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Abstract: Nonlinear characteristics of a battery energy storage system (BESS) may cause errors in
the stored energy between the operation plan and the actual operation. These errors may hinder the
reliability of the power system especially in environments such as microgrids with limited power
generation resources and high uncertainty. This study proposes a method to alleviate the occurrence
of such errors in the charging/discharging scheduling process of the BESS by piecewise linearizing its
nonlinear characteristics. Specifically, the stored energy in a BESS that changes nonlinearly according
to the size of the charging/discharging power was modeled using the special ordered set of the type
2 (SOS2) method. The proposed model and the typical BESS-operation models with constant power
conditioning system (PCS) input/output power efficiency were applied to the unit commitment
(UC) problem in a microgrid environment, and the results were compared with the actual operation
results. The proposed model operated similarly to the actual operation compared to the typical
model, reducing the error in charging/discharging energy. Consequently, the proposed model was
made cost-effective by reducing the cost of error correction and reduced the risk of deviating from
operating range of the BESS. This study demonstrates that the proposed method can efficiently solve
the operational problems caused by the nonlinear characteristics of BESS.

Keywords: battery energy storage system (BESS); microgrid; mixed-integer linear programming
(MILP); piecewise linearization; special ordered set of type 2 (SOS2)

1. Introduction

BESSs have been used as useful power sources over the years. With the increase in
renewable energy generation, BESS is being discussed more actively from an operational
point-of-view regarding the reliability and economy of the grid. BESSs are being utilized as
major resources, especially in small-scale microgrids, wherein resources are limited and
require more accurate operational scheduling. Because the microgrid is associated with
a small load and comprises a small number of generators, it may be more sensitive to
changes in the renewable energy output or system faults [1]. In addition, if it is connected
to the main grid, the risk associated with the case in which no power is received (owing to
an external problem) should be considered. For these reasons, BESSs in microgrids have
become more important than those in large power systems.

Various studies have reported on the use of BESSs in microgrids. In [2], BESS was
presented as one of the means for reducing the peak load. BESS charges during the off-peak
time period, and discharges during the peak-time period to reduce the peak load. BESS has
also been studied as a way to stabilize the system risk from intermittent renewable energy
generation [3]. In addition, various previous studies exist on this topic, such as a study
which presented a method by which to control the frequency and voltage fluctuations of a
microgrid using a BESS [4,5].

Previous studies focused on the purpose of using a BESS in a microgrid situation,
in which the proportion of BESS resources is large. Most of these previous studies assumed
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that the mathematical model of the BESS itself was a simple linear model that could be used
to reduce the complexity of the operation. However, this simple model cannot accurately
reflect the losses that occur nonlinearly in the actual BESS charging/discharging process.
As a result, when the charge/discharge schedule of the BESS derived from the optimization
model is implemented, an error occurs pertaining to the stored energy in the BESS. This
error can lead to situations in which actual physical operation is impossible in microgrids
with limited available resources.

To solve this problem, previous studies that focused on the nonlinear characteristics of
the charging/discharging efficiency of the BESS are examined in this study. These studies
and their findings are applied to the charging/discharging scheduling problem of BESS.
Specifically, the mathematical optimization model of the BESS is elaborated on by lineariz-
ing the input/output power curve of the BESS PCS by using SOS2 and by reflecting the
loss in the idle state.

2. Previous Studies

Studies of various mathematical models have been conducted to reflect the physical
characteristics of BESS charging/discharging in scheduling problems. First, the stored
energy soet in the battery is calculated as follows:

soet = Et f
t + Ech

t − Edis
t (1)

At this time, the stored energy soet in the battery is calculated by the relation between
the transferred energy from the previous time Et f

t and the charging and discharging energies
at the present time Ech

t and Edis
t , respectively. Several methods have been studied for the

calculation of Et f
t , Ech

t , and Edis
t .

A method exists for the calculation of the relationship between the charging/discharging
energies and the stored energy through efficiency [6]. The efficiency of the BESS should
also be considered when applying the BESS with generators to the system. The amount
of energy charged/discharged in the system differs from the amount of energy stored in
the battery, which can be expressed in the form of efficiency. The efficiency of a BESS is
typically divided into the following three categories: rate of self-discharge γs over time,
charging efficiency γch, and discharging efficiency γdis. These are typically expressed by
their application to the constraints of the stored energy in a battery [7]. Accordingly, the
following equation can be used:

soet = γs soet−1 + γch Pt
chPt

dis/γdis (2)

The current stored energy in the battery soet is expressed by the relation between
the previously stored energy soet−1, the charging power Pt

ch, and the discharging power
Pt

dis. When applying the above equation as a constraint for the BESS, there are various
approaches to choose from to determine the efficiency.

The most basic method involves the application of constant values to efficiency dur-
ing all scheduling periods. The most frequently used method among them is the case in
which only the charging efficiency γch is considered as the turn-around efficiency without
considering the rate of self-discharge of battery γs and discharging efficiency γdis [2,8,9].
In the case of [10–13], a constant value was used to consider the charging efficiency γch

and discharging efficiency γdis during the scheduling period. This method is the simplest
and can be applied because there are no additional constraints on efficiency during the
scheduling period. In addition, this method has the advantage of being able to express
battery storage characteristics without significantly increasing the complexity of the simu-
lation, as it only requires a few simple linear constraints to solve complex UC problems.
However, applying a constant efficiency for all periods is disadvantageous owing to the
large difference from actual operation scenarios because the realistic characteristics of the
battery cannot be properly applied. Because the efficiency is calculated as a constant, even
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if the same energy is charged and discharged, an error occurs in battery energy storage
during actual operation that may cause problems in optimized scheduling management.

Meanwhile, previous studies have reported the physical characteristics based on
which the charging/discharging rates decrease according to the stored energy [14]. In [14],
a method was presented to add the physical properties of the storage state to the equation
for energy storage.

soet = γs·soet−1 + γch·Pch′
t − Pt

dis/γdis (3)

Pch′
t ≤ Pch

t (4)

Pch′
t ≤ Pch

t ·
Ecap − soet

Ecap − soeCC,CV (5)

Equation (3) applies a linear change in the charging energy according to the battery
storage state, in addition to the existing constant efficiency. That is, this equation represents
the physical characteristics of the battery for which the charging rate slows down as the
charging state approaches 100%. In Equation (5), Ecap represents the energy capacity of
the BESS, and soeCC,CV is the stored energy state of the battery used as a reference for
changes in the battery’s charging rate. In Equation (3), Pch′

t denotes the value to which the
aforementioned constraints are applied to according to Equation (2). Equation (4) indicates
that maximum charging is possible in all energy storage states. In cases in which the
battery storage state is soeCC,CV or higher, the charging energy gradually decreases as the
stored energy increases according to Equation (5). The charging rate in the model linearly
decreases from Pt

ch (when soet = soeCC,CV) to zero (when soet = Ecap). However, in this
model, only one other physical characteristic was added when the battery capacity exceeded
a certain value. In addition, with the exception of the applied physical characteristics, the
charging/discharging efficiency used a constant efficiency so that the model might differ
from the actual operation.

Previous studies were represented by a linear model. However, the physical char-
acteristics of the actual BESSs are nonlinear, and some studies reflect these nonlinear
characteristics. The case in which the efficiency of nonlinearity was considered can be con-
firmed in [15]. The efficiency function of a BESS consists of a sum of the following three
parts: storage state soet, Ft

ch and Ft
dis. Among them, Ft

ch and Ft
dis are expressed as func-

tions with temperature T, Pt
ch, Pt

dis and as variables. If the function is used, a more accurate
result can be obtained than when compared to that of a linearly approximated model. This
is because a more accurate efficiency calculation is possible in the low-efficiency interval.
The basic equation is expressed as follows:

soet = γs·soet−1 + Fch
t

(
Pch

t , soet−1, T
)
− Fdis

t

(
Pdis

t , soet−1, T
)

(6)

However, dynamic programming was used to find the optimal solution of nonlinear
Equation (6) in [15]. Therefore, the method of [15] has the problem that it is difficult to
apply the proposed ESS model to other MIP-based scheduling optimization problems such
as UC.

3. Modeling

This section describes the process used to mathematically model the nonlinear charac-
teristics of a BESS and these characteristics are applied to a mixed integer linear program-
ming (MILP)-based UC model. First, an SOS2 model, which is a mathematical method used
for the piecewise linearization of a nonlinear function, is described. A method that applies
the SOS2 model to the nonlinear characteristics of the BESS is then proposed. The last part
of this section examines how the BESS model, linearized based on the proposed SOS2, is
used in the UC problem in conjunction with other power generation sources.
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3.1. Special Ordered Set of Type 2

In the problem of power system scheduling, piecewise linearization is generally
applied to the objective function [16]. In this case, the linearization function is convex; thus,
it can be applied. Therefore, in this study, the SOS2 method was used to perform piecewise
linearization in a nonconvex function, such as the efficiency of the BESS. The SOS2 method
can proceed with linearization with a small number of variables and constraints, and has
the advantage of being numerically stable in the linearization process [17].

SOS2 is a general linearization method for nonlinear functions and is used to convert
nonlinear optimization problems into MILP forms. The value of the point at which the
slope change occurs is the change point, and SOS2 proceeds with piecewise linearization as
the sum of the weights of the change points at both ends of each interval. Figure 1 depicts
the process of expressing the piecewise linearization function f of the nonlinear function F
using the SOS2 method. As shown in Figure 1, the variable X, which exists in the interval
ui, can be calculated by using the near change points xi and xi+1 of the interval ui and their
weights wi and wi+1. Because f is linear in each interval, it can also be expressed as a linear
sum of the weights wi and wi+1, as shown in Figure 1. This SOS2 process is expressed by
Equations (7)–(11) as follows [18]:

X =
I

∑
i=1

(wi·xi) (7)

I

∑
i=1

wi = 1, (wi ≥ 0) (8)

f (X) =
I

∑
i=1

(wi·F(xi)) (9)

K

∑
i=1

ui = 1, (ui = 0 or 1) (10)

wi ≤ ui−1 + ui, (u0 = uI = 0) (11)
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Figure 1. Example of SOS2 application to function F.

First, if the number of divided intervals is set to K, the number I of the change
points whose slope changes, as shown in Figure 1, is set to K + 1. In Equations (7) and (8),
the variable X is calculated using the data xi and weight wi of each change point, as
shown in Figure 1. wi calculated using Equations (7) and (8) is applied to F(xi), sub-
stituting each change point xi, as shown in Figure 1, in Equation (9) to calculate F(X).
Equations (10) and (11) are constraints that only allow two change points to be used at both
ends of the interval where X exists. The binary variable ui is 1 if X exists within the interval.
Equation (10) allows for only one interval to be selected, and Equation (11) allows for only
wi at both ends of the selected interval to be used.
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3.2. BESS Operation Constraint

As described in Section 2, three efficiency values γs, γch, and γdis must be considered
to calculate the current stored energy of battery soet over time in accordance with the
charging/discharging powers Pt

ch and Pt
dis. In this study, the value of γs was constant and

was focused on modeling the nonlinearities of γch and γdis. The nonlinearities of γch and
γdis are mainly caused by the PCS battery characteristics. Figure 2 shows the PCS efficiency
curves of BESS as introduced in other studies [19–22].
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Figure 2. Typical Efficiency curves from [19–22].

As illustrated in Figure 2, it is common to have small values in low-power intervals
and relatively high values in high-power intervals. In this paper, to express the nonlinear
characteristics of γch and γdis, the mathematical model proposed in [23] and based on the
converter efficiency curve was modified and used as follows:

γch/dis
t = Gt(Pch/dis

t ) =
1

a
Pch/dis

t
+ b·Pch/dis

t + c
(12)

In conclusion, this research considered only changes in efficiency depending on the
input/output power changes during charging/discharging, with the exception of nonlin-
earities depending on external factors, such as temperature T and soe changes.

The method used to calculate the stored energy soet by applying the function G to
Equation (2) can be expressed according to Equation (13).

soet = γs·soet−1 + Pt
ch·Gt(Pt

ch)− Pt
dis/Gt(Pt

dis) (13)

In this case, an appropriate linearization process is required to apply the nonlinear
characteristics of the BESS to the MILP-based UC model in Equation (13). However, if
the function G is piecewise linearized based on the application of the SOS2 examined
in Equation (13), Ech

t includes the quadratic term of Pt
ch, and Edis

t includes the variable
according to Pt

dis in the denominator term. As a result, soet becomes a nonlinear con-
straint expressed by a fractional equation containing the quadratic terms of Pt

ch and Pt
dis.

To solve this nonlinearity problem, this study applied SOS2 to the charging/discharging
energies Ech

t and Edis
t expressed as Pch

t ·G(Pch
t ) and Pdis

t ·G(Pdis
t ), respectively, rather than

in terms of the function G in Equation (13). Figure 3 shows the nonlinear functions Ft
ch

and Ft
dis of charging/discharging energies Ech

t and Edis
t , which change according to the

charging/discharging powers Pt
ch and Pt

dis, respectively.
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To apply Equations (7)–(11) of SOS2 presented in Section 3.2 to the BESS, the variable
X, nonlinear function F, and change point xi shown in Figure 1, need to be changed to
charging/discharging power Pt

ch/Pt
dis, charging/discharging energy function Ft

ch/Ft
dis,

and change point Pt
point. The other linearization processes are the same as those represented

by Equations (7)–(11). Finally, the linearization notation for the charging energy function
Ft

ch is as follows:

Pch
t =

I

∑
i=1

(wi,t·P
point
i ) (14)

I

∑
i=1

wi,t = 1, (wi ≥ 0) (15)

f ch
t (Pch

t ) =
k

∑
i=1

(wi,t·Fch
t (Ppoint

i )) (16)

K

∑
i=1

uinterval
i,t = 1, (uinterval

t = 0 or 1) (17)

wi,t ≤ uinterval
i−1,t + uinterval

i,t , (uinterval
0,t = uinterval

I,t = 0) (18)

The discharging energy function Ft
dis can be linearly expressed as the same as the

charging energy function Ft
ch, as in Equations (14)–(18).

3.3. Unit Commitment

In this study, the constraints of commonly used UC models were used. The objective
function of the UC model was to minimize the operating costs of the system. For operating
costs, the cost of the hourly power generation Pg,t of each generator alongside the fuel cost
C f uel and the start-up cost Cstart−up of the generators were considered together, as shown
in Equation (19). Herein, ustart

g,t is a binary variable used to denote the instant at which the
generator begins to operate.

min ∑
t∈T,g∈G

Pg,tC
f uel
g + Cstart−up

g ustart
g,t (19)

The following Equations (20)–(33) are constraints of the UC model used.

Dt − Pren
t = Pg,t + Pch

t − Pdis
t (20)

Pmin
g ·uono f f

g,t ≤ Pg,t ≤ Pmax
g ·uono f f

g,t (21)

Pg,t−1 − Pg,t ≤ RDg (22)
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Pg,t − Pg,t−1 ≤ RUg (23)

uono f f
g,t − uono f f

g,t−1 = ustart
g,t − ustop

g,t (24)

ustart
g,t + ustop

g,t ≤ 1 (25)

ustart
g,t +

t+MUg

∑
k=t+1

ustop
g,k ≤ 1 (26)

ustop
g,t +

t+MDg

∑
k=t+1

ustart
g,k ≤ 1 (27)

Equation (20) indicates that the power supplied at all times and the demand D must
match. This model considers renewable energy and a BESS. Therefore, the generated power
Pg,t, renewable power generation Pren

t , and the charging/discharging powers of BESS Pt
ch

and Pt
dis supplied per hour in Equation (20) are also considered.

Equations (21)–(27) are the constraints of the generator’s characteristics. The maximum
and minimum generation limits of each unit are imposed in Equation (21). Pmax

g and
Pmin

g are the maximum and minimum output of each generator, respectively. The binary

variable uono f f
g,t indicates the operating state of the generator. Equations (22) and (23) are

the constraints of the ramp up/down rates. The constraints are restricted by the use of the
difference in the power generation amount between timepoints t and t + 1, and RUg and
RDg are the maximum output amounts that can be ramped up or down for each generator.
Equations (24)–(27) impose the minimum up and down times for each unit, respectively.
Both ustart

g,t and ustop
g,t are binary variables of the starting-up and shutting-down signals of

each generator, respectively. In Equations (26) and (27), MUg and MDg means minimum
up and down time each generator.

Ecap·soemin ≤ soet ≤ Ecap·soemax (28)

soe0 = Ecap·soeinit (29)

soe f in = Ecap·soe f in (30)

Pch
t ≤ Pch,max·uch

t (31)

Pdis
t ≤ Pdis,max·udis

t (32)

uch
t + udis

t ≤ 1 (33)

Equations (28)–(33) are constraints in cases in which the BESS is applied to the UC
model. Equation (28) constrains the energy storage of the BESS to operate within a specific
range, i.e., it is defined for values greater or equal to soemin (%), and values less or equal to
soemax (%). Equations (29) and (30) constrain the initial and final conditions of the energy
storage using soeinit(%) and soe f in(%), respectively. Equations (31)–(33) constrain the charg-
ing/discharging power Pch,max and Pdis,max by using the operational status binary variables
uch

t and udis
t . The charging and discharging energies from the BESS is then calculated

using Equations (13)–(18), based on the SOS2 method. As an additional constraint, soet is
calculated using Equation (13) presented in Section 3.2. In addition, to calculate soet, the
charging energy Ech

t represented by the nonlinear function Ft
ch and the discharging energy

Edis
t represented by the nonlinear function Ft

dis are calculated using Equations (14)–(18)
based on SOS2.

4. Case Study
4.1. Scenario Data

To verify the effect of the proposed BESS-operation method, the following two BESS
modeling methods were applied to the same microgrid system to obtain the results.
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- Method I: assume that γs, γch, and γdis are constant
- Method II: proposed method using SOS2

In addition, Method I was subdivided into two methods according to the values of
γch and γdis to analyze diverse situations.

- Method I70: γch,γdis = 70%
- Method I80: γch,γdis = 80%

The microgrid for effectiveness verification consists of four diesel generators, solar
and wind power plants, and one BESS. The characteristics of the four generators and BESS
were obtained using data from a previous study [10]. Table 1 shows the characteristics of
the generators of the microgrid, and Table 2 lists the BESS characteristics for performing
Method I.

Table 1. Characteristics of thermal units.

Generator Unit Cost
[$/MWh]

Min–Max
Capacity [MW]

Min Up/Down
Time [h]

Ramp Up/Down
Rate [MW/h]

Start-Up
Cost [$]

G1 27.7 2–10 3 4 50
G2 39.1 1–5 3 3 20
G3 61.3 1–5 3 3 20
G4 65.6 0.8–3 1 2.5 5

Table 2. Characteristics of BESS.

BESS
Capacity [MWh]

Charging/
Discharging

Max Power [MW]

soet
Operation
Range [%]

Initial, Final
Target soet [%]

Charging/
Discharging

Efficiency [%]

Rate of
Self-Discharge

[%]

5 5 10–90 50 70, 80 99

Method II uses the same characteristics as the BESS used in Method I, but γch and γdis

are calculated and applied using the change points listed in Table 3.

Table 3. Change points of PCS efficiency curve.

Change Point Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 Point 8 Point 9 Point 10
γc,d = 0% 30.92% 54.16% 71.78% 79.99% 84.42% 88.43% 89.60% 87.89% 84.07%

Pt
ch,dis [MW] 0 0.1 0.25 0.5 0.75 1 1.5 2 3.5 5

Ft
ch(Pch

t ) [MWh] 0 0.031 0.135 0.359 0.600 0.844 1.326 1.792 3.076 4.204
Ft

dis(Pdis
t ) [MWh] 0 0.323 0.462 0.697 0.938 1.185 1.696 2.232 3.982 5.947

The efficiency value of the change points in Table 3 was obtained from [22], as shown
in Figure 2. Based on this data set, the coefficients a, b, and c of the nonlinear function G
introduced in Equation (12) were derived as 0.2326, 0.0477, and 0.9042 through curve fitting.
This fitted function G is plotted in Figure 4. To present the characteristics of the function
G assumed more efficiently above, the change point sets the interval more closely in the
low-output interval with a large change in value. At this time, as mentioned in Section 3.2,
the change point applies the nonlinear functions Ft

ch and Ft
dis as shown in Figure 3, and

not γch or γdis, to eliminate the nonlinearity problem.
In addition, scenarios of load and renewable-energy generation patterns were diver-

sified to determine the effects of the proposed change in method II depending on the
microgrid system status. In other words, to show various patterns, the actual load of PJM
Regional Transmission Organization (RTO) [24] in 2019 was scaled to match the microgrid
environment, wherein solar and wind power were assumed to be generated. The data
created are shown in Figure 5.
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Scenarios for each of the three data patterns on which the simulation was performed
were labeled A to C, sequentially. Scenario A is a pattern that is generally observed in
the spring of the PJM, and the load factor is high because of the small difference between
the peaks and off-peak instants. In addition, scenarios B and C have load patterns similar
to patterns observed in the summer, but exhibit differences in net load patterns owing to
differences in renewable energy generation. Accordingly, the case may be displayed. For
example, the codename “Case I–A” indicates that methods I and A are used to load data.
In the experiments, all case simulations were performed daily, and the length of each time
period was set to 1 h.

Based on the above data, all experiments were performed on an Intel Core 3.70 GHz
processor with 16 GB random access memory using Xpress-MP [25], which is a general-
purpose MIP solver.

4.2. Results

In this section, the results of each scenario were analyzed and verified by comparing
them with the results obtained when nonlinearity was applied. The charging/discharging
energy of the BESS calculated based on Methods I and II for each scenario yielded an error
with the actual value calculated based on function G. This error increased the uncertainty
regarding the energy available for power supply and the suppliable period. When the
BESS is operated in an actual power system to solve this problem, a separate mechanism is
required to correct the error between the planned and the actual soet schedules. The error
correction mechanism leads to additional BESS operation costs. However, because a clear
answer to the error-correction mechanism has not yet been presented, it is difficult to
quantify the costs. Therefore, in this study, it was assumed that this error correction
mechanism was not specified, and costs were consumed at a certain unit price to correct
the stored energy error for each time period that occurred in the BESS. The assumed error
correction unit price was determined to be $70/MWh considering the operating cost of the
G4 power source, which could be operated and stopped freely in the microgrid presented
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in Section 4.1. The overall cost and BESS operating pattern for each case calculated in this
way can be found in Table 4 and Figures 6–11, respectively.

Table 4. Overall cost and maximum Error in soet comparison of the three methods presented herein
during one day.

Scenarios Method I70 Method I80 Method II

A
Overall cost 100.7 100.5 100.0

Error correction costs 0.262 0.300 0.005
Maximum error of soet [MWh] 0.332 0.322 0.008

B
Overall cost 102.2 101.9 101.1

Error correction costs 0.431 0.526 0.019
Maximum error of soet [MWh] 0.587 0.322 0.026

C
Overall cost 106.7 106.3 105.2

Error correction costs 0.913 0.830 0.006
Maximum error of soet [MWh] 0.548 0.509 0.008
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The overall costs listed in Table 4 include error correction costs in the total generator
operating costs during the scheduling period. The error correction cost was calculated
based on considerations of the accumulated error between the error correction unit price
(approximately $70/MWh) defined earlier and the actual energy storage calculated by
function G. All the costs were scaled to 100, based on changing the overall cost of Case II–A
($10,844.5), which had the lowest overall cost during the scenario period. Based on scenarios
A, B, and C, the overall cost and error correction costs of Methods I and II gradually
increased. Method II had the lowest cost. The cause for this can be identified through
the BESS operation pattern. Figures 6–11 show the BESS operation pattern scheduled for
Methods I and II, and the BESS operation pattern calculated by function G.

Figure 6 illustrates that compared with Case I80–A, which uses 80% constant efficiency,
the soet result of Case I70–A is similar to the result obtained when the actual nonlinear
function is applied.

However, as shown in Table 4, Case I80–A did not generate a considerable error in
soet compared to the other cases. This is because the load factor (82.8%) of the net load in
Scenario A was high, which resulted in poor BESS utilization. In particular, in this situation,
the frequency of charging and discharging of the BESS decreased in the cases of methods I70
and I80 at a low, constant efficiency; thus, the actual result value and accumulated energy
error decreased. Conversely, Case II–A, in which method II was used, had a higher BESS
utilization than Case I–A. This is because the BESS operates in a high-efficiency output
interval by assessing the charging and discharging energy, as shown in Figure 7.
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Case I80–B is similar to the actual value of soet compared with the value obtained
in Case I70–B. This is attributed to the fact that the actual average charge power of Case
I80–B was approximately 0.71 MW and the discharge power was approximately 1.05 MW.
When this value is substituted in function G, the efficiencies are approximately equal to
79% and 85%. These values are close to 80%. Accordingly, it can be observed that even if a
constant efficiency is applied, a value that is similar to the actual result can be obtained.
However, in Case I70–B, the operating range at 06:00 a.m. is approximately 3% outside of
the upper limit of the operating range. This is because the actual charging/discharging-
energy efficiency according to the charging/discharging power was 70% or more. The soet
shown in Figure 8, is outside the upper operating range because the actual charging energy
increases during charging and the energy used during discharging decreases. The actual
charging/discharging energy is shown in Figure 9. This means that the optimal constant
efficiency varies depending on the system status. In addition, it can be observed that the
utilization of BESS increased compared with Scenario A which is presented in Figure 6.

In Scenario C, both Cases I70–C and I80–C, in which method I was used, were outside
the specified operating range. Because the efficiencies of 70% and 80% applied to Method I
are intermediate values of the nonlinear efficiency curve, errors may occur in both the upper
and lower limits of the soet operating range depending on the charging and discharging
powers. In Scenario C, the actual soet result of Method I70 in Figure 10 deviates from
5 MWh (BESS capacity) at 11:00 a.m. In addition, approximately 2.17 MWh is stored at the
last point; this value is approximately 13% smaller than the 2.5 MWh of Method I70. Case
I80–C also shows that errors can occur in both the upper and lower limits at 11:00 a.m. and
10:00 p.m. As shown in Figures 6–11, Scenario B has a higher utilization of BESS compared
with Scenario A. In addition, in terms of cost, there are many energy errors accumulated
at the same error correction unit price, thus resulting in an increase in the error correction
cost. In addition, Scenario C yielded a BESS utilization profile similar to Scenario B, but
the error correction cost increased because of the high BESS utilization in the low-power
interval, which was associated with a high level of error in energy storage.

Even if Method I is applied, the result may be similar to the actual value based on
function G if the constant efficiency is properly set according to the system environment.
However, it is virtually impossible to change the efficiency of BESS scheduling in real time
depending on the system environment. Therefore, an error occurs in the energy charged
and discharged from the BESS, and as a result, this problem increases the possibility of
soet being outside the predetermined operating range. This may affect the reliability of a
microgrid environment with a small number of thermal units. In addition, in terms of cost,
as the utilization of BESS increases, the error-correction cost increases. Moreover, it can be
observed that the error correction cost increases according to the charging/discharging
power even within a similar utilization range. This shows the inefficiency and inaccuracy
of Method I. However, in Figures 6–11, in all scenarios, Method II ensures a constant high
level of accuracy, and is the most advantageous in terms of cost. This means that it can be
applied regardless of the system status, and shows the high efficiency and usefulness of the
proposed Method II.

5. Conclusions

This study proposed a method to reflect the nonlinear characteristics of the BESS
charging/discharging efficiency during its operation. To achieve this, an optimization
model was established in which the nonlinearity of the PCS efficiency was linearized by
applying the SOS2 technique to the change in the charging/discharging energy. To verify
the effectiveness of the proposed method, it was compared with a BESS operation model
with a constant efficiency. For these comparisons, PJM data were selected on specific days
and scaled according to a microgrid environment to establish a daily microgrid operation
scenario. Each BESS operation model was applied to the generated scenarios to perform a
daily UC, and the derived daily microgrid operation results were analyzed by focusing on
operating costs and BESS charging/discharging patterns.
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From the simulation results, the proposed method was confirmed to reduce the error
between the planned and actual BESS schedule compared with the constant-efficiency
method. In particular, the proposed method maintained the BESS operation error at a
relatively small and constant level irrespective of the scenario, whereas the conventional
method with constant efficiency yielded considerable variations in the BESS operation
error depending on the scenario. In other words, the proposed method can reduce the
uncertainty of BESS operation and is effective in terms of system operation cost, including
the BESS error correction costs. Finally, to implement the actual system of the proposed
method, future work needs to consider the error correction cost mechanism of the BESS
operation error.
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