
hidden layer.

The sequential grid search is initialized with the number of neurons (or nodes) in the
hidden layer, denoted as HN, set to one. The first grid search is performed according to
the three HP ranges, the number of steps, and values as shown in Table 3. The activation
function for ANN is the sigmoid function, which is widely used in a number of research
studies [48–51]. The convergence epsilon is set at 0.0001. All combinations of the three HPs
are generated, where each HP is varied according to the number of steps (i.e., five times)
from the lower bound to the upper bound. This results in a total of 216 combinations for
the initial grid search.
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Table 3. First grid search for ANN hyperparameters.

Hyperparameter Min Max Step Values

TC 100 1000 5 100, 280, 460, . . . , 1000
LR 0.001 0.05 5 0.001, 0.0108, 0.0206, . . . , 0.05
MR 0.5 0.9 5 0.5, 0.58, 0.66, . . . , 0.9

The results of the initial grid search are analyzed using the procedure in Figure 4. The
analysis result leads to the hyperparameter setting of the subsequent grid search, where
the minimum, maximum, and number of steps depend on the results of the previous grid
search. Table 4 shows the ranges and values of each hyperparameter used in the sequential
grid search of ANN.

Table 4. Values of ANN hyperparameters in the sequential grid search.

Hyperparameter Min Max Step Values

TC

100 1000 10 100, 190, 280, . . . , 1000
100 1000 20 100, 145, 190, . . . , 1000
550 1450 10 550, 640, 730, . . . , 1450
550 1450 20 550, 595, 640, . . . , 1450
10 910 10 10, 100, 190, . . . , 910
10 910 20 10, 55, 100, . . . , 910

1000 1900 20 1000, 1045, 1090, . . . , 1900

LR

0.001 0.05 10 0.001, 0.0059, 0.0108, . . . , 0.05
0.001 0.05 20 0.001, 0.00345, 0.0059, . . . , 0.05

0.0001 0.0491 10 0.0001, 0.005, 0.0099, . . . , 0.0491
0.0001 0.0491 20 0.0001, 0.00255, 0.005, . . . , 0.0491
0.0255 0.0745 10 0.0245, 0.0295, 0.0345, . . . , 0.0745
0.0255 0.0745 20 0.0245, 0.027, 0.0295, . . . , 0.0745

MR

0.5 0.9 10 0.5, 0.54, 0.58, . . . , 0.9
0.5 0.9 20 0.5, 0.52, 0.54, . . . , 0.9
0.6 1 10 0.6, 0.64, 0.68, . . . , 1
0.6 1 20 0.6, 0.62, 0.64, . . . , 1
0.3 0.7 10 0.3, 0.34, 0.38, . . . , 0.7
0.3 0.7 20 0.3, 0.32, 0.34, . . . , 0.7

After completing the subsequent grid search for the ANN with HN equal to 1, HN
is increased by 1, and the sequential grid search procedure is repeated until HN reaches
15 nodes. The results from performing the sequential grid search for each HN are reported
in Table 5. Each row contains the setting of one grid search, which includes the boundary
and number of steps of TC, LR, and MR, as well as the best-found values of HPs from the
grid search, along with the prediction performance (MAPE) on the train, validation, and
test sets. For example, the first row indicates that after testing 6 × 6 × 6 = 216 sets of HPs
for ANN with one node in the hidden layer, the best-found HPs among 216 ANNs are
TC = 280, LR = 0.001, and MR = 0.9, which results in MAPE of 1.98%, 2.20%, and 2.03% for
the train, validate, and test sets, respectively.

According to the procedure in Figure 5, the best value of TC from the first grid search
does not fall on its boundary, so the search boundary of LR remains unchanged for the
next grid search (in the second row). However, the best LR falls at the minimum value of
its search boundary, and the best MR falls at the maximum value of its search boundary.
Therefore, the minimum value of LR becomes the middle of the search boundary for the
next grid search. Similarly, the maximum value of MR becomes the middle of the search
boundary of the next grid search. Additionally, the number of steps is set to 10 for the
second grid search (2nd row). Based on the boundary and number of steps, the 2nd grid
search contains 11 × 11 × 11 = 1331 sets of HPs (i.e., 1331 ANN tested). From the 2nd grid
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search, the best-found HPs are TC = 640, LR = 0.0099, and MR = 0.60, and MAPE for the
train, validate, and test of 2.02%, 2.18%, and 2.07%, respectively.

Table 5. Sequential grid search result of ANN (Hyperparameter values in bold indicate the values
are on the search boundaries).

HN
GS

Step
TC LR MR Best Found HP MAPE

Min Max Step Min Max Step Min Max Step TC LR MR Train Validate Test

1 1 100 1000 5 0.001 0.05 5 0.5 0.9 5 280 0.001 0.90 1.98 2.20 2.03
2 100 1000 10 0.0001 0.0491 10 0.6 1 10 640 0.00990 0.60 2.02 2.18 2.07
3 100 1000 20 0.0001 0.0491 20 0.3 0.7 20 190 0.0148 0.50 2.02 2.16 2.07

2 1 100 1000 5 0.001 0.05 5 0.5 0.9 5 280 0.01080 0.58 1.83 1.99 1.91
2 100 1000 20 0.001 0.05 20 0.5 0.9 20 730 0.00835 0.88 1.81 1.96 1.84

3 1 100 1000 5 0.001 0.05 5 0.5 0.9 5 640 0.03040 0.66 1.80 1.93 1.90
2 100 1000 20 0.001 0.05 20 0.5 0.9 20 955 0.04755 0.62 1.71 1.89 1.82

4 1 100 1000 5 0.001 0.05 5 0.5 0.9 5 820 0.02060 0.58 1.73 1.92 1.89
2 100 1000 20 0.001 0.05 20 0.5 0.9 20 775 0.00835 0.68 1.70 1.89 1.76

5 1 100 1000 5 0.001 0.05 5 0.5 0.9 5 1000 0.01080 0.82 1.57 1.90 1.80
2 550 1450 10 0.001 0.05 10 0.5 0.9 10 1360 0.03040 0.62 1.52 1.85 2.03
3 550 1450 20 0.001 0.05 20 0.5 0.9 20 730 0.02305 0.70 1.57 1.86 1.96

6 1 100 1000 5 0.001 0.05 5 0.5 0.9 5 1000 0.02060 0.74 1.49 1.94 1.84
2 550 1450 10 0.001 0.05 10 0.5 0.9 10 1270 0.01570 0.82 1.49 1.89 1.79
3 550 1450 20 0.001 0.05 20 0.5 0.9 20 1225 0.02795 0.68 1.52 1.86 1.84

7 1 100 1000 5 0.001 0.05 5 0.5 0.9 5 820 0.04020 0.66 1.52 1.90 1.74
2 100 1000 20 0.001 0.05 20 0.5 0.9 20 595 0.03530 0.90 1.49 1.86 1.82
3 100 1000 20 0.001 0.05 20 0.6 1 20 1000 0.02060 0.80 1.57 1.88 1.68
4 550 1450 20 0.001 0.05 20 0.6 1 20 1450 0.02060 0.80 1.54 1.86 1.68
5 1000 1900 20 0.001 0.05 20 0.6 1 20 1855 0.00345 0.94 1.49 1.85 1.69

8 1 100 1000 5 0.001 0.05 5 0.5 0.9 5 640 0.02060 0.66 1.58 1.96 1.94
2 100 1000 20 0.001 0.05 20 0.5 0.9 20 865 0.02795 0.68 1.51 1.89 2.07

9 1 100 1000 5 0.001 0.05 5 0.5 0.9 5 1000 0.01080 0.90 1.44 1.95 2.40
2 550 1450 10 0.001 0.05 10 0.6 1 10 1450 0.0206 0.68 1.46 1.91 2.11
3 550 1450 20 0.001 0.05 20 0.6 1 20 1360 0.04755 0.66 1.4 1.87 2.02

10 1 100 1000 5 0.001 0.05 5 0.5 0.9 5 460 0.05 0.66 1.53 1.97 2.09
2 100 1000 10 0.0255 0.0745 10 0.5 0.9 10 910 0.04950 0.78 1.49 1.93 2.23
3 100 1000 20 0.0255 0.0745 20 0.5 0.9 20 865 0.02700 0.68 1.45 1.93 2.07

11 1 100 1000 5 0.001 0.05 5 0.5 0.9 5 100 0.03040 0.66 1.72 2.00 1.97
2 10 910 10 0.001 0.05 10 0.5 0.9 10 640 0.03530 0.66 1.52 1.96 1.92
3 10 910 20 0.001 0.05 20 0.5 0.9 20 775 0.04755 0.66 1.50 1.92 1.99

12 1 100 1000 5 0.001 0.05 5 0.5 0.9 5 1000 0.02060 0.58 1.49 1.93 1.88
2 550 1450 10 0.001 0.05 10 0.5 0.9 10 1360 0.02060 0.50 1.45 1.93 1.89
3 550 1450 10 0.001 0.05 10 0.3 0.7 10 1270 0.03040 0.50 1.47 1.94 1.88
4 550 1450 20 0.001 0.05 20 0.3 0.7 20 1405 0.02795 0.32 1.46 1.88 1.89

13 1 100 1000 5 0.001 0.05 5 0.5 0.9 5 820 0.03040 0.66 1.42 1.98 2.15
2 100 1000 20 0.001 0.05 20 0.5 0.9 20 685 0.02305 0.58 1.52 1.91 2.12

14 1 100 1000 5 0.001 0.05 5 0.5 0.9 5 820 0.02060 0.66 1.48 1.98 2.07
2 100 1000 20 0.001 0.05 20 0.5 0.9 20 1000 0.04020 0.58 1.43 1.93 2.38
3 550 1450 20 0.001 0.05 20 0.5 0.9 20 685 0.03775 0.54 1.47 1.93 2.10

15 1 100 1000 5 0.001 0.05 5 0.5 0.9 5 640 0.03040 0.66 1.53 1.97 1.99
2 100 1000 20 0.001 0.05 20 0.5 0.9 20 910 0.02305 0.74 1.40 1.96 2.19

The sequential grid search is repeated until either the best-found HPs do not fall on
the search boundaries of all HP or the number of steps reaches 20. After performing all
sequential grid search for HN from 1 to 15, the total number of ANNs tested in Table 5 is
189,847 models.

One factor that defines the architecture of ANN is the number of nodes in the hidden
layer, called “model size” in this paper. From the sequential grid search results, the best
five settings of ANN among all model sizes and the best five settings of ANN for each
model size are listed in Table 6. Note that the model size is characterized by HN (or the
number of neurons in the hidden layer) and that these settings are selected based on the
validation set MAPE.
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Table 6. Best five settings of ANN of all model sizes and of each model size from sequential
grid search.

All Model Sizes MAPE (%) Each Model Size MAPE (%)

HN TC LR MR Train Val. Test HN TC LR MR Train Val. Test

5 1360 0.03040 0.62 1.5161 1.8500 2.0299 5 1360 0.03040 0.62 1.5161 1.8500 2.0299
6 1225 0.02795 0.68 1.5221 1.8576 1.8358 6 1225 0.02795 0.68 1.5221 1.8576 1.8358
7 595 0.03530 0.90 1.4862 1.8563 1.8163 7 1855 0.00345 0.94 1.4853 1.8545 1.6889
5 730 0.02305 0.70 1.5687 1.8648 1.9583 9 1360 0.04755 0.66 1.3977 1.8704 2.0244
7 1855 0.00345 0.94 1.4853 1.8545 1.6889 12 1405 0.02795 0.32 1.4642 1.8754 1.8925

3.4.2. Grid Search for Hyperparameter Tuning of SVM

The training and the validation datasets are used to train and tune the hyperparameter
of SVM, respectively. The SVN is constructed with a convergence epsilon of 0.001. Three
kernel functions, including dot, radial, and polynomial are tested. SVM hyperparameters
that are considered are C, gamma, and polynomial degree. The hyperparameters for each
kernel function are shown in Table 7.

Table 7. Hyperparameters for each kernel function.

Kernel Fuctions Hyperparameter Adjusting The Number of Runs

dot C 40
radial C, GAMMA 626

polynomial C, polynomial degree 200

In the grid search, C, gamma, and polynomial degree are varied according to the
ranges in Table 8, from the minimum to the maximum values with the specified number
of steps. Note that C and gamma are tested in three separate ranges (rows 1–3 of Table 8),
while polynomial degree is tested in one range (row 4). For example, in the first row of
Table 8, C is changed from 0.0001 to 1000 in seven steps on an exponential scale, resulting
in eight values. For dot kernel function, only C is tested, therefore, the grid search contains
(8 + 21 + 11) runs from the three parameter ranges combined. For radial kernel function,
both C and gamma are varied together within each of the three ranges in the grid search.
That is a total of (82 + 212 + 112) = 626 runs. For polynomial degree, the grid search contains
(8 + 21 + 11) × 5 = 200 runs. In total, the grid search contains 866 runs. After performing all
grid searches, the five settings that have the lowest MAPE of the validation set are from the
polynomial kernel function with the hyperparameter values as shown in Table 9.

Table 8. Values of SVM hyperparameters in the grid search.

Hyperparameter Min Max Step Scale Values

C and Gamma 0.0001 1000 7 Exponential 0.0001, 0.001, 0.01, . . . , 1000
2−10 210 20 Exponential 2−10, 2−9, 2−8, . . . , 210

0.0001 1000 10 Logarithmic 0.0001, 0.9956, 2.9820, . . . , 1000

Polynomial
Degree 1 5 4 Linear 1, 2, 3, . . . , 5
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Table 9. Best five settings of SVM from grid search.

Polynomial MAPE (%)

Setting Kernel
Function C Degree Train Validate Test

1 polynomial 64 2 1.4617 2.2039 2.0792
2 polynomial 62.1337 2 1.4656 2.2049 2.0841
3 polynomial 512 1 1.9082 2.2087 2.0613
4 polynomial 500.6383 1 1.9108 2.2091 2.0650
5 polynomial 1000 1 1.9160 2.2118 2.0414

3.4.3. Sequential Grid Search for Hyperparameter Tuning of Hybrid of MLR and ANN and
Hybrid of MLR and SVM

In the hybrid models, the residuals from the final MLR model in Equation (16) are
used as the response variables for prediction by another ANN model and SVM model. The
same sequential grid search for hyperparameter tuning of ANN are performed in the same
manner as the ones in Section 3.4.1 and Section 3.4.2, respectively. The best five settings of
ANN of all model sizes (denoted hybrid model 1, or HM 1), the best five settings of ANN
of each model size (HM 2), and the best five SVMs (HM 3) from Tables 6 and 8 are used to
predict the values of the residuals. Forecast values of HM 1 are from adding the average
predicted residuals (from the five settings of ANN) to the predicted electricity consumption
from the final MLR model. An example of using HM 1 to create the forecast values of
the test set is given in Table 10. The MAPE of the test set from HM 1 is 1.78%. Similarly,
examples of forecast values of HM 2 and HM 3 are given in Tables 11 and 12. MAPE of the
two hybrid models are 1.76% and 1.83%, respectively. It can be seen that the performance
of HM 1 and HM 2 are superior to that of HM 3. In other words, the hybrid models of MLR
and ANN perform better than the hybrid model of MLR and SVM.

Table 10. Hybrid model of MLR and five best ANN of all model sizes.

Date
t

L̂t from
MLR

N̂t from Five Best ANN of Each Model Size
Avg. N̂t Ŷt

Absolute
% Error5-Node 6-Node 7-Node 5-Node 7-Node

1 January 2018 350,672.94 −40,798.68 −24,283.33 −32,441.42 −37,417.81 −25,044.95 −31,997.24 318,675.70 6.87%
2 January 2018 305,652.51 −13,009.44 −10,922.76 −2008.96 −10,722.67 43,120.87 1291.41 306,943.92 4.25%

...
...

...
...

...
...

...
...

...
...

30 December
2018 349,037.20 −3196.13 −825.11 −1239.31 5450.93 −3816.26 −725.18 348,312.02 0.03%

31 December
2018 366,322.07 −82,552.53 −108,228.36 −14,142.70 −59,456.21 −54,299.94 −63,735.95 302,586.12 3.20%

MAPE 1.78%

Note: L̂t = predicted consumption, N̂t = predicted residual, Ŷt = final forecast, L̂t + N̂t.

Table 11. Hybrid model of MLR and five best ANN of each model size.

Date
t

L̂t from
MLR

N̂t from Five Best ANN of Each Model Size
Avg. N̂t Ŷt

Absolute
% Error5-Node 6-Node 7-Node 5-Node 7-Node

1 January 2018 350,672.94 −40,798.68 −24,283.33 −25,044.95 −25,007.89 −19,471.74 −26,921.32 323,751.62 8.57%
2 January 2018 305,652.51 −13,009.44 −10,922.76 43,120.87 34,046.03 19,380.34 14,523.01 320,175.52 0.12%

...
...

...
...

...
...

...
...

...
...

30 December 2018 349,037.20 −3196.13 −825.11 −3816.26 −16,416.08 1442.55 −4562.21 344,474.99 1.13%
31 December 2018 366,322.07 −82,552.53 −108,228.36 −54,299.94 −69,009.25 −78,190.98 −78,456.21 287,865.86 7.91%

MAPE 1.76%
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Table 12. Hybrid model of MLR and five best SVM.

Date
t

L̂t from
MLR

N̂t from Five Best ANN of Each Model Size
Avg. N̂t Ŷt

Absolute
% ErrorSVM 1 SVM 2 SVM 3 SVM 4 SVM 5

1 January 2018 350,672.94 −18,048.38 −19,562.62 7877.70 5124.41 4303.32 −4061.11 346,611.83 16.24
2 January 2018 305,652.51 −15,599.19 −16,813.18 −2992.27 −6944.18 −8333.85 −10,136.53 295,515.98 7.81

...
...

...
...

...
...

...
...

...
...

30 December 2018 349,037.20 −7380.02 −7096.51 −6027.58 −7548.98 −8079.29 −7226.48 341,810.72 1.90
31 December 2018 366,322.07 −31,846.23 −30,554.54 8238.38 6865.69 6330.87 −8193.17 358,128.90 14.57

MAPE 1.83%

3.5. Ensemble Prediction Models

Ensemble model is a type of model that combines forecast values from multiple models
to create the final forecast values. In this paper, the combined forecast values are simply
the average forecast values of the multiple models. To build an ensemble model, a number
of forecasting models are selected by using the minimal MAPE on the validation set. The
performance of the ensemble models is evaluated on unseen data of the test set. In this
paper, MAPE is used as the main criteria to compare ensemble models.

Two ensemble ANN models, EM 1 and EM2, are built from the best five ANN of all
model sizes and of each model size in Table 5. Similarly, EM 3 is an ensemble SVM model
containing the best five SVM models from the grid searches in Table 6. MAPE of the test set
from the three ensembled models are 1.6827%, 1.7373%, and 1.9345%, respectively. Based
on the result, the ensemble model containing the best five ANN of all model sizes performs
better than other ensemble models.

3.6. Adding Indicator Variables for Each Specific National Holiday to Improve Performance

To illustrate the model performance, Figure 6 illustrates the actual electricity consump-
tion and its forecast value from the best ensemble model EM 1 of the test set, along with
the absolute value of forecast error (see the error scale on the right vertical axis).
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Figure 6. Actual and forecast values of daily electricity consumption of the test set.

Data points with large errors in which EM 1′s forecast values significantly over-
estimate or under-estimate the actual data can be noticed from Figure 6 These are data
points that are related to holidays or bridging holidays in a year. Some are holidays with
fixed dates on the standard calendar, while others are the holidays whose dates change
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every year since they are related to the lunar calendar. The fixed date holidays with
large forecast errors include New Year’s Day, Labor Day (1 May in Thailand), Chakri
Memorial Day (6 April), Songkran festival (13–15 April) Vajiralongkorn Day (29 July),
Mother’s Day (12 August), Chulalongkorn Day (23 October), Father’s Day (5 December),
and Constitutional Day (10 December). Moving date holidays are related to Buddhism,
including Fourfold Assembly Day, Buddha Day, and Asalha Puja Day.

Plotting similar graphs for the training and validation sets reveals that large errors
can be observed on these dates in each year. Therefore, an adjustment to further improve
the model performance is to add some indicator (binary) variables for these dates in a
year as part of the input data. It is important to emphasize that each of the additional
indicator variables proposed here are tied to a specific national holiday, either fixed date or
moving date. This is different from using one binary variable to indicate whether a date
is a national holiday. This is because the effects of different national holidays are not the
same. The MAPE of the test set from various models are used to evaluate the impact of
adding indicator variables. These models include the final MLR model, the best ANN and
SVM obtained from sequential grid search, the three hybrid models (HM 1–HM 3), and the
three ensemble models (EM 1–EM 3). The results are presented in Table 13.

Table 13. Impact of adding indicator variables on various forecast performance.

Model

MAPE (%) of Test Set MAE (Mwh) of Test Set RMSE (MWh) of Test Set RPE (%) of Test Set CCC of Test Set

Indicator Var. Imp.
(%)

Indicator Var. Imp.
(%)

Indicator Var. Imp.
(%)

Indicator Var. Imp.
(%)

Indicator Var. Imp.
(%)

w/o with w/o with w/o with w/o with w/o with

MLR 2.0225 1.951 0.07 10,095.08 9803.35 2.89 13,903.14 13,282.35 4.47 2.67% 2.55% 0.0012 0.9479 0.9526 0.5
ANN 2.0299 1.7022 0.33 10,361.65 8602.6 16.98 13,365.53 11,787.23 11.81 2.57% 2.26% 0.0031 0.9566 0.9644 0.82
SVM 2.0792 2.0883 −0.01 10,552.66 10,644.35 −0.87 13,511.58 14,654.99 −8.46 2.59% 2.81% −0.0022 0.9526 0.9471 −0.58
HM 1 1.7814 1.5664 0.22 9079.72 7962.4 12.31 12,448.35 10,819.90 13.08 2.39% 2.08% 0.0031 0.9609 0.971 1.05
HM 2 1.7556 1.5801 0.18 8931.22 8030.73 10.08 12,378.63 11,096.21 10.36 2.38% 2.13% 0.0025 0.961 0.969 0.83
HM 3 1.8263 1.6982 0.13 9131.19 8491.27 7.01 12,756.5 12,148.24 4.77 2.45% 2.33% 0.0012 0.9573 0.9618 0.47
EM 1 1.6827 1.572 0.11 8591.81 7927.51 7.73 11,654.92 11,405.80 2.14 2.24% 2.19% 0.0005 0.9657 0.9679 0.23
EM 2 1.7373 1.7149 0.02 8875.55 8659.77 2.43 11,870.89 12,072.37 −1.70 2.28% 2.32% −0.0004 0.9656 0.9643 −0.13
EM 3 1.9345 1.8395 0.1 9679.2 9311.78 3.8 13,114.17 12,522.50 4.51 2.52% 2.40% 0.0012 0.9541 0.9592 0.53

Based on MAPE, eight out of nine models, except SVM, have achieved some improve-
ment. The best model after adding indicator variables is HM 1, which provides the test
set MAPE of 1.5664%. In terms of RMSE, RPE, and CCC, the best model also is HM 1 with
indicator variables, which provides the test set RMSE, RPE, CCC of 10,819.90 MWh, 2.08%,
and 0.9710, respectively. The HM 1 model with indicator variables having the lowest RMSE
indicates that HM 1 produces the lowest maximum error in our forecasting. In addition, its
RPE of 2.08% is considered to be a satisfactory prediction, and the CCC of 0.9710 suggests
that the actual and forecast values have an excellent strength of agreement. Based on MAE,
the EM 1 and HM 1 models with indicator variables provide the lowest and 2nd-lowest
MAE of 7927.51 and 7962.40 MWh, respectively, which indicates that the models produce
two of the lowest average errors.

3.7. Discussion

The benefit of using the proposed sequential grid search on three hyperparameters
of ANN can be seen in Table 14. For comparison purposes, suppose a traditional grid
search is performed on the same hyperparameter space as the sequential grid search. The
minimum and maximum values of each hyperparameter (from the sequential grid search)
and step size (estimated from the smallest step size in the sequential grid search) are used to
estimate the number of steps for each hyperparameter. This setting would result in a total of
15 × 43 × 31 × 36 = 719,820 runs to arrive at the same ANN as found by the sequential
grid search.
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Table 14. Comparison of the number of ANNs tested between traditional grid search and sequential
grid search.

Traditional GS HN TC LR MR Sequential GS No. of Runs No. of GS
Min 1 10 0.0001 0.3 Initial GS 216 15
Max 15 1900 0.0745 1 Intermediate GS 1331 8

Step size 1 45 0.00245 0.02 Intermediate GS 9261 4
No. of steps 15 43 31 36 Final GS 9261 15

For the sequential grid search, the results in Table 5 can be summarized in terms of the
number of runs for each grid search, along with the number of times these grid searches
are performed. That is, there are 15 initial grid searches of size 216 runs (1 initial GS for
each HN), 8 intermediate steps of grid searches of size 1331 runs, 4 intermediate steps of
grid searches of size 9261 runs, and 15 final grid searches of size 9261 runs. This results in a
total of 189,847 runs for the sequential grid search. That is approximately 74% savings in
the number of runs.

Regarding the forecast performance from Table 13, the best hybrid model (HM 1)
clearly outperforms the traditional models, including MLR, ANN, and SVM in all five
widely used forecast measures of performance. Moreover, adding indicator variables
specifically for two types of national holidays (fixed date and moving date) can further
improve the forecast performance. In summary, the results from our computational testing
indicate the effectiveness of the sequential grid search, the best hybrid model, and the
addition of indicator variables that are specific to both fixed date holidays and moving
date holidays.

4. Conclusions

The paper presents methods of forecasting the daily electricity consumption in Thai-
land using several models. Major contributions of the paper include: (1) Development of a
sequential grid search that initially performs a small grid search and makes adjustments to
the search boundaries in subsequent grid searches until the best hyperparameters found are
not on the boundaries, (2) Implementation of the effective hybrid models of MLR, which
forecast the expected electricity consumptions, and five ANNs, that forecast the prediction
errors, and (3) Addition of indicator variables for important national holidays in Thailand
that helps to improve the forecasting performance. From extensive computational experi-
ments on a real dataset, the hybrid model that combines all three features proposed in this
paper, i.e., a hybrid of MLR, five ANNs that are tuned by the sequential grid search, and
the national holiday indicator variables, provides the best overall forecasting performance
in terms of MAPE, RMSE, RPE, and CCC, and the 2nd-best performance of MAE.

Future research directions are to implement the proposed method (sequential grid
search, hybrid model with MLR, and adding auxiliary indicator variables) on other machine
learning algorithms with a larger number of hyperparameters, to other datasets to further
evaluate the method’s effectiveness.
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