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Abstract: Solar energy has found increasing applications in recent years, and the demand will
continue to grow as society redirects to a more renewable development path. However, the required
high-frequency solar irradiance data are not yet readily available everywhere. There have been
endeavors to improve its forecasting in order to facilitate grid integration, such as with photovoltaic
power planning. The objective of this study is to develop a hybrid approach to improve the accuracy
of solar nowcasting with a lead time of up to one hour. The proposed method utilizes irradiance
data from the Copernicus Atmospheric Monitoring Service for four European cities with various
cloud conditions. The approach effectively improves the prediction accuracy in all four cities. In the
prediction of global horizontal irradiance for Berlin, the reduction in the mean daily error amounts to
2.5 Wh m−2 over the period of a month, and the relative monthly improvement reaches nearly 5%
compared with the traditional persistence method. Accuracy improvements can also be observed in
the other three cities. Furthermore, since the required model inputs of the proposed approach are
solar radiation data, which can be conveniently obtained from CAMS, this approach possesses the
potential for upscaling at a regional level in response to the needs of the pan-EU energy transition.

Keywords: solar radiation nowcasting; solar energy prediction; Markov chain models

1. Introduction

Global horizontal irradiance (GHI) is defined as the downwelling solar irradiance
observed at ground level on horizontal surfaces and integrated over the whole shortwave
spectrum. It is the sum of the direct and diffuse irradiances that come from the direction
of the sun and the rest of the sky, respectively [1]. Global solar irradiation data are crucial
for renewable energy applications. including the planning, monitoring, and forecasting of
photovoltaic (PV) systems. However, irradiation data are not readily available everywhere,
especially when meteorological stations are lacking in isolated areas [2]. Ngoko et al. [3] also
noted that historical solar radiation data taken at high sampling frequencies are unavailable
for many locations, thereby limiting some just-in-time applications for specific sites where
such data may not exist.

As with the majority of meteorological variables, a wide spectrum of forecasting
techniques find current application in solar radiation forecasting. One group of solar
forecasting methods consists of statistical solar forecasts based on irradiance time series [4]
or machine learning methods such as artificial neural networks (ANN) [5]. Another group
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includes physical methods, such as irradiance forecasting, using either cloud motion vectors
(CMV) [6] or numerical weather prediction. Both groups also extensively employ post-
processing methods, such as the use of model output statistics [5], quantile forecasts [7],
and ensemble prediction systems [8]. Statistical post-processing techniques learn error
patterns by comparing forecasts and observations in order to reduce the error in the final
prediction [9].

Surface solar radiation is highly variable, mainly driven by synoptic and local weather
patterns. While clear-sky irradiance is strongly influenced by atmospheric composition,
including aerosol and water vapor, all-sky irradiance changes with clouds, resulting in
a high fluctuation of solar radiation. Considering the variability of cloudiness and solar
irradiance, probabilistic techniques, such as Markov-chain-based methods, are widely used
in solar forecasting. For example, a homogeneous recurrent Markov process with discrete
states aided in predicting sunshine and cloud cover for Payern, Switzerland and Perth,
Australia [10]. Hocaoglu et al. [11] combined the Mycielski algorithm with a Markov chain
model to forecast hourly solar radiation from historical records for two regions in Turkey.
A Markov chain probability distribution mixture model was employed for the forecast of a
clear-sky index in Hawaii and Norrköping [12,13].

In addition to solar radiation forecasting, the synthetic generation of solar radia-
tion time series has also been of interest and can be found in some previous studies:
Poggi et al. [14] studied the stochastic properties of generated hourly total solar radiation
in Corsica, France using a Markov model following a shifted negative binomial distribu-
tion. Mellit et al. [2] used an ANN and Markov transition matrices for the generation
of daily global solar radiation data. Ngoko et al. [3] generated high temporal resolution
(1-minute) solar radiation data using Markov models, with inputs that included hourly
sea level pressure, wind speed, cloud-based height, and cloud cover for two locations in
Japan. Bright et al. [15] set up a Markov chain with hourly weather observation data for
cloud cover in Leeds, U.K. to generate minutely irradiance time series. Shepero et al. [16]
employed hidden Markov models with Gaussian observation distributions to generate
clear-sky index time series for two locations with different climate conditions (Hawaii
and Norrköping). Urrego-Ortiz et al. [17] proposed a Markov chain model for day-ahead
forecasting of hourly GHI in Medellín, Colombia.

Nowcasting systems correspond to the forecast of the short-term evolution of the
weather, specifically up to 6 h ahead [11]. It is important to provide information about
solar radiation availability in the next few hour(s) to facilitate solar energy management by
plant operators and grid operators. In this study, we propose a hybrid approach utilizing
several forecast techniques, including but not limited to the persistence ensemble and the
Markov chain, in order to increase the accuracy of solar radiation nowcasting. Combining
different models in a single entity is expected to leverage the strengths of both methods
while reducing their weaknesses.

2. Data

We use radiation data provided by the Copernicus Atmospheric Monitoring Service
(CAMS) radiation service because of its wide geographical coverage from −66◦ to 66◦ in
both latitude and longitude [18]. The CAMS radiation data are output using the Heliosat-4
method [19] and the McClear fast clear-sky model [1,20]. McClear utilizes aerosol properties
and the total column content of water vapor and ozone obtained from the CAMS model.
Aside from the solar zenith angle and the ground albedo, six other parameters describing
the optical state of the atmosphere are used as inputs to McClear look-up tables to estimate
downwelling shortwave radiation in cloudless conditions [20]: total column content of
ozone, total column content of water vapor, aerosol optical depth at 550 nm, aerosol mixture,
atmospheric profile, and elevation of the ground above mean sea level.

Previous studies have identified that interactions between clouds and radiation con-
tribute to the stochastic variations of GHI (e.g., [17]). Here, this study considers the cloud
modification factor (CMF), defined as the ratio of GHI in all-sky conditions to that in
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clear-sky conditions (GHICS), keeping the same atmospheric composition but assuming
the absence of clouds:

CMF =
GHI

GHICS
(1)

This measure is similar to the clearness index, which is a ratio of the solar radiation
recorded on the earth’s surface to extraterrestrial solar radiation. If CMF approaches 0, the
sky is cloudy, while a CMF value of 1 implies that there is a clear sky without clouds.

The data from CAMS are updated until two days prior to the instantaneous query
time. We take the time series with an interval of 15 min, extending from 1 February 2004 to
31 December 2020. Thanks to the wide coverage of CAMS data, we choose four cities in
Europe with different cloud conditions, listed in Table 1.

Table 1. Four chosen cities with their coordinates, long-term cloud modification factor (CMF,
mean ± standard deviation from 2004 to 2019), and mean absolute change of CMF from the previous
one time step to the present.

City Coordinates Long-Term CMF |∆CMF|
Athens 37.98◦ N, 23.72◦ E 0.787 ± 0.245 0.049

Bucharest 44.44◦ N, 26.08◦ E 0.693 ± 0.278 0.054
Berlin 52.52◦ N, 13.37◦ E 0.656 ± 0.267 0.067

Helsinki 60.19◦ N, 24.93◦ E 0.625 ± 0.267 0.063

The cities in Table 1 are listed in descending order of long-term average CMF. The last
column of Table 1 presents the mean absolute change of CMF from the previous one time
step to the present as a measure of cloudiness variability. Athens has comparatively low
variability in cloudiness, whereas Berlin has the highest variability among the four cities
and thus is the most difficult to predict. Figure 1 shows, as an example, the daily mean
insolation (GHI integrated during a day) for each month and the monthly mean CMF for
Berlin in 2020.

Figure 1. Daily mean global horizontal irradiation (GHI) for each month (orange bars, left axis) and
monthly mean cloud modification factor (CMF, blue curves, right axis) for Berlin in 2020. The results
for the other three cities can be found in Figure A1 in Appendix A.

We divide the CMF time series into three periods: the period from 2004 to 2018 for
fitting the transition matrix from historical occurrence (the training set), the year 2019 for
evaluating the error metrics of the prediction methods (the validation set), and the year
2020 for testing the performance of different prediction approaches (the test set), including
the implementation of the hybrid approach (see Section 3.5).
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3. Model and Methods
3.1. Quantitative Metrics

In this study, we adopt several commonly used metrics for the selection of model
parameters as well as accuracy assessment. First, the error of one data pair is defined as the
difference between the predicted (X̂i) and the actual value (Xi):

εi = X̂i − Xi (2)

Standard deviation is given by:

σ(ε) =

√√√√ 1
N

N

∑
i=1

(εi − ε)2 (3)

where N is the number of data pairs in the time series and ε denotes the mean error.
Pearson Correlation coefficient is defined as:

r = ∑N
i=1(X̂i − X̂)(Xi − X)

σ(X̂)σ(X)
(4)

where X̂ and X represent the mean values of the predicted and the actual time series,
respectively.

Mean bias error often simply referred to as bias, is given by

MBE =
1
N

N

∑
i=1

εi (5)

Mean absolute error is written:

MAE =
1
N

N

∑
i=1
|εi| (6)

Root mean square error is defined as:

RMSE =

√√√√ 1
N

N

∑
i=1

ε2
i (7)

3.2. Markov Chain

A discrete-time Markov chain (MC) describes the transition process of a discrete ran-
dom variable, where the probability distribution of the variable’s following state depends
on its previous observations. MC-based methods are frequently used for random variables
of finite state space [21]. A first order MC can be described by:

P(Xt|X0, . . . , Xt−2, Xt−1) = P(Xt|Xt−1) = qi1i0 (8)

where i1, i0 ∈ {1, . . . , m} is the finite set of values that the discrete-time random variable
takes. This formula describes that the probability of the future states of the random variable
depends only on the current state and not the ones that precede, which is referred to
as the Markov property. For all combinations of i0 and i1, a transition matrix can be
constructed that contains the conditional probabilities q of states at the next time step i1,
given the present state i0 as transition probabilities. Each row of the matrix is a probability
distribution summing to 1.

The order of the Markov process indicates the number of previous observations on
which the next state of the variable statistically depends. In an `-th order MC model, the
probability that the system will be in a particular state at time t depends not only on its
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state at time t − 1 but also on the states at times t − 2; t − 3; . . . ; t − `. For example, a
second order MC model can be expressed by:

P(Xt|X0, . . . , Xt−2, Xt−1) = P(Xt|Xt−2, Xt−1) = qi2i1i0 (9)

The transition probabilities can be estimated from the given set of observations by
counting the number of transitions ni` ...i0 and computing the conditional frequencies:

q̂i` ...i0 =
ni` ...i0

ni` ...i1+
(10)

where

ni` ...i1+ =
m

∑
i0=1

ni` ...i0 (11)

m is the number of discrete values of the random variable, and ` is the order of the MC.
Solar-radiation-derived CMF possesses the Markov property, which permits us to

predict solar radiation via an MC model. By computing the autocorrelation of CMF for
the training set in Berlin (Figure 2), we observe the significant serial correlation of CMF,
which is frequently seen in atmospheric variables. The autocorrelation of lag-1 declines
from about 0.9 to lower than 0.8 for lag-2 (30 min). These high values of autocorrelation
show the high dependence of the current state of the system on the previous 2 time steps,
which is a determent factor for the selection of the MC order (see Section 3.2.1). Regarding
the probabilities q of the CMF transitions, we assume them to be time-invariant. However,
this assumption may be affected by seasonal variations, as can be observed in the annual
course of monthly mean CMF in Figure 1. The test results for the assumption of time
homogeneity based on seasonal sub-sampling are provided in Appendix A.1. Since the
climatological conditions of different regions are not identical, the seasonal division suited
for Berlin might not be readily applicable to all other locations. To reduce the complexity
and retain the generality of the analysis, we do not construct the MC on a seasonal basis,
yet the seasonal perspective could be of interest to future studies in this direction. For
example, the consideration of periodicity in non-homogeneous Markov systems [22] and
sub-sampling by several terms within a year [23] are referred to in the literature.

Figure 2. Autocorrelation of CMF with time lags from 0 to 40 time steps for the training set (2004–2018)
in Berlin.

3.2.1. Categorization of CMF and Order Selection of MC

According to the definition of CMF in Section 2, it can take any value between 0 and
1. To apply CMF in the MC model, the continuous variable first needs to be discretized
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into several classes. The next step involves setting the number of class m, which reflects
a trade-off between the accuracy and complexity of the MC model. Figure 3 shows the
standard deviation of the second order MC prediction bias for Berlin in 2019. It ranges
from one to four time steps ahead in the year 2019, using different numbers for the CMF
class, from 5 to 40 classes in an interval of 5. While 40 classes deliver even lower biases, we
opt for 30 classes in order not to overfit the training set in case the classification generalizes
unsatisfactorily, for example, by being too specific to the historical record to be applied to a
later time.

Figure 3. Bias standard deviation of MC-based model with different numbers of classes for the
validation set (2019) in Berlin.

The categorization of CMF is implemented as follows: first, we categorize the training
CMF values into 30 classes, each having the same number of data points. Consequently,
the ranges of the CMF classes are not equal; there are larger (smaller) intervals for smaller
(higher) CMF values towards 0 (towards 1). We compute the mean CMF value within each
class, and these 30 representative values are used for the prediction in combination with
the transition matrix. Figure 4 displays the distributions of each CMF class for the three
Berlin data sets. The validation and test sets inherit their classifications from the training
set; thus, they do not have an equal number of data points in every class. Classes with very
high CMF values (clear sky) are in the majority throughout the whole period.

Figure 4. Distribution of CMF class for three data sets in Berlin: (a) training set for 2004–2018,
(b) validation set for 2019, and (c) test set for 2020.
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To evaluate the selection of the MC order `, we use the Akaike information crite-
rion (AIC):

AIC(`) = −2LL + 2m`(m− 1) (12)

where m = 30 and the log-likelihood of the time series LL is written:

LL =
m

∑
i`,... ,i0=1

ni` ...i0 ln(q̂i` ...i0) (13)

Table 2 lists the AIC of a 30-class MC for ` ∈ {1, 2, 3}. It can be seen that the AIC
favors the selection of a second-order-MC-based model.

Table 2. AIC of a 30-class MC for ` ∈ {1, 2, 3} using the training set in Berlin.

Order AIC [×106]

1 1.190
2 1.123
3 2.477

3.2.2. Temporal Extrapolation

Based on the results of AIC, we choose the order of the MC to be 2, and we distinguish
2 variants of predicting CMF values as follows.

Variant a From the validation or test set, we take 2 consecutive values as the observation
and compute the value at the next step from the pre-calculated transition matrix. Rather
than using a random sampling from a uniformly distributed variable, as elected in some
previous studies such as [14,17], we compute the prediction value X̂ by weighted mean at
the specific row (transition) in the transition matrix, i.e., by summing up the product of the
average of each CMF class Xi and the probability of each class qi:

X̂ =
m=30

∑
i2i1i0=1

qi2i1i0 Xi2i1i0 (14)

This predicted value is then set to be CMF at 1 to 4 time steps later. Figure 5 illustrates a
diagram discerning two variants of temporal extrapolation during a one-hour time window
from 9:00 to 10:00 in the MC-based model, for which the upper part specifies Variant a.
Figure 6 visualizes the prediction of the second-order-MC-based model using this variant
for the validation set in Berlin, with the horizontal axis representing the CMF class from
2 time steps earlier, and the vertical axis 1 time step earlier. The color in each cell denotes
the CMF value for the time step to be predicted. The CMF value at the current step closely
follows the range from CMF 2 time steps earlier, which indicates the memory of the system
we take advantage of with the MC.

Variant b To predict CMF values more than 2 time steps ahead of the current time
step, we take 2 consecutive values from the record as the observation, and we predict the
value for the next time step following Variant a. For the prediction of one further time step,
the previous 2 observation points consist of the latter one from the record and the newly
predicted one, and we apply the prediction following Variant a. Therefore, for one step
ahead, the results of both variants are the same, but only Variant a would be visualized
to avoid redundancy and/or overlapping in the figures. If the value at one further time
step is needed, the new observation would consist of the 2 consecutive predictions. We
repeat this procedure until we reach the prediction for 4 time steps ahead. In Variant b, for
a time window of one hour, only the first two CMF values are taken from the record, and
the following inputs are either a combination of record and prediction or solely predicted
values (see the lower part of Figure 5).
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Figure 5. Diagram of two variants of temporal extrapolation during a one-hour time window from
9:00 to 10:00 in the MC-based model.

Figure 6. Prediction of the second-order-MC-based model for the validation set (2019) in Berlin.

3.3. Persistence Approach

The persistence approach assumes that the cloud state does not change from the
previous to the current time step; therefore, it uses the CMF value for the previous time step
as the prediction for the current time step. It is essentially a temporal shift of the original
time series by a certain interval, in this case, from 1 to 4 time steps earlier to the present.

3.4. Neighbor Inference Approach

To trace the cloud movement above a region, one option is to look up the record of its
neighboring region with a temporal lag. Using Berlin as a test bed, we evaluate the viability of
inferring CMF values for the central grid cell from its neighbor cells at the previous time step.
The neighbor cells are the central cell shifted to its eight directions by 0.1◦ longitude or/and
latitude: to the west, northwest, north, northeast, east, southeast, south, and southwest. We
first exclude the time steps with CMF values higher than or equal to 0.95 (sunny with very few
clouds) and compute the Pearson correlation of the CMF values for the central cell with those
for the neighbor cells to obtain eight correlation coefficients. Figure 7 displays the correlation
coefficients of the CMF values in Berlin with CMF values from the previous time step (15 min
prior) in the eight neighbor cells, based on the time series from 2004 to 2019. The highest
correlation is with the cell to the west, followed by the cells in the northwest and southwest.
Moving towards the east, the correlation decreases, and the minimum correlation is situated
in the southeastern cell. This is as expected, since the general movement of clouds above
Berlin is a westerly flow. In the following section, we evaluate the performance of using prior
CMF values from the western cell in comparison to other prediction techniques.
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Figure 7. Correlation coefficients of CMF in Berlin with its eight neighboring grid cells.

3.5. Hybrid Approach

For the 2019 time series, we evaluate the accuracy of the persistence method, neighbor
inference, and MC predictions including both Variant a and Variant b, in order to develop
hybrid methods based on MAE or RMSE for all 30 CMF classes. MAE measures the mean
difference between predicted and actual time series, whereas RMSE measures the bias and
standard deviation of the difference between predicted and actual time series, and both
have the same unit as the actual time series (dimensionless in the case of CMF). If, for a
given CMF class, the error rate of a certain approach is the lowest among the considered
approaches, we adopt that approach for the CMF class in question. We then apply this to
the 2020 time series by choosing the optimal approach for the next time step based on the
CMF class at the current time step. Table 3 gives an overview of the different approaches
and their respective indices in Section 4. A visualization of the hybrid approach can be
found in Figure 8.

Figure 8. Flux diagram illustrating the hybrid approach. The indices of the methods can be found in
Table 3.
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Table 3. Overview of prediction methods with their indices and color codes.

Method Index Color

Persistence pers violet
MC Variant a mc_a sky blue
MC Variant b mc_b pink

Neighbor inference neib olive
Hybrid by MAE hyb_m black
Hybrid by RMSE hyb_r red

3.6. GHI Prediction

For the computation of all-sky GHI, we multiply clear-sky GHI provided by CAMS by
the predicted CMF values following different approaches:

GHI = GHICS ·CMF (15)

4. Results and Discussion
4.1. Results of CMF

In this section, we first present the results for the evaluation of CMF for Berlin and then
for the other three cities. Table 4 lists, for the different methods, the Pearson correlation
coefficients of predicted time series with the actual time series for one to four time steps
ahead in 2020 for Berlin. Within each lead time step, the correlation coefficients between
the prediction and the record are similar among different methods, ranging from around
0.9 for one time step ahead to approximately 0.7 for four time steps ahead. The MC-based
model Variant a outperforms the persistence approach for a forecast horizon of within half
an hour. For a lead time of longer than 45 min, neighbor inference wins out and has a higher
correlation with the actual time series than the persistence or MC predictions. Built upon
these comparisons, the hybrid approaches outperform the other methods; the method based
on RMSE is slightly better than the one based on MAE, except in the case of a lead time of
one hour.

Table 4. Correlation coefficients of predicted and actual CMF time series for four lead time steps (+1 to
+4) in 2020 for Berlin. The results for the other three cities can be found in Tables A1–A3 in Appendix A.

Method +1 +2 +3 +4

pers 0.9087 0.8142 0.7635 0.7275
mc_a 0.914 0.8204 0.7658 0.7254
mc_b 0.914 0.7956 0.72 0.6691
neib 0.8874 0.805 0.7653 0.7331

hyb_m 0.9143 0.8301 0.7946 0.7628
hyb_r 0.9146 0.8352 0.7975 0.7609

Next, we examine the agreement of the CMF values between different methods and
the actual time series, using the standard deviation of the prediction bias. Figure 9 shows
the standard deviation of bias for CMF from different approaches. In general, the standard
deviation of the prediction bias for each approach increases with the lead time. For one
time step ahead, the standard deviations of bias for the hybrid approaches are very close to
that for the persistence approach. As the lead time increases, the differences between them
also increase. That is, the standard deviation of bias for the persistence method increases
more than for hybrid approaches. When the lead time is 15 min, the standard deviation for
hybrid approach based on RMSE is almost equal to that based on MAE; however, in later
time steps, the ones based on RMSE have slightly lower standard deviations than the ones
based on MAE.

In the first and second lead time step, the neighbor inference approach has the highest
standard deviation of bias among the methods considered. For three and four time steps
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ahead, the standard deviation of bias becomes slightly smaller than that for the persistence
method. The MC Variant a prediction method has a lower standard deviation of bias
throughout than the persistence approach. For one time step ahead, the standard deviation
for the MC Variant a prediction method is almost equal to that of the hybrid approaches.
On the other hand, the MC Variant b prediction method has a relatively large standard
deviation for 15 to 60 min of lead time. It only performs a little better than the neighboring
grid cell method for two time steps ahead, but has the highest standard deviation among
all methods for lead times of more than 30 min. For 1 h ahead, the standard deviation for
the MC Variant b prediction method exceeds 0.2.

Figure 9. Standard deviation of CMF prediction bias for Berlin. The results for the other three cities
can be found in Figure A2 in Appendix A.

In addition to the comparison between the prediction and the actual time series, we
also compare the errors in prediction among the different methods by means of MAE and
RMSE. Figure 10 shows the MAE and RMSE of CMF from different methods for four lead
time steps in 2020 for Berlin, from the lower left to upper right corner. For 15 min ahead, the
error rates of the hybrid methods are close to that of the persistence method. From 30 min
ahead onward, the error rates of the hybrid methods are notably lower than that of the
persistence method. The error rates of the persistence method and the neighbor inference
approach for longer than 45 min ahead are even larger than those of the hybrid methods
for one hour ahead. While the MAEs of the MC Variant a prediction method are, for all
lead time steps, larger than those of the other methods except the MC Variant b prediction
method, its RMSE is comparable to the others for one time step ahead and is evidently
smaller than those of the persistence or neighboring approaches from 30 min ahead onward.
On the other hand, the MC Variant b prediction method has no advantage over the other
methods, regardless of MAE or RMSE across the three lead time steps analyzed.

The averaging of errors could mask the variations in forecast performance due to
cloud conditions [24]. Thus, we look into the more informative prediction error for each
CMF class. Therein, we compute the MAE of each CMF class by the persistence and hybrid
approaches for one to four time steps ahead (Figure 11). The MAE of each CMF class grows
as the lead time increases, as expected. For 15 to 30 min ahead, the persistence method
has an advantage in the CMF range between 0.3 and 0.4. This arises due to the fact that
the hybrid methods consider the prediction errors of the immediately previous one time
step, the CMF class of which could be different from the current time step. For further
lead time steps, it is almost invariably the hybrid approaches that generate lower error
rates across the whole CMF range. The improvement offered by the hybrid methods is
the most evident for the CMF classes from 0.5 to 0.8, especially for a lead time of one hour.
Except for one time step ahead, the error rates are high for very small CMF classes. For
CMF classes of around 0.8 to 0.9, there is another high MAE peak, hinting at the difficulty
of accurately predicting the cloud state at these levels. In the case of Berlin, the hybrid



Energies 2022, 15, 2996 12 of 24

approach based on RMSE is more accurate than that based on MAE, except for a few CMF
classes at around 0.83.

Figure 10. Mean absolute error (MAE) versus root mean square error (RMSE) for Berlin. For one step
ahead (+1), the results for both mca and mcb are the same, but only Variant a is visualized to avoid
redundancy and/or overlapping. The same applies to the following figures. The results for the other
three cities can be found in Figure A3 in Appendix A.

Figure 11. MAE for each CMF class for (a) 15 min, (b) 30 min, (c) 45 min, and (d) 60 min ahead in
2020 for Berlin. The results for the other three cities can be found in Figures A4–A6 in Appendix A.

We identify the effectiveness of the proposed approaches in a retrospective way. The
applicability of these methods mainly depends on current, known information. The change
in CMF is the difference in CMF between the current and the immediately previous time
step(s), which can be considered known information. For example, if we were currently
at 9:30, the CMF change from 9:00 (t− 2) to 9:30 (t) would be known. Thus, we evaluate
the MAE of predicted CMF as a function of each class of CMF change using different
approaches for one to four time steps ahead (Figure 12). The histograms in the background
indicate the number of data points in each class of CMF that change from the preceding time
step. The persistence method performs best when the change in CMF is very small, within
the range of ±0.04. When the CMF change is larger, the majority of the other approaches
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outperform the persistence method. Among them, Variant b of the MC prediction method
has the lowest MAE when the CMF changes considerably, followed by Variant a or the
hybrid approach, depending on the class of CMF change. These tendencies are more
distinct when the CMF increases from the past to the present than when the CMF change is
in the reverse direction. However, note that the majority of CMF changes reside in a very
small range clustered around zero, as can be seen from the distribution of the CMF changes.

Figure 12. MAE of CMF change for (a) 15 min, (b) 30 min, (c) 45 min, and (d) 60 min ahead for Berlin.
The horizontal ticks are the means of every class of CMF change, where the change classes are equally
spaced with an interval of 0.1, e.g., [−0.1, 0) and [0, 0.1). The results for the other three cities can be
found in Figures A7–A9 in Appendix A.

After the evaluation of CMF for the city of Berlin, we apply the hybrid method based
on RMSE to the three other cities introduced in Section 2. The individual transition matrix is
computed for each city. Table 5 lists the Pearson correlation coefficients of CMF predicted by
the hybrid method based on RMSE with the actual time series, for four lead time steps for
four cities in 2020. The correlation is highest for one time step ahead, featuring correlation
coefficients larger than 0.9. As the lead time increases, the correlation coefficients decrease
to around 0.75. Among the cities considered, the hybrid approach yields the best result for
Bucharest for each lead time step, even though Bucharest is not the city with the lowest or
the most variable CMF (see Table 1). For Helsinki, the hybrid method works properly from
one to four time steps ahead. In the sunnier city Athens, the hybrid method’s prediction is
comparably good for at least 15 or 30 min ahead.

Table 5. Correlation coefficients of predicted CMF by hyb_r with the actual time series for four cities
for four lead time steps (+1 to +4) in 2020.

City +1 +2 +3 +4

Athens 0.9176 0.8406 0.7807 0.7574
Bucharest 0.9547 0.8892 0.8365 0.7962

Berlin 0.9146 0.8352 0.7975 0.7609
Helsinki 0.9418 0.8536 0.81 0.7696
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4.2. Results of GHI

Following the method described in Section 3.6, we examine the performance of the
hybrid approach based on RMSE in predicting GHI. Figure 13 shows the GHI time series
provided by CAMS and predicted with a lead time of 15 min using the hybrid approach
based on RMSE for Berlin from 1 January 2020 to 11 January 2020. Nighttime hours without
sunshine are not included. We are able to observe both curves in high agreement, especially
when the absolute GHI values are high. In moments of relatively low GHI values, the
hybrid approach based on RMSE tends to overestimate the GHI, as illustrated by the red
overshoots during the course.

Figure 13. Comparison of actual daily GHI by CAMS (green) and predicted with a lead time of 15 min
by the hybrid approach based on RMSE (red) for Berlin from 1 January 2020 to 11 January 2020.

When we consider the mean daily insolation (GHI) for each month, the annual course
of the prediction for Berlin in 2020 bears a reasonably high resemblance to the one provided
by CAMS (Figure 14), since shorter temporal variations of GHI are smoothed out. Especially
in the months from July to September, the differences between both time series are negligible.
In some months, where there is a visible deviation of monthly GHI prediction from the
actual time series, there is still an overestimation from the hybrid method, except in April.
The positive bias stemming from the MC-based model could be partially due to the way
the model is trained in this study: the calculation of GHI or CMF does not take into account
the atmospheric mechanisms that could affect cloudiness.

Figure 14. Comparison of actual monthly GHI by CAMS (green) and predicted with a lead time of
15 min by the hybrid approach based on RMSE (red) for Berlin in 2020.
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Figure 15 shows the monthly MAE of GHI 1 h ahead, as predicted by the persistence
and hybrid methods for the four cities in 2020 with their individual vertical axes. In Athens,
the performance of the persistence method is not necessarily worse than either hybrid
method, except from October to February, a time of year when the daily sunshine duration
is shorter. However, the hybrid approach based on MAE has the lowest MAE in every
month of the year. In Bucharest, both hybrid methods perform similarly, almost always
better than the persistence method, especially in summer from May to July. The advantage
of the hybrid approach over the persistence method can be better demonstrated in the city
of Berlin, particularly during summer, with a monthly MAE reduction of up to 2.5 Wh m−2.
In Helsinki, the improvement offered by the hybrid approaches in prediction accuracy is
more evident in the last quarter of the year, from October to December.

Figure 15. MAE of 1 h ahead GHI for the persistence and hybrid approaches in 2020 for (a) Athens,
(b) Bucharest, (c) Berlin, and (d) Helsinki.

To put the results of GHI prediction into perspective, we compare the performance
of the hybrid methods with the persistence method using the MAE improvement of GHI
for each month. This improvement in MAE (in %) is defined as the difference in MAE of
GHI by the hybrid approach (MAE(X̂i)) and MAE of GHI by the persistence approach
(MAE(Xi)) divided by the actual mean daily GHI in Month i (Xi):

∆MAEi,rel =
MAE(X̂i)−MAE(Xi)

Xi
(16)

Figure 16 shows the monthly relative improvement of the hybrid approach based
on MAE compared with the persistence method for four time steps for the four cities.
Note that the vertical axis scales have also been individually adjusted to make the results
more readable. For one time step ahead in Athens, the hybrid approach is inferior to the
persistence approach in predicting GHI. There is some improvement for further time steps,
although the magnitude is small. The improvement in most of the months is within 2%,
and is close to zero in the summer months of July and August. In Bucharest, there is also
no improvement for one time step ahead except for the months from May to July, with
small magnitude. The improvement for the majority of months is smaller than 2%. In
Berlin, on the other hand, we observe an improvement from one to four time steps ahead
across all months, except for 15 min ahead in February. For a lead time shorter than 45 min,
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the fluctuation of improvements throughout the year is relatively small. However, when
predicting one hour ahead, the improvement is apparent during the winter months of
October to January, even reaching nearly 5% in November. In Helsinki, there is a general
improvement confirmed. In December, we even observe an improvement higher than 10%
for the lead times of 45 and 60 min. However, this is mainly due to the original low monthly
GHI in Helsinki.

Figure 16. Relative improvement of the hybrid approach in 2020 for (a) Athens, (b) Bucharest,
(c) Berlin, and (d) Helsinki.

5. Conclusions

The accuracy of solar radiation prediction is subject to the location and forecast horizon
considered. For locations with relatively high variability in cloudiness, such as Berlin in this
study, the persistence approach does not work satisfactorily for a longer period of time. This
is linked to our motivation to offer better methodologies for solar nowcasting. In this study,
we present a hybrid model for solar radiation nowcasting that combines the persistence
ensemble, the Markov chain model, and neighbor inference through cloud movement. In
the GHI prediction for Berlin, the reduction in monthly mean error amounts to 2.5 Wh m−2,
and the relative improvement reaches nearly 5% compared with the traditional persistence
method. In the other three cities, accuracy improvements of various degrees can also
be observed.

We acknowledge that the data involved in this study are based on outputs from
models rather than true measurements, which implies limitations on the ability to 100%
reflect reality. However, note that the proposed model undoubtedly could also be applied
to ground-based measurement data. On the other hand, the use of modeled clear-sky
radiation is inevitable for the prediction of GHI from CMF even outside modeling simula-
tion involvements.

The presented approach has the advantage that its straightforward model configu-
ration does not require the input of other variables, such as wind speed or CMV from
all-sky imagers, both of which can introduce multiple uncertainties. Furthermore, the
computational time required for prediction at one single site is trivial. Our approach also
adjusts the transition matrix according to the input data for the MC prediction; thus, it is
a generic model that can be readily applied to different geographical locations where the
CAMS data are available. Therefore, one prospect for the hybrid model is to upscale its ap-
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plication to, e.g., the pan-European domain to build an efficient network for solar radiation
nowcasting. The presented method can be the base for, or part of, hybrid approaches that
include additional, satellite-based cloud information and/or ground measurements (cloud
cameras, solar irradiance instruments, and other atmospheric parameters measurements)
with the goal of improving solar forecasting.
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Appendix A

Table A1. Correlation coefficients of predicted and actual cloud modification factor (CMF) time series
for 4 lead time steps (+1 to +4) in 2020 for Athens.

Method +1 +2 +3 +4

pers 0.9157 0.8323 0.7867 0.7509
mc_a 0.9164 0.8394 0.7929 0.7587
mc_b 0.9164 0.816 0.7498 0.6981
neib 0.8332 0.7626 0.7329 0.7065

hyb_m 0.9174 0.8475 0.8069 0.7821
hyb_r 0.9176 0.8406 0.7807 0.7574

Table A2. Correlation coefficients of predicted and actual CMF time series for 4 lead time steps (+1 to
+4) in 2020 for Bucharest.

Method +1 +2 +3 +4

pers 0.9226 0.8457 0.8023 0.7663
mc_a 0.955 0.8811 0.8281 0.7854
mc_b 0.955 0.885 0.8136 0.7549
neib 0.8953 0.8281 0.7943 0.7631

hyb_m 0.9547 0.8919 0.8381 0.7954
hyb_r 0.9547 0.8892 0.8365 0.7962

Table A3. Correlation coefficients of predicted and actual CMF time series for 4 lead time steps (+1 to
+4) in 2020 for Helsinki.

Method +1 +2 +3 +4

pers 0.8974 0.7858 0.7319 0.6943
mc_a 0.9424 0.8408 0.7715 0.7189
mc_b 0.9424 0.8413 0.7488 0.6651
neib 0.8878 0.7831 0.7342 0.6982

hyb_m 0.941 0.8551 0.8094 0.7725
hyb_r 0.9418 0.8536 0.81 0.7696

http://www.soda-pro.com/web-services/radiation/cams-radiation-service
http://www.soda-pro.com/web-services/radiation/cams-radiation-service
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Figure A1. Daily mean global horizontal irradiation (GHI) for each month (orange bars, left axis)
and monthly mean cloud modification factor (CMF; blue curves, right axis) in 2020 for (a) Athens,
(b) Bucharest, and (c) Helsinki.

Figure A2. Standard deviation of cloud modification factor (CMF) prediction bias for (a) Athens,
(b) Bucharest, and (c) Helsinki.
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Appendix A.1. Test for Time Homogeneity in the Transition Probabilities

Let ni1i0 denote the number of transitions from a given state i0 to state i1 in the interval
of observation [0, T]; the transition probabilities are

q̂i1i0 =
ni1i0
ni1+

f or i1, i0 ∈ {1, . . . , m} (A1)

with

ni1+ =
m

∑
i0=1

ni1i0 (A2)

Using m = 10, we test the first order Markov chain with 10 states, formulating the null
hypothesis as the following [25]:

H0 : q̂i1i0(t) = q̂i1i0 f or all i1 ∈ F(i0) and t, given i0 (A3)

where q̂i1i0 denotes the time-independent transition probabilities and q̂i1i0(t) the time-
dependent ones, and F(i0) is the set of values of i1 for which q̂i1i0(t) > 0.

Under H0 the statistic

χ2(i0) =
T−1

∑
t=0

∑
F(i0)

ni1+(t)
[q̂i0i1(t)− q̂i0i1 ]

2

q̂i0i1
(A4)

is approximately χ2 distributed with (T− 1)× [N(i0)− 1] degrees of freedom, where N(i0)
is the number of members of the set F(i0).

We divide the time series of the training set from 2004 to 2018 in Berlin into 4 three-
month seasons, with the first season t = 1 consisting of December, January, February; t = 2
for the second season from March to May; and so on. The results of the calculated statistics
for the four seasons are listed in Table A4.

Table A4. Test results for time homogeneity of the transition probabilities of the first order Markov
chain with 10 states. The columns from left to right list the season, the sample size in each season, the
degree of freedom, and the statistics, respectively.

t Sample Size DoF Statistic

1 45,345 97 4383.091
2 76,656 99 98.019
3 87,403 100 422.324
4 58,203 89 200.771

sum 267,607 385 5104.206

Comparing the statistics with the percentage points of the χ2 distribution, we can reject
H0 with a significance level of 5% (p = 0.05), thus confirming that time inhomogeneity is
present for the training data set from 2004 to 2018 in Berlin. Note here the class imbalance
and the distinguished different statistics among the sub-samples, especially between winter
and summer.
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Figure A3. Mean absolute error (MAE) verses root mean square error (RMSE) for (a) Athens,
(b) Bucharest, and (c) Helsinki.

Figure A4. MAE for each CMF class for (a) 15 min, (b) 30 min, (c) 45 min, and (d) 60 min ahead in
2020 for Athens.
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Figure A5. MAE for each CMF class for (a) 15 min, (b) 30 min, (c) 45 min, and (d) 60 min ahead in
2020 for Bucharest.

Figure A6. MAE for each CMF class for (a) 15 min, (b) 30 min, (c) 45 min, and (d) 60 min ahead in
2020 for Helsinki.
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Figure A7. MAE of CMF change for (a) 15 min, (b) 30 min, (c) 45 min, and (d) 60 min ahead for Athens.

Figure A8. MAE of CMF change for (a) 15 min, (b) 30 min, (c) 45 min, and (d) 60 min ahead
for Bucharest.
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Figure A9. MAE of CMF change for (a) 15 min, (b) 30 min, (c) 45 min, and (d) 60 min ahead
for Helsinki.
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