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Abstract: Nowadays, induction machines (IMs) are widely used in industrial and transportation
applications (electric or hybrid ground vehicle or aerospace actuators) thanks to their significant
advantages in comparison to other technologies. Indeed, there is a large demand for IMs because
of their reliability, robustness, and cost-effectiveness. The objective of this paper is to improve the
reliability and performance of the three-phase induction machine in case of mechanical sensor failure.
Moreover, this paper will discuss the development and proposal of a fault-tolerant controller (FTC),
based on the combination of a vector controller, two virtual sensors (an extended Kalman filter,
or EKF, and a sliding mode observer, or SMO) and a neural voting algorithm. In this approach,
the vector controller is based on a new structure of a back-stepping sliding mode controller, which
incorporates a double integral sliding surface to improve the performance of the induction machine
in faulty operation mode. More specifically, this controller improves the machine performance in
terms of having a fast response, fewer steady-state errors, and a robust performance in the existence
of uncertainty. In addition, two voting algorithms are suggested in this approach. The first is based
on neural networks, which are insensitive to parameter variations and do not need to set a threshold.
The second one is based on fuzzy logic. Finally, validation is carried out by simulations in healthy
and faulty operation modes to prove the feasibility of the proposed FTC.

Keywords: induction machine; mechanical sensor failure; fault-tolerant control; sensorless control;
back-stepping controller; sliding mode observer; extended kalman filter; neural networks; fuzzy
logic; voting algorithms; reliability; performance

1. Introduction

In today’s industry, the main requirements for any system are performance, efficiency,
availability, reliability, and safety, in addition to productivity. Therefore, monitoring and
supervisory functions are highly prioritized in the control unit of any system to achieve
these goals. These functions consist of developing methods of detection, isolating faults, and
using fault-tolerant control to maintain good performance in faulty operation mode. Indeed,
fault tolerance has become an increasingly more interesting topic in the last decade for
modern technological and safety-critical systems [1,2]. In fact, FTC is of utmost importance
for every aspect of safety-critical systems such as in airplanes and nuclear reactors. It
specifically hinders faults from growing into full failures [3]. These failures may have
life-threatening impacts on humans. Human history has witnessed several accidents
which can be avoided if control systems are designed to be tolerant of faults. Examples of
these accidents include the disaster at the Chernobyl nuclear power plant in 1986 and the
Three Mile Island accident in 1979. Therefore, interest in FTC systems has increased since
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the 1980s [4]. For more information about the last applications of FTC, one can look at [5,6]
and the references therein.

Due to its low cost, structural robustness, and high efficiency, the induction machine
(IM) is becoming competitive in many applications, such as railway electric propulsion power
trains, wind turbines, etc. [7,8]. Unfortunately, this machine can be affected by different faults,
which may yield drastic consequences. The main faults which can occur in the induction
machine drive are stator faults (open phase, short-circuit, electrical discharges, etc.) [9,10],
inverter faults (short-circuit and open-circuit) [11,12], and sensor faults [1,13,14].

However, a mechanical sensor failure can lead to instability and a decline in perfor-
mance [1,14]. Consequently, the fault diagnosis of the speed sensor will ensure reliability
and continuity of operation in the industrial sector with a minimum level of performance
in case of speed sensor failure. Therefore, the diagnosis of mechanical sensor failure has
received considerable attention in the literature [1,7,13–16].

For IM speed sensor failure, two approaches have been developed in the literature. In
the first approach, when a faulty speed sensor is detected, the control algorithm is recon-
figured using a new control law [7,15]. In the second approach, when a speed sensor fault
is detected, an observer is used instead of the speed sensor in the control loop. Usually,
one or two observers are employed. In the case of a single observer, the residuals obtained
by calculating the difference between measured and estimated speeds are used, and these
are compared to a predefined threshold for detecting faulty operation modes. Unfortunately,
the computed residual value diverges from zero even in the healthy operation mode. This
is due to model uncertainties and parameter variations, which complicate the selection of
an appropriate threshold value [17]. In the case of two observers, a voting algorithm is used to
compute the most accurate information related to speed from the sensor and the observers [1].

Several voting techniques have been described in the literature, and these have been
widely used in safety-critical applications and FTC systems, such as weighted average
voters (WAV) [18], the fuzzy voter (FV) [19], the maximum-likelihood voter (MLV) [1,20],
the Euler voter (EV) [21], and the Newton-Raphson voter (NRV) [21]. A major difficulty
with these voters is the need to choose an appropriate threshold value, which has a direct
impact on voter performance, especially in the presence of parameter variations.

The WAVs suffer from a lack of accuracy in normal conditions, i.e., without a fault,
because the measured speed is mixed with the estimated ones, which then leads to less
accurate values [1]. Moreover, the faulty sensor still contributes to the final output of the
voter even with a small weight in the faulty case. The MLV chooses the sensor or the
observer that has the maximum likelihood without mixing between the estimated and
the measured speeds [1]. However, the quality of MLV depends on the correct setting
of its threshold, which has a direct impact on the voter performance, especially in the
presence of parameter variations. The EV produces an estimated signal based on the Euler
approximation of the real measured signal. Then, the estimated signal must be compared
with the voter inputs to achieve the voting process [21]. Nevertheless, EV is sensitive
to the rapid changes of the real signal, which reduces the estimation accuracy. In NRV,
a numerical threshold value must be set which directly affects the voter performance [21].

In this paper, an IM speed sensor FTC is proposed. It is based on the combination of the
actual sensor and two virtual ones, namely an extended Kalman filter (EKF) and a sliding
mode observer (SMO). A new voting algorithm based on neural networks is suggested to
solve the problem of choosing an appropriate threshold value. The proposed algorithm is
compared to a fuzzy voter that is modified and adapted for the task of sensor fault-tolerant
control. In addition, to ensure response speed with high performance, a controller is created
by connecting an integral back-stepping controller with a double integral sliding mode
controller. The suggested integral back-stepping double integral sliding mode (IBS-DISMC)
controller aims to further improve performance in terms of having a fast response, fewer
steady-state errors, and a robust performance in the existence of uncertainty. The novelty
of this work can be summarized using the following points:
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1. The new proposed controller (IBS-DISMC) is introduced to improve the performance of
the IM under faulty conditions. Specifically speaking, IBS-DISMC has a fast response,
fewer steady-state errors, and a robust performance in the existence of uncertainty.

2. The new neural voting algorithm is proposed to avoid setting up a threshold, which
is the main limitation of the reported voting algorithms in the literature. Additionally,
the proposed voter has a good robustness against parameter variations.

3. The fuzzy voter given in [19] is modified to be applicable for diagnosing the failure of
a velocity sensor of an induction machine.

In this paper, Section 2 is devoted to the proposed controller and its validation by
simulation. Section 3 presents the mathematical models of the extended Kalman filter
and the sliding mode observers, in order to estimate the induction machine speed and
their validation by simulation to evaluate their performance. Section 4 is devoted to the
developed approach of FTC, the proposed voting algorithms, and their validation by
simulation in a faulty operation mode, showing the benefit of the suggested method to
isolate, with a high reliability, the speed sensor fault. Finally, in Section 5, conclusions about
the carried-out work are presented.

2. Controller Design

As parameter variations severely affect the performance of the voting algorithm,
a robust control algorithm is required to reduce the effects of parameter changes. Back-
stepping control (BSC) [22] and sliding mode control (SMC) [23] are suggested as powerful
control algorithms in many applications. The BSC technique has frequently been used
for controlling nonlinear systems. However, the BS controller cannot handle uncertainty
quickly. Therefore, connecting the BSC with the SMC can help to overcome this weakness
and provide a more robust controller [24]. Additionally, this hybrid structure reduces the
adverse effects of chattering of SMC and applies less control effort compared with SMC [25].
Double integral sliding mode control (DISMC) is another recent approach for dealing with
nonlinear systems. According to the mathematical theory, DISMC basically constructs
the sliding surface using double integral terms [26]. DISMC is used to eliminate the
steady-state errors [26], and to provide a fast response with better performance for system
uncertainty [27]. Here, for improving the performance of IM vector control (fast response,
fewer steady-state errors, and robust performance in the existence of uncertainty), a new
control scheme is suggested. Figure 1 shows the architecture of the designed controller
using the integral back-stepping of Jia et al. [24], and the double integrator sliding mode
controller of Qureshi et al. [26].
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2.1. Presentation of the Analytical d-q Model of the Induction Machine

The mathematical model of IM in the (d, q) frame [28] is given by the following:

disd
dt

= αisd + βψd + pΩisq + γi2sq/ψd + ausd (1)

disq

dt
= αisq − cpΩψd − pΩisd − γisqisd/ψd + ausq (2)

dψd
dt

= δψd + γisd (3)

J
dΩ
dt

= Te − TL (4)

Te = Jϑψdisq (5)

where usd and usq are the stator voltages. isd and isq denote the stator currents. ψd represents
the rotor flux. Ω stands for the motor mechanical speed. TL and Te are the load and
electromagnetic torques. The parameters of Equations (1)–(5) are given as follows:

σ = 1− L2
sr

Ls Lr
, α = −

(
aRs + c Lsr

Tr

)
, a = 1

σLs
, c = 1−σ

σLsr
,

Tr =
Lr
Rr

, β = c
Tr

, γ = Lsr
Tr

, δ = −1
Tr

, ϑ = pLsr
JLr

Rs and Rr are stator and rotor resistances. Ls, Lr, and Lsr are, respectively, stator, rotor
and mutual inductances. p is the number of pole pairs and J is the moment of inertia.

2.2. Suggestion

Based on the (d, q) model of the IM, an integral back-stepping double integrator
sliding mode controller (IBS-DISMC) is designed. The next subsection will be devoted to
explaining the proposed controller.

2.3. Integral Back-Stepping Double Integrator Sliding Mode Controller

IBS-DISMC uses the following tracking errors of rotor flux and speed:

e1 = ψd_re f − ψd +
∫ (

ψd_re f − ψd

)
dt (6)

e2 = Ωd_re f −Ωd +
∫ (

Ωd_re f −Ωd

)
dt (7)

Here, ψd_re f and Ωd_re f are, respectively, the desired values of rotor flux and speed.
The time derivative of (6) and (7) can be calculated as follows:

.
e1 =

.
ψd_re f − δψd − γisd + ψd_re f − ψd (8)

.
e2 =

.
Ωd_re f − ϑψdisq +

TL
J
+ Ωd_re f −Ωd (9)

Considering the Lyapunov function V1 = 0.5e2
1 + 0.5e2

2, and its derivative
.

V1 = e1
.
e1 + e2

.
e2,

.
e1 and

.
e2 can be computed as follows:

.
e1 = −k1e1 and

.
e2 = −k2e2

to guarantee the system stability, i.e.,
.

V1 < 0. Here, k1 and k2 are positive constants.
Considering the above discussion, the following control laws can be obtained:

isd_re f =
1
γ

(
k1e1 +

.
ψd_re f − (1 + δ)ψd + ψd_re f

)
(10)

isq_re f =
1

ϑψd

(
k2e2 +

.
Ωre f +

TL
J
+ Ωre f −Ω

)
. (11)

To design the reference voltages, the following double integral sliding surfaces are considered:

s1 =
(

isd_re f − isd

)
+ k3

∫ (
isd_re f − isd

)
dt + k4

∫ {∫ (
isd_re f − isd

)
dt
}

dt (12)
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s2 =
(

isq_re f − isq

)
+ k5

∫ (
isq_re f − isq

)
dt + k6

∫ {∫ (
isq_re f − isq

)
dt
}

dt (13)

Here, k3, k4, k5, and k6 are positive constants. The derivative of the above sliding
surfaces can be expressed as follows:

.
s1 =

disd_re f

dt
− fd − ausd + k3

(
isd_re f − isd

)
+ k4

∫ (
isd_re f − isd

)
dt (14)

.
s2 =

disq_re f

dt
− fq − ausq + k5

(
isq_re f − isq

)
+ k6

∫ (
isq_re f − isq

)
dt (15)

where:

fd = αisd + βψd + pΩisq + γi2sq/ψ and fq = αisq − cpΩψd − pΩisd − γisqisd/ψd.

After solving the sliding mode condition
.
s1 = 0 and

.
s2 = 0 for input signals usd and

usq, the equivalent control laws usd_eq and usq_eq can described as follows:

usd_eq =
1
a
(

disd_re f

dt
− fd + k3(isd_re f − isd) + k4

∫
(isd_re f − isd)dt) (16)

usq_eq =
1
a
(

disq_re f

dt
− fq + k5(isq_re f − isq) + k6

∫
(isq_re f − isq)dt) (17)

The mathematical forms of the discontinuous control laws are defined as follows:

∆u1 = ks1sgn(s1) and ∆u2 = ks2sgn(s2)

In addition, using Equations (16) and (17), we can finally deduce the control laws usd
and usq of IBS-DISMC as follows:

usd = usd_eq + ∆u1 and usq = usq_eq + ∆u2

usd = [
1
a
(

disd_re f

dt
− fd + k3(isd_re f − isd) + k4

∫
(isd_re f − isd)dt)] + ks1sgn(s1) (18)

usq = [
1
a
(

disq_re f

dt
− fq + k5(isq_re f − isq) + k6

∫
(isq_re f − isq)dt)] + ks2sgn(s2) (19)

To check the stability of the suggested controller, the following Lyapunov positive
function is defined as follows:

V = 0.5e1
2 + 0.5e2

2 + 0.5s1
2 + 0.5s2

2 (20)

Its derivative is given by the following:
.

V = e1
.
e1 + e2

.
e2 + s1

.
s1 + s2

.
s2. (21)

From the conditions in which the integral back-stepping control laws were established
i.e.,

.
e1 = −k1e1 and

.
e2 = −k2e2, and using (14) and (15), Equation (21) becomes as follows:

.
V = −k1e1

2 + k2e2
2 +s1(

disdre f
dt − fd − ausd + k3

(
isdre f

− isd

)
+ k4

∫
(isd_re f − isd)dt)

+s2(
disq_re f

dt − fq − ausq + k5(isq_re f − isq) + k6
∫
(isq_re f − isq)dt)

(22)

Compensating the control laws usd and usq, given in (16) and (17), into (22), the
derivative of Lyapunov function can be reformulated as follows:

.
V = −k1e1

2 + k2e2
2 − aks1 |s1| − aks2 |s2| (23)

where k1, k2, a, ks2 , and ks1 are positive constants. Therefore, the derivative of Lyapunov
function given by (23) is negative. Indeed, this ensures the stability of the suggested
controller. In addition, to estimate the rotor flux ψd, which is required in the control
algorithm, the following equation is used and implemented:

dψ̂d
dt

= δψ̂d + γisd (24)

Figure 1 illustrates the diagram of the suggested (IBS-DISMC), where main equations
given above are implemented.
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2.4. Simulation and Validaton

The performance of the suggested control strategy IBS-DISMC is performed in healthy
operation mode and compared using the BSC approach reported in [13]. The physical
parameters and the parameters of both controllers are respectively given in Tables 1 and 2.
For a chosen velocity profile and an applied step load torque of 2 Nm at t = 0.8 s, a simulation
is carried out in closed loop. Figure 2 shows the response velocity of the suggested IBS-
DISM and the BS controllers. Indeed, the velocity response using IBS-DISMC tracks the
reference velocity with a very small steady-state error compared with the BSC.

Table 1. The parameters of the IM machine.

Parameters Values

Rated output power Pn = 1.2 kW
Rated speed N = 1440 tr/min

Rated voltage Vn = 220 V
Rated current In = 6 A

Stator resistance Rs = 1.8 Ω
Rotor resistance Rr = 1.3 Ω

Stator inductances Lls = 0.142 mH
Rotor inductances Llr = 0.076 mH

Number of pole pairs p = 2
Inertia load J = 0.012 kg·m2

Viscous coefficient f = 0.004 Nm/s

Table 2. The parameters of the reported approaches.

Item Parameters

BS Controller kbsc1 = 700, kbsc2 = 170, kbsc3 = 700, kbsc4 = 170

IBS-DISMC k1 = 700, k2 = 170, k3 = 1200, k4 = 2200,
k5 = 120, k6 = 600, and ks1 = ks2 = 20

EKF
Q =


1.533 e− 12 0 0 0 0

0 1.533 e− 12 0 0 0
0 0 1.873 e− 8 0 0
0 0 0 1.873 e− 8 0
0 0 0 0 67 e− 1


R =

[
1 0
0 1

]
SMO ksmo1 = 120 and ksmo2 = 20
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Figure 2. Velocity responses of the induction machine using BSC and IBS-DISMC.

In addition, a simulation is carried out to test the performance of both controllers
in the presence of parameter variations, such as a variation of the IM stator winding
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resistance. Figure 3 presents the response velocities with the stator resistance variation
of +25%. Indeed, the IBS-DISMC is quite insensitive to a large change in the machine
resistance compared with the BSC.

Energies 2022, 15, 3084 7 of 20 
 

 

 

Figure 2. Velocity responses of the induction machine using BSC and IBS-DISMC. 

In addition, a simulation is carried out to test the performance of both controllers in 

the presence of parameter variations, such as a variation of the IM stator winding 

resistance. Figure 3 presents the response velocities with the stator resistance variation 

of +25%. Indeed, the IBS-DISMC is quite insensitive to a large change in the machine 

resistance compared with the BSC. 

 

Figure 3. Velocity responses of the induction machine using BSC and IBS-DISMC for a stator 

winding resistance change of +25%. 

Table 1. The parameters of the IM machine. 

Parameters  Values 

Rated output power Pn = 1.2 kW 

Rated speed N = 1440 tr/min 

Rated voltage Vn = 220 V 

Rated current In = 6 A 

Stator resistance Rs = 1.8 Ω 

Rotor resistance Rr = 1.3 Ω 

Stator inductances Lls = 0.142 mH 

Rotor inductances Llr = 0.076 mH 

Number of pole pairs p = 2 

Inertia load J = 0.012 kg·m2 

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Time(s)


m

e
s
(r

a
d

/s
)

 

 

2.9778 2.9778 2.9778

61.7

61.8

61.9

62

5.0805 5.081 5.0815

101.5

102

0.75 0.80.85 0.90.95

1

2

3

Proposed

BS controller

Ref

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

Time(s)


m

e
s
(r

a
d

/s
)

 

 

4.6118 4.6118 4.6119 4.612 4.612
101.9

102

Proposed

BS controller

Ref

Figure 3. Velocity responses of the induction machine using BSC and IBS-DISMC for a stator winding
resistance change of +25%.

3. Velocity Observers Design

Using observers for estimating the variable states of AC machines can be very useful.
Interestingly, they act like redundant sensors which can be used in case of faults on analog
or digital velocity sensors. Indeed, using observer increases the safety operation and
reliability [28] and reduces both the cost maintenance and the machine size. In this study,
an extended Kalman filter (EKF) and a sliding mode observer (SMO) are used to estimate
the velocity of the IM. Both are designed using the analytical model of IM in the (α, β)
reference frame. Therefore, the subscripts α and β are added to the stator currents, fluxes,
and voltages. In the next subsections, the mathematical structure of both observers will be
studied. Additionally, discussions about why two observers are used will be highlighted.

3.1. Extended Kalman Filter

The EKF has been considered as a common estimation approach to estimate the
velocity of the IM. Its algorithm consists of the following three steps: the prediction of the
state vector, the Kalman filter gain computation, and the estimation of the state vector [7,29]:

Step one: Prediction
xp

k = Fx̂k−1 + Buk−1 (25)

Pp
k = FPk−1FT + Q (26)

Step two: Kalman filter gain calculation

Kk = Pp
k HT(HPp

k HT + R)
−1

(27)

Step three: State vector estimation at time (k)

x̂k = xp
k + Kk

(
yk − Hxp

k

)
(28)

P̂ = (l − Kk H)Pp
k (29)

Here, xk = [ isα isβ ψrα ψrβ Ω ]
T , uk = [ usα usβ ]

T , and yk = [ isα isβ ]
T .

Q and R are the covariance matrix of state vector and the covariance matrix of measured
output noise, respectively. F, B and H are given as follows [4,24]:
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F =


a11 b11 a12 b12 f1
−b11 a11 −b12 a12 f2
a21 b21 a22 b22 f3
−b21 a21 −b22 a22 f4

0 0 0 0 1

, B =


a1 0
0 a1
a2 0
0 a2
0 0

, H =

[
1 0 0 0 0
0 1 0 0 0

]

a11 = 1 + αTs +
(
α2 + βγ

)
T2

s /2

a12 = βTs(1 + (α + δ)Ts/2) + cΩ2Ts
2/2

a21 = γTs(1 + (α + δ)Ts/2)

a22 = 1 + δTs +
(
δ2 + βγ

)
Ts

2/2−Ω2Ts
2/2

b11 = cγΩTs
2/2 = −cb21

b12 = (cTs(1 + (α + δ)Ts/2)− βTs
2/2)Ω

b21 = −γΩTs
2/2

b22 = (−Ts + (cγ− 2δ)Ts
2/2)Ω

a1 = αTs(1 + αTs/2)a2 = αγTs
2/2

f1 = 0.5cγTs
2x2(k) + cTs

2x5(k)x3(k) + (cTs(1 + (α + δ)Ts/2)− βTs
2/2)x4(k)

f2 = −0.5cγTs
2x1(k) + cTs

2x5(k)x4(k)−
(

cTs

(
1 + (α+δ)Ts

2

)
− βTs

2

2

)
x3(k)

f3 = −0.5γTs
2x2(k)− Ts

2x5(k)x3(k) + (0.5(cγ− 2δ)Ts
2 − Ts)x4(k)

f4 = 0.5γTs
2x1(k)− Ts

2x5(k)x4(k)− (0.5(cγ− 2δ)Ts
2 − Ts)x3(k)

In the above equations, Ts corresponds to the sampling time.

3.2. Sliding Mode Observer

A SMO is used to estimate the rotor velocity. Its algorithm can be easily implemented,
and it has good performance even with process disturbance. Figure 4 gives the structure of
the sliding mode observer to estimate the rotor velocity of the IM from the measured stator
currents and voltages [30,31]:
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The structure of the SMO given in Figure 4 is based on the following equations:
Stator flux:

.
ψ̂sα = usα − Rsisα − Ksmo1Λsα (30)
.
ψ̂sβ = usβ − Rsisβ − Ksmo1Λsβ (31)
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Rotor flux:
.
ψ̂rα = γisα + δψ̂rα −ωrψ̂rβ + Ksmo2Λsα (32)
.
ψ̂rβ = γisβ + δψ̂rβ + ωrψ̂rα + Ksmo2Λsβ (33)

Stator currents:

îsα = (1/σLs)ψ̂sα − ((1− σ)/(σLrs))ψ̂rα (34)

îsβ = (1/σLs)ψ̂sβ − ((1− σ)/(σLrs))ψ̂rβ (35)

Estimated velocity:

ω̂r =
1

ψ̂rd
2

( .
ψ̂rβψ̂rα −

.
ψ̂rαψ̂rβ

)
− Lrs

Tr

isq

ψ̂rd
(36)

where,

Λsα = sign
(
îsα − isα

)
, Λsβ = sign

(
îsβ − isβ

)
, and ψ̂rd =

√
(ψ̂rα)

2
+ (ψ̂rβ)

2. Ksmo1 and Ksmo2
are positive constants.

3.3. Simulation and Validation

Simulations are performed to evaluate the performance of the two observers, EKF
and SMO, for all the velocity operating ranges with a nominal load. Figure 5 shows the
performance of the two observers at low-velocity ranges. It is clear from the figure that
EKF loses its observability at zero velocity, while SMO is stable at the same velocity.
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Figure 5. Estimated speed of EKF and SMO at low-velocity operation range.

Similarly, Figures 6 and 7 show, respectively, the estimated velocity response of the
IM using EKF and SMO at medium- and high-velocity operation ranges. Indeed, we can
notice that EKF has a better performance compared with SMO. Figure 6 shows that EKF
has no steady-state error and no overshot even with a velocity setpoint change, while in
Figure 7, SMO suffers from overshoots and chattering. This phenomenon could be more
important under process and sensor noises at high-velocity operation ranges. According
to the above performance evaluation of EKF and SMO, the proposed FTC will use SMO
for estimating low-range velocities, while it will use EKF for estimating medium- and
high-range velocities. Both observers will only operate in faulty conditions. To clarify this
point, the velocity physical sensor will be active for all the velocity operation ranges in
healthy operation mode. On the other hand, SMO will be active at low-velocity operation
ranges, and EKF at medium- and high-velocity operation ranges in faulty operation mode.
A voting algorithm will be used to discover the faulty conditions and, accordingly, select
either the physical velocity sensor or one of the two virtual observers to operate. It is also
important to mention that the failure in the velocity sensor of the IM machine is assumed
to be due to cable disconnection or power supply failure.
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Figure 7. Estimated velocity response using of SMO at medium- and high-velocity operation ranges.

4. Fault-Tolerant Controller

The fault-tolerant control strategy suggested in this paper consistently maintains good
performance of the velocity response in faulty operation mode using EKF and SMO. This
combination is based on a voting algorithm that allows the selection of the best observer in
faulty operation mode or the velocity sensor in healthy operation mode. Two approaches
of voting algorithms are proposed and developed:

4.1. Neural Voter Algorithm

The key idea of the proposed neural voter (NV) is its ability to distinguish between
healthy and faulty cases without the requirement of a predefined threshold value which
directly affects the voter performance. The structure of the suggested voter is shown
in Figure 8. The NV has four inputs and one output. Three of these inputs represent
the distances obtained by calculating the difference between the estimated velocity of
observers and the measured velocity as d12 =

∣∣Ω̂SMO − Ω̂EKF
∣∣, d13 =

∣∣Ω̂SMO −Ωmes
∣∣,

and d23 =
∣∣Ω̂EKF −Ωmes

∣∣, respectively. These distances have the key feature of becoming
relatively close to zero in the absence of fault, while they greatly differ from zero in the
presence of fault. Thus, the neural voter could easily differentiate between normal and
faulty operation modes. The fourth input of NV is the measured velocity. The output of
NV is the fault indicator (FI) which takes two values, one or two, to indicate the healthy or
the faulty operation mode.
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The NV is trained to distinguish between healthy and faulty modes based on its
previous training. The flowchart shown in Figure 9 presents the design phases of the NV,
which diagnoses the mechanical sensor failure and selects the appropriate velocity from
the two observers. In the first stage, the training samples, which are the vectors of the
distances (d12, d13, d23) and Ωmes, are generated in healthy and faulty modes for different
values of velocities (2 rad/s, 5 rad/s, 10 rad/s, 20 rad/s, 70 rad/s, and 110 rad/s). In total,
12 scenarios will be used to train the neural network. For example, Figure 10 shows the
selected training samples over the whole distance, d23, in a faulty and healthy situation.
Here, these samples are selected according to a defined step.
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Figure 9. The flowchart of the NV.

The size of samples is reduced to increase the efficiency of the neural network and to
reduce the training time. In the second stage, the neural network is trained to differentiate
between normal and abnormal conditions. Here, the target vector is assumed to have
two values, one for a healthy sensor and two for a faulty sensor. The performances of
different neural networks were evaluated in the third stage by checking the sum of squared
error between the training and target vectors. As a result, the multilayer feed-forward
back-propagation neural network with 2 layers (20 neurons in the hidden layer and a single
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neuron in the output layer) is selected. The settings of the neural network are determined to
compromise between having small test errors and fewer computational burdens. Figure 11
shows the final structure of the neural network used.
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Figure 11. The structure of the multilayer feed-forward back-propagation neural network.

4.2. Fuzzy Voter Algorithm

The fuzzy voter uses fuzzy logic to produce the weights necessary for computing
a weight average voter output [19]. In this study, the fuzzy voter is suggested and imple-
mented in the structure of a sensor fault tolerant control for the IM machine. Its structure is
shown in Figure 12, where x1, x2, and x3 represent Ω̂SMO, Ω̂EKF, and Ωmes, respectively.

Figures 13–15 represent the membership functions defined for the inputs
d12 =

∣∣Ω̂SMO − Ω̂EKF
∣∣, d13 =

∣∣Ω̂SMO −Ωmes
∣∣ and d23 =

∣∣Ω̂EKF −Ωmes
∣∣, respectively.
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Figure 14. Membership functions for the distance d13.
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Figure 15. Membership functions for the distance d23.

According to the 3 inputs of the fuzzy voter, 27 fuzzy rules are defined for all the
velocity operation ranges of the IM. The outputs w1, w2, and w3 are defined as shown in
Figure 16 by membership functions.
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Figure 16. Membership functions for the outputs w1, w2 and w3.

Finally using the following mathematical function, the final output of the fuzzy voter
is computed:

y =

3
∑

i=1
wi·xi

3
∑

i=1
wi

(37)

Indeed, this value allows one to select SMO, or EKF, or the velocity sensor according
to the operation mode and the operation velocity range.

4.3. Fault-Tolerant Control Structure

The structure of the FTC, as shown in Figure 17, is based on the combination of
the proposed controller IBS-DISMC, the two observers (EKF and SMO), and one of the
suggested voting algorithms. In healthy operation mode, only the velocity sensor output
is selected by the voting algorithm. However, in faulty operation mode and low-velocity
operation, only SMO output is selected and, at medium- and high-velocity operation ranges
only EKF, output is selected
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4.4. Simulation and Validation

The performance of the neural voting algorithm is compared with the fuzzy voter
algorithm. Both voting algorithms are implemented separately using the FTC structure in
Figure 17, where the detailed diagram of the IBS-DISMC controller was given in Figure 1.
The proposed FTC was validated using MATLAB SIMULINK. In this simulation, it is
assumed that the velocity sensor of the IM machine is temporarily disconnected due to
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cable disconnection or power supply failure. To evaluate the performance of both voters,
a scenario of successive failures in the form of intermittent sensor connection is created and
applied every two seconds. In addition, a load torque is applied at t = 0.8 s, with parameter
variations (the stator resistance increased by 15%).

Figure 18 shows the results of the FTC where the neural voter algorithm is used.
Figure 18A shows the velocity voted output of the proposed neural voter after applying
the fault signal given in Figure 18B which changes between 1 (no fault) and 0 (fault). Indeed,
in faulty operation modes, the neural voting algorithm isolates the fault and selects the
appropriate observer according to the velocity operation range. Figure 18C shows the response
velocity, where SMO is selected at low velocities and EKF at medium and high velocities.
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Figure 18. (A) The output of the proposed voting algorithm, (B) Applied fault signal, (C) Selected
speed (1: sensor, 2: SMO, 3: EKF).

Similarly, Figure 19 shows the simulation results of the FTC where the fuzzy voter
algorithm is used. Figure 19A shows that FV identifies failures, but it mixes between the
estimated speeds of both observers at medium- and high-velocity ranges. This is mainly
due to the evaluation of the mathematical relation given in (37), where the voter output is
generated after the defuzzification of all the inputs.
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Figure 19. (A) The output of the fuzzy voting algorithm, (B) The applied fault signal, (C) The weights
of the fuzzy voter.
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Therefore, the neural voter has significantly improved the performance, compared to the
fuzzy voter. Indeed, NV does not merge the estimated velocities, and its feasibility has been
proven in case of a sensor failure. In addition, NV does not require the setting of a threshold,
while the fuzzy voter requires adjusting numerous numbers of thresholds (membership
functions). Figure 20 represents the three phase stator currents where neither oscillations nor
spikes are observed during the switching modes of the neural voter algorithm.
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5. Conclusions

The proposed fault-tolerant control strategy has the potential to improve the perfor-
mance of the induction machine and increase the reliability and safety of both healthy and
faulty operation modes. The suggested structure of FTC is based on the combination of
a vector controller, two observers, and a voting algorithm, which selects the appropriate
estimated velocity of the SMO and EKF observers in case of a mechanical sensor failure.
The FTC was developed by incorporating a new controller and a new voting algorithm.
Simulation results show that the proposed controller has greater performance relative to
the BS controller. Additionally, these results ensure that the proposed voting algorithm
offers better performance compared to the fuzzy voter. Indeed, the proposed voter based
on artificial intelligence overcomes the difficulty of setting the voter threshold correctly.
Moreover, it only selects a single input to generate the voter output. On the other hand,
the fuzzy voter produces its output by averaging its inputs. This means that the faulty
sensor still contributes to the voter output, and this may lead to an unstable system in
a real-time scenario. In addition, it requires the adjustment of multiple thresholds, which
is time-consuming. For future studies, this work will be followed by an experimental
validation on an existing test bench of an induction machine. Additionally, the effects of
unbalance currents and voltages on the accuracy of estimated velocities by the SMC and
EKF will be investigated. Moreover, reducing the chattering of the SMO will be the core of
our future works.
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