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Abstract: Stator faults are the most critical faults in induction motors as they develop quickly hence
requiring fast online diagnostic methods. A number of online condition monitoring techniques are
proposed in the literature to respond to such faults, including the signature analysis of the stator
current, vibration monitoring, flux leakage monitoring, negative sequence components of voltage and
current and sequence components monitoring based on the identification of asymmetrical behavior
in a machine. Negative sequence components of voltage and current and sequence components
monitoring are commonly considered for the identification of asymmetrical behavior of induction
motors. Negative sequence current analysis is a sensitive technique for the detection of shorted
turns as it directly measures the asymmetry produced by the fault. However, the technique is
sensitive to other asymmetrical faults and disturbances, which can also produce negative sequence
currents. These disturbances include sensor errors, inherent asymmetry and voltage unbalance.
This paper provides a comprehensive investigation of the disturbances using a motor model along
with experimental measurements under varying load conditions. Then, a new phasor compensation
technique is explained to eliminate such disturbances effectively. This technique enables the accurate
detection of even relatively small shorted turn faults, even at an early stage. The technique is tested
experimentally, and a set of practical results are given to validate the methods developed.

Keywords: condition monitoring; induction machines; negative sequence currents; shorted turn faults;
phasor compensation

1. Introduction

Electric motors consume about 45% of the world’s electric energy. In total, 10.3% of
these are medium size (0.75–375 kW), and 0.3% of them are large size (>375 kW) motors that
consume a significant level of energy and usually operate in critical applications. Among
the motor types, induction motors cover a greater portion of the applications, from direct-
online (DOL) grid-connected motors to electric vehicles, primarily due to their robustness,
reliability and low cost. However, the failure of induction motors has a significant impact
on both their running cost and the efficiency of production.

Catastrophic failure of the motors usually develops over a period of time (from seconds
to days), first as a low degree of fault, which is investigated intensively under “condition
monitoring” involving various electrical quantities. The faults in induction motors can be
classified into five groups (Figure 1b): bearing related faults (41%), stator related faults
(37%), rotor faults (10%) and eccentricity related and mechanical faults (12% in total).

Online condition monitoring and diagnostic methods are preferred to predict any
incipient failures in induction motors. As the most critical faults, stator faults are commonly
detected using steady-state condition monitoring.
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Figure 1. The breakdown of global motor usage by size (a) [1], and distribution of common faults 
of electric motors (b) according to EPRI survey results [2]. 
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Various online diagnostic methods are proposed in the literature, including the 
signature analysis of the stator current, vibration monitoring, flux leakage monitoring, 
negative sequence components of voltage and current and sequence components 
monitoring that is based on the identification of asymmetrical behavior in a machine. 

Among these, the sequence components method offers a fast and reliable solution in 
which any unidentified unbalanced three-phase voltage or current phasors are 
transformed into a set of three simple independent balanced component phasors: positive 
sequence, negative sequence and zero sequence phasors. Moreover, sequence component 
monitoring provides opportunities to increase the accuracy of the results through non-
idealities and non-linearity compensation techniques. 

Note that the positive sequence component always exists due to the supply voltage, 
but the negative sequence component exists only under asymmetrical voltage supply or 
under motor faults. Hence, the negative sequence component is utilized to monitor the 
health of the machine as well as can identify the supply voltage unbalances. For example, 
negative sequence current monitoring can detect one of the most critical faults, stator 
shorted turn faults in induction motors, as an alternative to other signature analysis 
techniques such as stator current, vibration and flux leakage [1,2], and this non-invasive 
method has low computational requirements [3,4]. 

However, the measured negative sequence may contain inherent non-idealities (such 
as asymmetries in real machines, saturations, inherent winding asymmetry) and is 
sensitive to external effects (such as load changes, supply and temperature variations). In 
order to eliminate such secondary fault effects, various compensation methods for voltage 
unbalance and other inherent non-idealities using look-up table databases, empirical 
formulas or neural networks are proposed in the literature. These studies are summarized 
below in Figure 2. 

Figure 1. The breakdown of global motor usage by size (a) [1], and distribution of common faults of
electric motors (b) according to EPRI survey results [2].

Various online diagnostic methods are proposed in the literature, including the signa-
ture analysis of the stator current, vibration monitoring, flux leakage monitoring, negative
sequence components of voltage and current and sequence components monitoring that is
based on the identification of asymmetrical behavior in a machine.

Among these, the sequence components method offers a fast and reliable solution in
which any unidentified unbalanced three-phase voltage or current phasors are transformed
into a set of three simple independent balanced component phasors: positive sequence,
negative sequence and zero sequence phasors. Moreover, sequence component monitoring
provides opportunities to increase the accuracy of the results through non-idealities and
non-linearity compensation techniques.

Note that the positive sequence component always exists due to the supply voltage,
but the negative sequence component exists only under asymmetrical voltage supply
or under motor faults. Hence, the negative sequence component is utilized to monitor
the health of the machine as well as can identify the supply voltage unbalances. For
example, negative sequence current monitoring can detect one of the most critical faults,
stator shorted turn faults in induction motors, as an alternative to other signature analysis
techniques such as stator current, vibration and flux leakage [1,2], and this non-invasive
method has low computational requirements [3,4].

However, the measured negative sequence may contain inherent non-idealities (such
as asymmetries in real machines, saturations, inherent winding asymmetry) and is sensitive
to external effects (such as load changes, supply and temperature variations). In order to
eliminate such secondary fault effects, various compensation methods for voltage unbalance
and other inherent non-idealities using look-up table databases, empirical formulas or
neural networks are proposed in the literature. These studies are summarized below in
Figure 2.

The negative sequence current monitoring method is based on understanding the
sources of asymmetry in the three-phase machine using measurements on the line currents.
As illustrated in Figure 3, the sources of negative sequence currents in induction machines
can be classified into four main groups: inherent asymmetry, supply voltage unbalances,
instrumentation asymmetry in measuring devices and actual motor faults. The figure also
shows the complex interactions among the sources of negative sequence currents, specifi-
cally when thermal effects, supply voltage variations and load variations are considered in
real machines, which have a significant effect on the sequence currents.

Although a significant amount of research is reported in the literature which utilizes
the negative sequence currents for condition monitoring [5–10], the causes of these currents
are not investigated comprehensively. These include the contribution of measurement
related asymmetry, the complex interaction among the causes of the negative sequence
currents, the angle of the negative sequence current in the analysis for inherent asymmetry,
voltage unbalance and finally, shorted turn faults under load using phasor plots. It should
be emphasized here that to identify the real faults of induction motors, the disturbances
need to be eliminated from the measured negative sequence current. This can be conducted
by compensation methods such as using simple look-up tables [6], a specific proportional
integral (PI) negative sequence regulator [11] or using advanced neural networks [8,12].
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Table 1 show the various compensation techniques reported in the literature that are
proposed to detect stator shorted turn faults using the negative sequence component,
which includes negative sequence currents [5–10,12,13], negative sequence impedance [14]
and a matrix of impedances [15] modeling cross-coupling between the positive and negative
sequence components. Three major disturbances, inherent asymmetry, voltage unbalances
and load variations, are also assessed in the table for each given reference.
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Table 1. Features of Negative Sequence Current Compensation Techniques Reported in the Literature.

References Inherent Asymmetry Voltage Unbalance Load Variation Shorted Turn Fault

[6]

Compensation of
non-linearity (including
inherent asymmetry)
using look-up table

Negative sequence impedance Zn of
motor (assumed independent load
variation and turn faults)

Unaffected by load
variation

Negative sequence current
In-sf

[5]

Minimization of thermal
effect by eliminating the
current phase
Isn = (Vn sin θn)/Xhn

Semi-empirical quadratic function of
healthy reactance (Xhn)

X−1
hn = γ0 + γ1Vn + γ2 sin 2φn + . . .

γ3 cos 2φn + γ4 Ipx + γ5 I2
py

Semi-empirical quadratic
function of stator current
under load variations
Imnlv = α0 + α1 Ipx +

α2 I2
px + α3 Ipy + α4 I2

py

Negative sequence current
In−s f = In − Isn − Imnlv

[7] Complex constants (k)
In = k1Vp + k2Vn

Complex constants (k)
In = k1Vp + k2Vn

k1 and k2 are load
dependent Negative sequence current In-sf

[10,13]

Calculated from two
current sensors
based-method Ia and Ib;
Negative sequence due to
uncalibrated sensor is also
considered
In−ia =

1
3 (1 − a)(Ia − aIb)

Voltage unbalance supply is not
considered

Tested under no-load, half
load and full load Negative sequence current In-sf

[8,12] Neural network Neural network Neural network Negative sequence current In-sf

[14] Need to be perfectly
balanced Need a balanced voltage supply Load is not affected Effective negative sequence

impedance: Zn-eff = Vn/In

[15] Independent of inherent
asymmetry Independent of voltage unbalance Calculation under speed

variation
Negative sequence impedance
matrix Znp

[11]

Proportional integral (PI)
controller. The PI negative
sequence regulator is not
intended for monitoring

PI controller PI controller Not available

Notes: X: Magnitude of reactance; φ: Phase angle; I: Magnitude of current; h: Operator for symmetrical compo-
nents; V: Magnitude of voltage; x, y: Real and imaginary parts of a phasor; s, r: Subscripts for the quantities of
stator and rotor; 0, p, n: Subscripts for zero, positive and negative sequence components; f : Supply frequency; m, s,
l, v: Subscripts denoting motor, supply, load and voltage.

As it is highlighted in the table, no literature is found to address and demonstrate the
interaction between shorted turn faults and disturbances, which is critical for the accurate
detection of faults. This paper aims to address this using a compensation technique based
on phasor analysis for sensor calibration, supply voltage unbalances and inherent machine
asymmetry, with a target aim of detecting small degrees of stator shorted turn faults.

The layout of the paper is as follows. In Section 2, the negative sequence current
analysis is discussed in detail by expanding the research studies reported in [7,16]. The
principles of the phasor compensation technique are also provided in the same section.
Section 3 discusses the simulation model and the test machine. Section 4 describes the
effects of sensor calibration, motor temperature and supply voltage unbalance. Section 5
presents test results demonstrating the effectiveness of the proposed negative sequence
phasor compensation for supply voltage unbalances and inherent asymmetry. The effects
of motor loadings are also considered. Finally, conclusions are drawn in Section 6.

2. Negative Sequence Current Analysis
2.1. The Sources of Negative Sequence Current

An unbalanced three-phase set of current phasors, Ia, Ib and Ic can be represented
as the superposition of three sets of balanced symmetrical component phasors: positive
sequence Ip, negative sequence In and zero sequence I0.

Although balanced three-phase voltages applied to an ideal induction machine pro-
duces balanced currents with no negative sequence components, practical induction ma-
chines have some negative sequence current due to inherent asymmetries between the
windings. In addition, even a perfectly balanced induction machine, when operating from
an unbalanced supply, will have a negative sequence current which is equal to the negative
sequence supply voltage divided by the negative sequence impedance, Zn, of the machine.
In light of these practical limitations and using the summary of disturbances given in
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Figure 3, the sources of the negative sequence currents are discussed in detail below, which
is critical for the phasor based compensation technique developed in the paper.

2.1.1. Measurement Asymmetry (In-in)

Given the negative sequence, components are associated with imbalances between
the supply voltages/currents; even small differences in gain and phase between the volt-
age/current transducers in different phases can produce substantial errors in the results.
Thus careful calibration of the transducers is crucial when seeking to accurately measure
negative sequence currents.

2.1.2. Inherent Asymmetry (In-ia)

As indicated previously, due to the manufacturing limitations in machine production,
negative sequence currents even occur in healthy motors as they contain inherent asymme-
try. As summarized in Figure 3, inherent asymmetry may be due to iron asymmetry, stator
winding unbalances and rotor static eccentricity.

2.1.3. Voltage Unbalances (In-v)

All practical ac supplies have some degree of voltage imbalance. Compensation of
the effect of supply voltage imbalance is important to separate this effect from the stator
winding faults.

2.1.4. Induction Motor Faults (In-sf)

Negative sequence currents are produced by faults that cause asymmetries in the
induction machine. Three major contributing faults are listed in Figure 3. However, the
shorted turn fault is considered to be the most critical one since it generally develops faster
than the eccentricity and/or broken rotor bar faults, and these other faults can also be
effectively detected by alternative methods.

2.2. Principle of Phasor Compensation Technique

The negative sequence input current In of an induction machine can be expressed as
the phasor sum of four separate negative sequence currents: motor faults In-sf, inherent
asymmetry In-ia, measurement errors In-in and supply voltage unbalance In-v.

In = In-sf + In-ia + In-in + In-v (1)

The above equation implies that negative sequence current components can exist even
in healthy machines, and Figure 4 illustrate the implementation of the shorted turn fault
extraction based on the same equation.

The negative sequence current component due to motor faults In-sf can be obtained
from the measured negative sequence phasor In by subtracting the negative sequence
current components due to voltage unbalance In-v, the motor inherent asymmetry In-ia and
instrumentation asymmetry In-in. In addition, it can be assumed that the negative sequence
current component due to shorted turn faults In-sf is proportional to the fault severity. It
is also important to emphasize that the negative sequence current components can be
sensitive to motor load variations and changes in motor temperature during operation.

As it is listed in Table 1, the negative sequence current can be used for shorted turn
fault detection by utilizing the key fault indicators (given in the rightmost column) after
compensating for the inherent asymmetry, voltage unbalance and load variations. In [6], the
negative sequence impedance Zn due to voltage unbalance was assumed unaffected by load
variations and hence was assumed independent of stator shorted-turn faults. Therefore,
the negative sequence current for the voltage unbalance compensation can be obtained
from the measured negative sequence voltage and a look-up table for Zn. The complex
admittances method reported in [7] assumed that the healthy negative sequence current
was a function of the positive and negative sequence supply voltages.
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In [5], the healthy negative sequence impedance was estimated based on empirical
formulas taking into account the effect of the voltage unbalance, load variation and inherent
asymmetry. In [10,13], the negative sequence of the online sensor and inherent asymmetry
model and measurement was demonstrated. These two papers show the negative sequence
current due to stator faults which were free from the inherent asymmetry and uncalibrated
sensor effects. Furthermore, in [8,12], a neural network was applied to estimate the healthy
negative sequence current.

However, as observed from these earlier studies, the previous techniques consider
only a limited number of cases without separating the negative sequence of current phasor
components related to each type of disturbance. Therefore, in the following section, the prin-
ciple of the phasor compensation technique will be explained graphically to demonstrate
its effectiveness as a winding short-circuit fault detection method.

3. Simulation Study and Test Setup

To be able to understand the behavior of the induction machine under various fault
levels, a Simulink model was developed. The parameters of the commercial test machine
are given in Table 2. The simulation was based on a dynamic machine coupled circuit
model [6], which allowed the simulation of unequal numbers of winding turns in each
phase as well as inter-turn short circuits. This provided a comprehensive understanding of
disturbances at different fault levels for the phasor-based compensation technique.

Table 2. Equivalent Circuit Parameters of the Motor under Test.

Rated output power 2.2 kW Referred rotor resistance 4.65 ohm

Rated frequency 50 Hz Stator leakage inductance 14.8 mH

Line voltage 415 V Referred rotor leakage inductance 14.8 mH

Rated stator current 4.9 A Rotor inertia 0.05 kg m2

Number of series turns/phase 282 turns Magnetizing inductance 312 mH

No. of poles 4 Rated power factor 0.8 lag

Stator phase winding resistance 5.22 ohm Rated speed 1415 rpm

The stator winding of the test machine was specially re-wound to allow the introduction
of various levels of shorted turn faults via external connections. In the test motor, 5, 10, 15 or
20 shorted turns can be applied in either one or two phases of the motor (see Figure 5). This
corresponds to shorted turn faults of 1.7%, 3.5%, 5.3% and 7.1% per phase, respectively.
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Figure 5. The modified stator winding configuration of the test motor and the external connection
circuit used to introduce shorted turn faults (the motor windings have 282 series turns per phase).

Note that the stator winding resistance for 5 turns was about 93 mΩ while for 20 turns,
it was about 370 mΩ, which was estimated using the total measured resistance of the stator
winding. As illustrated in Figure 5, the short-circuit current path had an additional stray
resistance of Rwire1 + 2Rwire2, which was measured at about 125 mΩ. The machine model
used in the simulation study included this stray resistance effect.

The measurement and the calibration system consisted of three voltage and three
current transducers signal conditioning circuits, an eight-channel 8th order low-pass But-
terworth analog filter and an eight-channel, 12-bit simultaneous sampling data acquisition
card (see Figure 6). The current measurement resolution was 0.2 mA.
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The analysis of instrumentation asymmetry will be discussed in the following section.

4. System Calibration and Disturbances
4.1. Sensor Calibration

During the calibration process, three current and three voltage sensors are configured
to measure the same line current and the same phase voltage, as it is shown in Figure 6.
A single-phase AC supply is also connected to a load via a precision power analyzer to
provide the reference measurement. Table 3 indicate the calibration constants for each
voltage and current sensor, and Figure 7 summarize the results of the calibration tests.

Table 3. The Calibration of Voltage and Current Channels.

Channel Voltage Current

A y = 2.4 × 10−5 + 8.84 × 10−3x y = −4.93 × 10−5 + 0.489x

B y = 1.1 × 10−3 + 8.88 × 10−3x y = −8.19 × 10−5 + 0.490x

C y = 4.6 × 10−4 + 8.93 × 10−3x y = −1.07 × 10−4 + 0.488x
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Note that before the calibration process, the maximum gain error of the voltage
channels was about 1% and for the current channels was about 0.4%. After the calibration
process, all the sensor measurements are compared with the values measured by the power
analyzer to obtain residual magnitude errors, as given in Figure 7. The percentage error is
expressed as the ratio of the error value and the full-scale reading output. The results show
that the percentage error is less than 0.05% for the voltage magnitude measurement, and it
is less than 0.1% for the current magnitude measurement. Such errors can be considered
acceptable for the negative sequence component analysis.

The angle error analysis of the voltage and the current measurement is also given
in Figure 7, which is defined as the relative angle difference between two channels, i.e.,
between the Va and Vb also the Va and Vc voltage channels. Note that the average angle
error of the worst pair of currents (about 0.2◦) is much lower than for the worst pair of
voltages (about 0.05◦). To understand the impact of such discrepancies, the measurement
asymmetry needs to be analyzed. Since, in this test, the three current and voltage channels
are supplied from the same source, the three phasors should ideally create a zero sequence
component. Figure 8 show the three measured current phasors showing small residual
magnitude errors and uncompensated phase errors. In order to find the negative sequence
component phasors due to the measurement asymmetry, the two phasors (Ib and Ic) are
each rotated 120◦, as shown in the rightmost figure.
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The magnitude of the negative sequence component due to measurement errors is
given in Figure 9. This shows a 0.3% current component and 0.03% voltage component at
rated current and voltage, respectively. This error can be reduced by subtracting a fixed
value of angle offset between the channels of 0.2◦ for the current and 0.05◦ for the voltages.
This angle offset correction reduces the negative sequence current error to lower than 0.1%
of rated current and the negative sequence voltage error to 0.015% of rated voltage.
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4.2. Motor Temperature

The effect of temperature is investigated and presented in Figure 10 using the measure-
ment system and the induction motor under test. The no-load cold data test is performed
within the first 15 min after the motor is started. The no-load hot data is obtained after
running the motor in a generator mode at the full load condition for half an hour. Then, the
generator is decoupled from the electrical load and tested and measured under no-load
conditions. In both cases, the measurements are performed over a range of supply voltages.

Figure 10 show that there is little difference between the hot and cold positive sequence
currents, but there are significant differences between the hot and cold negative sequence
currents and voltages. At the rated voltage, the negative sequence current is about 1%,
and the negative sequence voltage is about 0.2% which is much larger than the residual
measurement errors discussed previously.

Figure 10b show that the negative sequence current increases rapidly for voltages
above about 0.7 pu. This may be due to asymmetries in the saturation of the three phases.

4.3. Voltage Unbalances

A supply voltage unbalance produces a negative sequence supply voltage which in
turn produces a negative sequence current that is inversely proportional to the motor’s
negative sequence impedance. The supply voltage unbalance is measured using the voltage
unbalance factor (VUF), which is defined as the ratio between the negative sequence Vn
and positive sequence Vp voltage magnitudes:

VUF = Vn/Vp (2)
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Figure 10. Hot and cold motor measurements: (a) magnitude of the stator positive sequence current
Ip, (b) magnitude of the stator negative sequence current In, (c) magnitude of the negative sequence
voltage Vn, (d) the angle of In and Ip, (e) the angle of Vn and Vp where the reference angle Vp is 90◦.

A variable voltage unbalance is introduced experimentally in the computer simulations
by adding a variable external resistor in series with one of the supply phases of the motor
while operating under no-load conditions.

Figure 11 highlights the variations of the negative sequence current magnitudes as
a function of voltage unbalance (left column) and current phasor plots of the negative
sequence current (right column).

Figure 11a,b show the measured negative sequence current using uncalibrated (squares)
and calibrated (circles) voltage and current sensors, as discussed at the beginning of this
section, which all demonstrate the significance of calibration.

Figure 11a show an approximately linear relationship between the negative sequence
current component and the voltage unbalance while the positive sequence current compo-
nent (crosses) remains almost constant. Note that the percentage change in the negative
sequence current is approximately four times the percentage change in the negative se-
quence current. The results are consistent with up to 5% voltage unbalance, which is
an acceptable level in practice [17]. The effect of inherent asymmetry in the machine is
also observed in the same figures, where extrapolating the measured voltage unbalance
results in zero unbalance (see squares in Figure 11c) and does not result in zero negative
sequence current.
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Figure 11. Three-phase phasor representation of the negative sequence current under a supply
voltage unbalance: before (a) and after (b) inherent asymmetry compensation, and after 120◦ shift
of two phases (c). The simulation results are shown by solid lines. The experimental results are
indicated by symbols.

The simulation results are shown as solid lines in Figure 11a,b. Although the simula-
tion results in Figure 11a show significant discrepancies as a function of voltage unbalance,
the simulation model predicts the current phasor trajectory accurately, as illustrated in
Figure 11b (except for the un-modelled inherent asymmetry). The corrected experimental
results (triangles) are also given after the experimentally determined inherent asymme-
try currents (squares) are subtracted. The results are now consistent with zero negative
sequence current at zero voltage unbalance.

Note that the above-described procedure was repeated in each of the three phases
of the machine. Figure 12 show the simulation and the experimental results of this study
before (Figure 12a) and after (Figure 12b) inherent asymmetry compensation, at which
point the results become centered on the origin. Figure 12c illustrate the effect of 120◦ phase
shifting in two of the phases, which demonstrates that the effect of voltage unbalance is
similar in each phase. This is the basis for compensating the negative sequence current that
is due to the supply voltage unbalance.
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with a number of shorted turns and asymptotes towards the true short-circuit current 
value. This current is also proportional to supply voltage. 

Figure 12. The experimental (symbols) and the simulated (solid lines) results of the current and
voltage unbalance as a function of the load with a series resistor in one of the phases. The magnitude
(top) and phasor trajectories (bottom) are also given before (a) and after (b) inherent asymmetry
elimination, and the voltage unbalance factor (top) and negative sequence impedance (bottom) (c).
The values of the external resistors were 0.25 Ω (triangle), 0.5 Ω (diamond), 1 Ω (square), 2 Ω (circle)
and 4 Ω (star).
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Figure 12 show the effect of voltage unbalance (using a resistor in series with one of
the phase lines) on the negative sequence current under varying motor loads. The results
are given before (Figure 12a) and after (Figure 12b) inherent asymmetry elimination, which
shows that this substantially improves the correspondence between the simulated and
test results.

The corresponding voltage unbalance factor and the negative sequence impedance are
provided in Figure 12c. For a fixed supply unbalance resistor, increasing the load increases
the voltage unbalance, which increases the negative sequence current and produces a phase
angle change. The negative sequence impedances stay relatively constant.

5. Shorted Turn Motor Fault and Novel Phasor Compensation Technique

The effect of shorted turns was experimentally verified on the test machine using the
tapped stator windings given in Figure 5 previously. This section explores the ability to
detect such fault types and aims to estimate the severity of the fault.

5.1. Effect of Shorted Turn Fault

Figure 13 show the variation of the fault current as a function of the shorted turn
(inter-turn) percentage and the voltage supply level. If the resistance of the external wires
used to tap the stator winding (Rwire in Figure 5) is zero, then the fault current should be
ideally constant. However, with a finite external resistance, the fault current increases with
a number of shorted turns and asymptotes towards the true short-circuit current value.
This current is also proportional to supply voltage.
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Figure 13. The fault current in the shorted-turns vs. the fraction of shorted-turns with different
supply voltages. Simulation results (lines) and experimental results (circles).

Since the fault currents produced by shorted turns are large, they can cause the rapid
heating of the shorted windings and consecutive catastrophic failure. For example, at the
rated voltage, a fault current of five times the rated current is produced with only 7% of the
shorted turns. Therefore, fast fault detection is crucial for early inference.

Figure 14a show the negative and positive sequence current magnitudes as a function
of the short-turn fault percentage. The figure indicates that the negative sequence current
is almost proportional to the fault level with a 2% negative sequence current, which
corresponds to the 7% shorted turns. It can be observed in the same results that the
short-turn fault does not affect the positive sequence current significantly.

Figure 14b show the negative sequence current phasor trajectory corresponding to the
shorted-turn faults on two phases only, which are tested one phase at a time. The results
show a good correspondence between the simulation and the experimental results.

To be able to investigate the practical operating scenarios, the shorted turn faults are
also studied under the combination of voltage unbalance and motor loading. The results
before and after inherent asymmetry elimination are given in Figure 15. The figure shows
that shorted turn faults increase the magnitude of the negative sequence current as well as
varying its phasor trajectory under voltage unbalances.
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Figure 15. The test results at various shorted turn fault levels of 0% (triangle), 1.7% (diamond),
3.5% (square), 5.3% (circle) and 7.1% (star), before inherent asymmetry elimination of the magnitude
of In (a), phasor diagram of In (d), after inherent asymmetry elimination of the magnitude of In (b),
phasor diagram of In (e), and the corresponding voltage unbalance factors and (c) the negative
sequence impedances (f).

Figure 15c,f show the percentage of voltage unbalance and the negative sequence
impedance as a function of the motor load. As can be observed in the figures, the effect of the
negative sequence current magnitude decreases slightly with increasing load (Figure 15a).
This is caused by the negative sequence impedance (Figure 15f) that increases slightly with
the load. However, the negative sequence voltage remains relatively constant, as illustrated
in Figure 15c.

5.2. Shorted Turn Faults and Phasor Compensation

Figure 16 show the variation of the measured negative sequence current magnitude
vs. the shorted-turn ratio (up to 7%) for different supply voltage unbalances (from 0.1%
to 1.7%) under no-load conditions. Current trajectory plots are also given in the second
row of the figure. The left column in the figure shows the measured results using the
calibrated sensors; the middle column shows the results with compensation for supply
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voltage unbalance and the right column illustrates the results after both supply voltage
imbalance and inherent asymmetry compensation.
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Figure 16. The test results (magnitude and phasor plots) of the negative sequence current magnitude
as a function of shorted turn fault severity (up to 7.1%) with voltage unbalance factors between 0.1%
to 1.7%: measured results (left column) after voltage unbalance compensation (middle column) and
after both voltage unbalance and inherent asymmetry compensation (right column).

As can be seen in the figure, with near-zero supply voltage unbalance (0.1%), the
negative sequence current is almost proportional to the number of shorted turns. For
example, a 7% shorted turn fault produces slightly more than 0.02 pu negative sequence
current. However, in a healthy motor (zero shorted turns), 1% supply voltage unbalance
can produce a comparable magnitude of negative sequence current, which indicates the
necessity of compensation for the supply voltage unbalance.

In addition, the phasor plot in the left column of Figure 16 show that the phase angle
of the negative sequence current component due to supply voltage unbalance (about +15◦)
is substantially different than that due to the shorted turn fault (about −45◦). These phase
angles are dependent on the negative sequence voltage phasor and the phase of the supply
in which the shorted-turn fault is present.

The negative sequence current magnitude depends on the phasor summation of the
negative sequence current components of the fault level and the supply voltage unbalance.
Therefore, any compensation technique must be based on a phasor calculation rather than
just considering the magnitudes.

The results of the negative sequence supply voltage compensation are given in the
middle column of Figure 16, which utilized the calibration curve given previously. Note
that when the sensitivity of the negative sequence current to the supply voltage unbalance
is eliminated, this can magnify the influence of the shorted turn fault. In the phasor plot of
Figure 16, the close correspondence between the results at 0.1% and 1.8% VUF is given.

The presence of inherent asymmetry, hence non-zero negative sequence current, in
a healthy machine makes it difficult to identify the small level of shorted turn faults (less
than 2% or five shorted turns in the test machine as it is given in the middle column of
Figure 16).

The results given in the right column of Figure 17 show the compensation of both
voltages unbalance and inherent asymmetry. Note that the compensation reduces the
negative sequence current to near zero for healthy machines, which allows even small
faults of greater than, say, 1% (3 shorted turns) to be distinguished. Moreover, an almost
ideal linear relationship between the fault severity and the negative sequence current is
obtained, which reduced the sensitivity to supply voltage unbalance further. The phasor
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plot shows the result for the healthy motor now lies at the origin. This means that the
negative sequence current for the stator shorted turn faults is now fully compensated.
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Figure 17. The test results (magnitude and phasor plots) of the negative sequence current at 1.7%
shorted turn fault severity vs. motor load with various voltage unbalance factors: measured results
(left column) after voltage unbalance compensation (middle column) and after voltage unbalance
and inherent asymmetry compensation (right column).

The left column in Figure 17 show the negative sequence current test results with a
1.7% shorted turn fault combined with a varying supply voltage unbalance (produced by
external resistors of 0 Ω, 1 Ω, 2 Ω and 4 Ω) under various motor loads. The significant
effects of loading and voltage unbalance are also visible from the change in angle of the
negative sequence current components, i.e., from −43◦ to 95◦. At the light motor loading,
the negative sequence phase angle is shifted from −43◦ to +12◦, primarily due to the
shorted turn fault.

The measured negative sequence current variation under the load given in the middle
of Figure 17 shows a significant reduction after compensation for the voltage unbalance.
Note the order of magnitude changes in the scales of the vertical axis in Figure 17.

The right column in Figure 17 show the processed result after the inherent asymmetry
elimination. Note also that the supply unbalance and the load variation are reduced even
further. This demonstrates that the compensation technique can successfully eliminate
the voltage unbalance and the inherent asymmetry under a wide range of motor load
variations, which is performed to gain the true magnitude of the negative sequence current
due to the early and accurate detection of the shorted turn fault.

6. Conclusions

The stator faults in three-phase induction motors are primarily associated with the
windings and are found to be the most critical faults as they develop quickly, requiring
fast online diagnostic methods. This paper utilized the negative sequence components of
voltage and current for the identification of the asymmetrical behavior of motor windings
under stator faults.

In order to understand the causes of negative sequence currents for the detection
of shorted-turn faults in the line-operated induction machines, this paper provided a
comprehensive study of the effects of the major asymmetrical disturbances on the negative
sequence currents. These included the effects of measurement errors, motor temperature,
inherent machine asymmetry and supply voltage unbalance, all under varying motor
load conditions.



Energies 2022, 15, 3100 16 of 17

A novel phasor compensation technique was described for inherent asymmetry and
supply voltage unbalance. This relies on performing tests to determine the inherent
asymmetry and identify the effective negative sequence impedance at the operating voltage.

The simulation and experimental results demonstrated that the proposed approach
allows the use of the negative sequence current to detect even at small shorted turn faults
(2% for the test motor). In addition, the fault severity was estimated accurately using the
compensating method for sensor errors, inherent asymmetry and voltage unbalance, which
are all present in practical machines. The compensation of supply voltage unbalance under
varying motor loads was also investigated in detail.

It can be concluded that further works can be conducted while the motor is operating
under multiple faults, which may be based on an online model of the machine.
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