
����������
�������

Citation: Kabbara, W.; Bensetti, M.;

Phulpin, T.; Caillierez, A.; Loudot, S.;

Sadarnac, D. A Control Strategy to

Avoid Drop and Inrush Currents

during Transient Phases in a

Multi-Transmitters DIPT System.

Energies 2022, 15, 2911. https://

doi.org/10.3390/en15082911

Academic Editors: Markus

Makoschitz, Stefan Leitner and

Johannes Stöckl

Received: 3 March 2022

Accepted: 13 April 2022

Published: 15 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

A Control Strategy to Avoid Drop and Inrush Currents during
Transient Phases in a Multi-Transmitters DIPT System
Wassim Kabbara 1,2,3,* , Mohamed Bensetti 1,2 , Tanguy Phulpin 1,2, Antoine Caillierez 3, Serge Loudot 3

and Daniel Sadarnac 1,2

1 Laboratoire de Génie Electrique et Electronique de Paris, CNRS, CentraleSupélec, Université Paris-Saclay,
91192 Gif-sur-Yvette, France; mohamed.bensetti@centralesupelec.fr (M.B.);
tanguy.phulpin@centralesupelec.fr (T.P.); daniel.sadarnac@centralesupelec.fr (D.S.)

2 Laboratoire de Génie Electrique et Electronique de Paris, CNRS, Sorbonne Université, 75252 Paris, France
3 Renault, 1 Avenue du Golf, 78084 Guyancourt, France; antoine.caillierez@renault.com (A.C.);

serge.loudot@renault.com (S.L.)
* Correspondence: wassim.kabbara@centralesupelec.fr

Abstract: Electrical Vehicles (EVs) have gained popularity in recent years in the automotive field.
They are seen as a way to reduce the CO2 footprint of vehicles. Although EVs have witnessed
significant advancement in recent years, they still have two major setbacks: limited autonomy and
long recharging time. Dynamic Inductive Power Transfer (DIPT) systems permit charging EVs while
driving, provide unlimited autonomy, and eliminate stationary charging time and lower battery
dependency. Multiple transmitters are required to achieve DIPT; thus, dealing with transient phases
is essential because every time a receiver crosses over from one transmitter to another, it experiences a
new transient phase. This article presents a novel control strategy for multi-transmitter DIPT systems
that ensures a continuous and stable power transfer to a moving EV. The proposed control strategy
eliminates drop and inrush currents during transient phases. The control integrates a soft start feature
and a degraded operating mode at a predefined maximum current value. The studied structure
is a symmetrical series–series compensation network. Each transmitter coil is driven by a variable
frequency inverter (around 85 kHz) to ensure Zero Phase Angle mode. The control strategy was
numerically validated using MATLAB Simulink and then tested experimentally. Results show a
relatively low power disruption after applying the proposed control during transmitter sequencing.

Keywords: Dynamic Inductive Power Transfer; frequency control; series-series compensation network;
voltage copying; state machine

1. Introduction

The future of mobility tends towards reducing, or even eliminating at some point,
the use of classic fuels (petrol, diesel) to minimize the immense pollution they cause [1].
Some cities have already set strict regulations prohibiting vehicles of specific type and age
from circulating on their roads, such as implementing the CRIT’Air certificate in France [2].
Therefore, car manufacturers are obliged to adapt quickly to meet the strict regulations set
for internal-combustion engine (ICE) vehicles. Car electrification is a possible alternative
that most car manufacturers opt for and try to put into service [3]. Hybridization is a form of
vehicle electrification that combines ICE technology with a battery-powered electric motor.
The most common vehicle hybridization is known in the form of Hybrid Electrical Vehicles
(HEV) and Plug-in Hybrid Electrical Vehicles (PHEV). It is a well-matured technology that
reduces the carbon footprint of vehicles, but its major downside is that it stays dependent on
fossil fuels [4]. Another good candidate is hydrogen fuel cell technology since hydrogen has
a much higher energy density (33 kW/kg) compared to today’s batteries (0.2 kW/kg) [5].
However, several drawbacks significantly limit the deployment of hydrogen technology:
complex onboard hydrogen storage systems are limited at 1.2 kWh/liter at 700 bars [6] and
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low fuel cell efficiency (around 50%) combined with poor reliability and short lifetime [7].
One of the strongest candidates for replacing ICE vehicles are Electrical Vehicles (EVs).
However, EVs have two significant drawbacks that prevent them from being the perfect
alternative: limited autonomy and extended recharging time.

Lately, Dynamic Inductive Power Transfer systems (DIPT) have gained momentum.
They consist of multiple transmitting coils embedded in the road, sending energy by mag-
netic induction to an embedded receiver coil inside the EV, thus charging wirelessly while
in motion. DIPT systems can provide unlimited autonomy, eliminate stationary charging
time, and lower battery dependency. It is being introduced to solve EVs’ drawbacks by
offering an unlimited range on the roads equipped with the DIPT system [8–10]. DIPT
systems have been studied and proven to have great potential by numerous publications in
the literature [11–13]. However, we have noticed a common problem concerning power
interruption due to transient phases when the secondary coil passes from one primary
coil to another. This problem was apparent in the results shared by the FABRIC European
project that implemented a whole prototype DIPT infrastructure, including demonstrations
of inductive wireless power transfer in different real driving conditions (up to 20 kW, from
0 to 100 km/h) [14]. The consequence of the power interruption during transient phases is
a periodic pulse profile charging current, perturbing the Li-ion battery performance and
reducing the average charging power compared to a constant current profile. A study
presented in [15] showed that the profile performance index, an indicator of the quality of a
current profile, is affected detrimentally both in the charge and in the discharge direction in
the case of a periodic pulse current profile. One possible solution for lowering the impact
of transitioning phases is by lowering the number of transitions from one ground coil to
another by using a long ground coil as in [16]. Other propositions have been made to
use smaller ground coils and permanently energize them with proper synchronization to
modulate the power and avoid transitioning phases during movement [17,18]. However,
the solutions proposed in [16–18] cannot comply with the ICNIRP [19] recommendations
due to having energized ground coils radiating magnetic fields without the presence of a
shielding-equipped vehicle. Another issue studied by [20], but not as widely treated in the
literature, is how to control inrush currents in inductively coupled power systems. Limiting
the inrush currents is critical during the start-up phase of the power transfer, especially
in the presence of DC-link capacitors in the receiver system. Multiple transmitters are
required to achieve DIPT; thus, dealing with transient phases is essential because every time
a receiver crosses over from one transmitter to another, it experiences a new transient phase.

This article presents an original control strategy for the primary system that ensures
a continuous power transfer to a secondary system in a series–series (S-S) compensation
topology with multi-transmitters. The proposed control strategy eliminates drop and inrush
currents during transient phases. Moreover, a soft-start algorithm and a degraded mode
feature were implemented in the control algorithm. The proposed control was validated
numerically using MATLAB Simulink on a model that contains four primary coils and
one secondary coil of identical size separated by a 15 cm air gap. Simulation results show
that the system transfers 1 kW of power with a relatively low power disruption when
sequencing to a secondary coil coupled with a resistive load. Moreover, experimental
testing of the presented control was done at 700 W with satisfying results.
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2. Topology of the Studied System
2.1. Magnetic Coupler Architecture

The ground and secondary coils’ adopted geometry was 48 × 48 cm square with
six turns. Ferrite plates were added to the coils to canalize the magnetic flux better, thus
enhancing the coupling coefficient (Figure 1 and Table 1).
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Figure 1. Model of the implemented coils + Ferrite plates for shielding.

Table 1. Characteristics of the used coils.

Parameter Value Unit

Number of turns 6 turns
Layout 2 layers of 3 turns

Space between turns 0 mm
Space coil/ferrite 10 mm

Exterior diameter of the cable 5 mm
Total thickness (coil + ferrite) 22 mm

Cable length per coil 10.44 + 1.5 for connections m
Measured inductance (without the effect of

secondary ferrite) 45 µH

Measured inductance (with the secondary
placed centered above the primary) 65 µH

Air gap (center to center) 15 cm

2.2. Power Electronics Architecture

The power electronics architecture used in this study was an H-bridge on the primary
side connected to a symmetrical series compensation network and a diode bridge on the
secondary side, as shown in Figure 2.

2.3. Electrical Equations of the Symmetrical Series Compensation Network

The reduced electrical model of the system, between the output of the inverter and the
load, is presented in Figure 3, while the parameters’ definitions are given in Table 2. The
first-order harmonic approximation is considered to obtain the equations of the system.
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Figure 3. Coupler model with series–series compensation with one transmitter and one receiver.

Table 2. Parameter’s definition.

Parameters Definition

Vp Voltage applied on the primary side
rp Total equivalent resistance on the primary side
Cp Primary series compensation capacitor
Lp Inductance of the primary coil
M Primary to secondary mutual inductance
ki,j Magnetic coupling between coili and coilj
Ls Inductance of the secondary coil
Cs Secondary series compensation capacitor
rs Total equivalent resistance on the secondary side
Vs Voltage across the equivalent load
R Equivalent circuit for the rectifier + capacitive filter + Rload

Cout Output capacitance
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The following equations are developed based on the circuit provided in Figure 3:

Vs = −RIs (1)

M = k
√

LpLs,where k is defined as the coupling coefficient (2)

Gv =
Vs

Vp
(3)

V =

(
Vp
0

)
; I =

(
Ip
IS

)
; V =

=
MR I (4)

=
MR =

(
rp + Lpwj + 1

jCpw k
√

LpLs jw
k
√

LpLswj R + rs + jLsw + 1
jCsw

)
(5)

I =
=
M
−1

V (6)

Identical primary and secondary coils with identical compensation capacitors are
chosen to obtain the simplest analytical design. Frequency bifurcation is a phenomenon
studied in [21–24] and results from having symmetrical primary to secondary systems. A
fixed voltage gain can be obtained at a specific frequency in S-S compensation, as shown
in [24]. This frequency exists and is not unique (Equation (11)) and is presented under
specific power constraints (Equation (17)).

Cp = Cs = C ; Lp = Ls = L ; rp = rs = 0 (7)

I =
(

Ip
Is

)
=

 CwVp(−CLw2+jCRw+1)
jC2L2k2w4−jC2L2w4−RC2Lw3+jCLw22+RCw−j

C2LVpkw3

jC2L2k2w4−jC2L2w4−RC2Lw3+jCLw22+RCw−j

 (8)

Pout = RIs
2 = Vp

2RC4L2w6 ∗ 1
α+β2{

α =
[
C2L2w4(1− k2)− 2CLw2 + 1

]2
β = RCw

(
1− CLw2) (9)

Zin =
Vp

Ip
= Re{Zin}+ Im{Zin} ∗ j



ϕp = arctang
(

Im{Zin}
Re{Zin}

)
Re{Zin} = − C2L2Rk2w4

C2L2w4+C2R2w2−2CLw2+1

Im{Zin} =
(CLw2−1)(−C2L2k2w4+C2L2w4+C2R2w2−2CLw2+1)

Cw(C2L2w4+C2R2w2−2CLw2+1)

(10)

wϕp=0 =


√

2L−CR2−γ√
2
√

CL
√

1−k2
1√
CL√

2L−CR2+γ√
2
√

CL
√

1−k2

γ =
√

C2R4 − 4CLR2 + 4L2k2

(11)

Rϕp=0 = RIm{Zin}=0 =

√
(CLw2 + kCLw2 − 1)(−CLw2 + kCLw2 + 1)

Cw
(12)

Poutϕp=0 =
CVp

2w√
C2L2w4(k2 − 1) + 2CLw2 − 1

(13)

w d(Poutϕp=0
)

d(w)
=0

=
1

√
LC(1− k2)

1
4

(14)
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Poutmin& ϕp=0 =
Vp

2
√

C
√

2
√

L
∗ 1√(

1−
√

1− k2
) (15)

Using the first harmonic method, we can approximate Vp by the following:

Vp =
V̂p√

2
≈ 1√

2
∗ 4

π
Vdc (16)

Poutmin& ϕp=0
∼=

8Vdc
2
√

C
π2
√

2
√

L
∗ 1√(

1−
√

1− k2
) (17)

This approximation is well justified when the operating frequency is close to the
resonant frequency. Thus, the system’s high inductive nature will naturally filter out all
higher-order harmonics at high frequencies. (See Figure 4a).
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3. Control Strategy of the Transmitters’ Inverters
3.1. Control Loop

The control loop needs to comply with fast magnetic coupling variations. Besides, we
wanted to reduce the complexity of the system realization by not communicating between
the primary and secondary systems. Therefore, the choice was made to regulate the phase
ϕp between Ip and Vp by imposing the frequency fp of Vp, as shown in Figure 5. The power
transferred to the secondary would be controlled by acting on the equivalent impedance of
the secondary side.
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Equation (17) shows that for a given electrical dimension of the system, it is possible to
operate at zero phase ϕp if the transferred power is above the minimum value Poutmin& ϕp=0 .
However, Equation (11) and Figure 4a show that there are multiple solutions possible for
ϕp = 0. Fixed frequency solution at f0 = 1

2π
√

LC
is abandoned for two main reasons:

1. Primary to secondary voltage gain (Gv) varies considerably with the variation of k
and Pout. It reaches dangerously high levels with low power transfer;

2. Impossible to operate without the presence of the secondary system or with low
coupling values since the primary coil will act as a short circuit, and a substantial
current Ip will circulate.

The adopted solution operates at the highest frequency that satisfies ϕp = 0. It has
been shown in [25,26] that operating at this resonant frequency gives the system a unique
property named “Voltage Copying”, where Gv is very close to 1 (Figure 6). Hence, at
normal operating conditions, the control of the primary system insures ϕp = 0, while
power regulation is made on the secondary side with Gv ≈ 1 and under the condition
Pout ≥ Poutmin& ϕp=0 .
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However, power limitation via the control of the primary system is also achievable.
This control could be done by simply increasing the frequency fp and thus increasing
the input impedance Zin and limiting the current Ip (check Figure 4b). In this case, Ip
becomes limited, but ϕp will no longer be maintained at zero. The transmitted active power
will, therefore, decrease. This property will be used in Section 3.2 to integrate a soft-start
algorithm and a degraded mode using the control of the primary system.

3.2. Soft-Start and Degraded Mode Integration

A soft-start algorithm was implemented to avoid the current inrush during system
start-ups. Another feature we implemented using the proposed control was the power
degradation mode under certain conditions. As explained in Section 3.1, we did not impose
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a specific power transfer from the ground side because the vehicle controls the power
demand. Still, we can limit it by increasing the input impedance from the primary side.

During the start-up phase, we set ϕ∗p for 80
◦

(high impedance→ low power transfer
→ controlled current inrush). Then, we decreased ϕ∗p gradually, using a step = “step_down”
until reaching the defined minimum value ϕ∗p = 0

◦
. Thus, enabling functioning at “Voltage

Copying” mode as described previously. Power transferred will increase gradually until
reaching the nominal power at ϕ∗p = 0

◦
. This power corresponded to the nominal power

decided by the secondary side and should respect a minimum value stated by Equation
(18). The minimum duration of the soft-start phase was linked to the values of “step_down”
and the execution time (texec_cycle) of one cycle in the control loop.

tso f t_startmin
= texec_cycle ∗

maximum phase setpoint
step_down

(18)

However, the actual total time will depend on the rapidity of the system since the
algorithm does not update the value of ϕ∗p until the actual measurement of ϕp reaches the
old setpoint (Figure 7).
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The degraded mode is achieved by limiting the value of Ip and by varying the
impedance value. Whenever Ip reaches a predefined critical value “Max_Peak_Current”,
the value of ϕ∗p is increased, using a step = “fast_step_up”, consequently increasing the
input impedance Zin and limiting Ip (Figure 7).

3.3. Sequencing Control

The proposed solution is based on the hypothesis that an independent microcon-
troller controls each inverter, and each microcontroller can only communicate with the
neighboring’s inverters, as shown in Figure 8.
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Each inverter follows a specific sequencing to provide a continuous and robust power
flow from the ground to the vehicle during transitioning from one coil to another. The state
machine of each inverter is provided in Figure 9, with descriptions of each state provided
in Table 3.
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Figure 9. The state machine of Invn.

Table 3. States description.

State Description

Idle All transistors of the H-bridge are set to OFF

RSC The lower transistors of the H-bridge are set to ON. This way, the
ground coil is in a Resonant Short Circuit with the capacitor in series

PowerON The H-bridge is controlled using the dynamic phase set point to
transfer power

R-to-PowerON The inverter would be in RSC mode, but ready to pass to PowerOn
R-to-RSC The inverter would be in PowerON mode, but ready to pass to RSC

A step-by-step demonstration of a transition from coiln to coiln+1 is presented in
Figure 10. By checking Figure 10, a geometrical symmetry could be noticed when transi-
tioning from coiln to coiln+1. Under the conditions presented in Section 3.1, the system also
showed electrical symmetry by having Ipn ≈ Ipn+1 . This feature has been presented with
details in [26]. The key to maintaining a constant power transfer is to create a temporal
symmetry around the transition. In other terms, the global system’s state (inverters’ states,
PID memory, internal variables used in the control loop, etc.) at the instant of transition
(t0), which corresponds to the instant of geometrical and electrical symmetry, should be
identical to the global system’s state after the execution of the sequencing steps. Hence,
at t0, the control variables’ values were saved and transferred from microcontrollern to
microcontrollern+1.
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4. Simulation Results

The general block diagram of the MATLAB Simulink electrical model is presented in
Figure 11. A DC source was put inside the “Power source” block, four H-bridges with the
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control loop and PWM generation were put inside the “Ground Side Module” block, the
compensation network with the coils’ model was put inside the “Coils and compensation
network” block, and finally, a rectifier alongside a resistive charge was used on the receiver
side. Detailed blocks can be found in Appendix A.
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Figure 11. General block diagram of the MATLAB Simulink electrical model.

Table 4 presents the considered parameters in the simulation. Figures 12a and 13a
present the system’s behavior during the start-up phase without using a soft start. In
comparison, Figures 12b and 13b show the system’s behavior during the start-up phase by
integrating the proposed soft-start algorithm discussed in Section 3.2. Figures 12 and 13
have been simulated using the parameters presented in Table 4.

Table 4. System’s parameters.

Variable Value Unit

Cp = Cs 66 nF
Lp = Ls 65 µH
rp = rs 60 mΩ

Vdc 60 V
kmax 24 %
kmin 14 %

R 6 Ω
Cout 300 µF

Threshold 4 ◦

Step_down 0.4 ◦

Step_up 0.1 ◦

Fast_step_up 4.5 ◦

Max_phase_stepoint 80 ◦

Min_phase_stepoint 1 ◦

FDSP

(
texec_cycle

)
15 (66) kHz (µs)

P 0.01 Proportional parameter in parallel form
I 350 Integrator parameter in parallel form
D 10−4 Derivative parameter in parallel form

Finit 100 kHz
Fmin 82 kHz
Fmax 100 kHz

Vspeed 25 km/h
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Figure 13. Values of ϕp & ϕ∗p [◦]: (a) without soft-start algorithm integrated; (b) with soft-start
algorithm integrated.

In Figure 14a, we show the value of Ip with and without the current limitation control
at 15 A. As explained in Section 3.2, limiting the current Ip (orange curve in Figure 14a)
can be achieved by acting on the value of ϕp, which is clearly shown in Figure 14b (orange
curve). Whenever Ip exceeds the predefined maximum value (15 A in this simulation),
the system automatically reacts based on the implemented dynamic setpoint algorithm
(refer to Figure 7) and increases ϕ∗p. As a result, the closed-loop control will output a higher
frequency increasing the equivalent impedance at the inverter’s output and thus decreasing
Ip. As long as the measured value of ϕp is following the dynamic set point ϕ∗p, and without
any current limitation, the system will always try to decrease ϕ∗p in order to reach the
predefined minimum value (1◦ in this simulation). This behavior can be seen in the blue
curves in Figure 14b.
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Figure 14. (a) Value of Ip [A] with and without current limitation control at 15 A; (b) value of ϕp [◦]
with and without current limitation control at 15 A.

In Figure 15a, we present the system’s variables when the secondary coil passes at
Vspeed = 25 km/h from the center of coil1 and coil2 to the center of coil3 and coil4 without
performing the proper initialization at the moment of sequencing. A noticeable power drop
was located just after the sequencing from coil2 to coil3. This power drop is induced by
not respecting the system’s symmetry during the sequencing steps’ execution. Another
cause of this issue is the improper initializing of the PID controller of inverter3. It is crucial
to initialize with the exact configuration of the PID of inverter2, including the memory
of the integrator action. On the other hand, Figure 15b shows how the power drop due
to sequencing could be reduced to negligible magnitudes when executing the proposed
sequencing algorithm presented in Section 3.3. Values of the PID controller were found
using the Ziegler–Nichols method as a starting point and then fine-tuned manually. The
used values output the frequency directly in kHz, which explains the low values of the PID.
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Figure 15. Values of kp2s, kp3s, Vs [V], Is [A], Ip2peak

[A], Ip3peak
[A], and Pout [W] as a function time [s]

where the secondary coil is moving from the center of coil1 and coil2 to the center of coil3 and coil4:
(a) without performing the proper initialization at the moment of sequencing; (b) while performing
the proposed sequencing control presented in Section 3.3.
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5. Experimental Testing

Experimental testing of the proposed control law was performed using a DIPT test
bench. The block schematics of the used system are given in Figure 16a. The three inverters
shared a common control card containing one DSP and one FPGA for control and mon-
itoring. The selected DSP is the TMS320F28335 (provided by Texas Instruments, Dallas,
TX, USA). It manages the system state machine, the control loop regulation, the PWM
control signals, and the communication. The selected FPGA is the AGLN250V2 (provided
by Microchip, Chandler, AZ, USA). It executes the voltage/current phase measurements
and managed the PWM control signals sent from the DSP. The frequency of the control
was set to 15 [kHz], therefore, texec_cycle = 66.66 µs. The DSP was programmed using the
compiled code from a MATLAB Simulink model using the Texas Instrument C2000 package
in MATLAB coupled with Code Composer Studio. The chosen electrical and geometrical
parameters of the test bench were identical to those defined in Tables 1 and 4. Figure 16b
shows a photo of the test bench.
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Figure 16. (a) Block schematics of the test bench; (b) photo of the test bench.

The oscilloscope’s screen presented in Figure 17 shows the voltage and current mea-
surements across the output of invertern and invertern+1 during the transient phase from
coiln to coiln+1. It shows how there was a minimal perturbation of the Ipn and Ipn+1 after
sequencing. As we have explained earlier in Section 3.3, Ipn ≈ Ipn+1 at the instant of
sequencing due to geometrical and electrical symmetry. This explains why the currents
shown in Figure 17 were nearly identical. We recall that just before the instant of sequenc-
ing, invertern was in PowerOn mode and invertern+1 was in RSC mode. At the end of
the sequencing steps, invertern entered RSC mode while invertern+1 entered the PowerOn
mode. It is clear from Figure 17 that sequencing steps induced very little perturbation to
the current profile.
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Figure 17. Voltage & Current measurements across the output of invertern and invertern+1 during
the transient phase from coiln to coiln+1.

In Figure 18, we present the values of the output voltage (Vs) and the output current
(Iout) as a function of time [s] where the secondary coil is moving from the center of coil2
to the center of coil4 while performing the proper sequencing technique presented in
Section 3.3 at tcoil2→coil3 = 4.7 [s] and tcoil3→coil4 = 8 [s]. A minimal power drop can be
noticed during the two sequencing instants.
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Figure 18. Values of Vs [V] and Iout [A] as a function of time [s] in which the secondary coil is moving
from the center of coil2 to the center of coil4 while performing the proper sequencing technique
presented in Section 3.3 at tcoil2→coil3 = 4.7 [s] and tcoil3→coil4 = 8 [s].

6. Conclusions

This paper presents a control strategy in DIPT for the primary system that ensures
a continuous power transfer flow to a secondary system in a series–series compensation
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topology with multi-transmitters. The proposed control strategy eliminates drop and
inrush currents during transient phases. Moreover, a soft-start algorithm and a degraded
mode feature were implemented in the control algorithm. The proposed control was tested
numerically on the MATLAB Simulink by transferring 1 kW to a resistive load located into a
moving pickup coil. Ground and pickup coils were sized identically and were separated by
a 15 cm air gap. A test bench at 700 W performed preliminary experimental validations for
the proposed control with satisfying results. More detailed experiments will be performed
in future work with higher power and higher speeds.
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